M20550 Calculus III Tutorial Worksheet 7

1. Using spherical coordinates, compute the volume, $V(R)$ of a sphere of radius R.
2. Now compute the surface area, $A(R)$, of a sphere of radius R. Hint: Recall the Fundamental Theorem of Calculus:

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

And recall the common problem from single variable calculus where you have to find the volume of a water tank of height h by integrating the cross sectional area, $A(y)$, over the height.

$$
\operatorname{Volume}(\text { Tank })=\int_{0}^{h} A(y) d y
$$

We have a similar formula for the volume of the sphere;

$$
V(R)=\int_{0}^{R} A(\rho) d \rho
$$

3. Let E_{3} be the solid region that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=2$. Write the triple integral $\iiint_{E_{3}} x z d V$ in spherical coordinates (you don't need to evaluate it).
4. Find the mass of the solid between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ whose density is $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.
5. In this problem, we are going to calculate the same integral in two different ways by changing coordinates. Compute the following integral;

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y
$$

first, by making the coordinate change $u=x^{2}, v=x y$, and then as you normally would. (Don't forget to multiply by the Jacobian!)
6. Let R be the parallelogram enclosed by the lines $x+3 y=0, x+3 y=2, x+y=1$, and $x+y=4$. Evaluate the following integral by making appropriate change of variables

$$
\iint_{R} \frac{x+3 y}{(x+y)^{2}} d A
$$

7. Evaluate the line integral $\int_{C}(z-2 x y) d s$ along the curve C given by $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, $0 \leq t \leq \frac{\pi}{2}$.
8. Find $\int_{C} 2 x y^{3} d s$ where C is the upper half of the circle $x^{2}+y^{2}=4$.
