M20550 Calculus III Tutorial Worksheet 7

1. Using spherical coordinates, compute the volume, $V(R)$ of a sphere of radius R.

Solution: This is equivalent to just computing

$$
\iiint_{\text {Sphere }} d V
$$

(intuitively, we are summing up the volumes of infinitely many infinitesimally small boxes of volume " $d V$ " inside the sphere.) Recall that the standard spherical coordinates are

$$
(x, y, z)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)
$$

for $(\rho, \theta, \phi) \in[0, R] \times[0,2 \pi) \times(0, \pi)$ and the volume element of the sphere with respect to these coordinates is given by $d V=\rho^{2} \sin \phi d \theta d \phi d \rho$. So,

$$
\begin{aligned}
V(R) & =\int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \rho^{2} \sin \phi d \theta d \phi d \rho \\
& =2 \pi \int_{0}^{R} \int_{0}^{\pi} \rho^{2} \sin \phi d \phi d \rho \\
& =4 \pi \int_{0}^{R} \rho^{2} d \rho \\
& =\frac{4}{3} \pi R^{3}
\end{aligned}
$$

2. Now compute the surface area, $A(R)$, of a sphere of radius R. Hint: Recall the Fundamental Theorem of Calculus:

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

And recall the common problem from single variable calculus where you have to find the volume of a water tank of height h by integrating the cross sectional area, $A(y)$, over the height.

$$
\operatorname{Volume}(\text { Tank })=\int_{0}^{h} A(y) d y
$$

We have a similar formula for the volume of the sphere;

$$
V(R)=\int_{0}^{R} A(\rho) d \rho
$$

Solution: Let $A(\rho)$ be the surface area of the sphere of radius ρ, we wish to find $A(R)$. Observe

$$
\int_{0}^{R} A(\rho) d \rho=V(R)=\frac{4}{3} \pi R^{3}
$$

So by the fundamental theorem of calculus, we get

$$
A(R)=\frac{d}{d R}\left[\int_{0}^{R} A(\rho) d \rho\right]=\frac{d V(R)}{d R}=4 \pi R^{2}
$$

Another way to solve this problem is to realize through geometric intuition or by reasoning similar to the argument above that

$$
A(R)=\int_{0}^{\pi} \int_{0}^{2 \pi} R^{2} \sin \phi d \theta d \phi
$$

3. Let E_{3} be the solid region that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=2$. Write the triple integral $\iiint_{E_{3}} x z d V$ in spherical coordinates (you don't need to evaluate it).

Solution:

4. Find the mass of the solid between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ whose density is $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.

Solution: Let E be the solid in consideration. Now, to find the mass, we simply integrate the density function over the entire solid to get;

$$
\begin{aligned}
\int_{1}^{2} \int_{0}^{\pi} \int_{0}^{2 \pi} \delta(\rho) \rho^{2} \sin \phi d \theta d \phi d \rho & =\int_{1}^{2} A(\rho) \delta(\rho) d \rho \\
& =\int_{1}^{2} 4 \pi \rho^{2} \rho^{2} d \rho \\
& =\left.4 \pi \frac{\rho^{5}}{5}\right|_{1} ^{2} \\
& =4 \pi\left(\frac{32}{5}-\frac{1}{5}\right) \\
& =\frac{124 \pi}{5} .
\end{aligned}
$$

Note: The fact that the density only depended on ρ simplified our work here.
5. In this problem, we are going to calculate the same integral in two different ways by
changing coordinates. Compute the following integral;

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y
$$

first, by making the coordinate change $u=x^{2}, v=x y$, and then as you normally would. (Don't forget to multiply by the Jacobian!)

Solution:

We first compute the Jacobian;

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2 \sqrt{u}} & 0 \\
\frac{-v}{u^{\frac{3}{2}}} & \frac{1}{\sqrt{u}}
\end{array}\right|=\frac{1}{2 u}
$$

(note: u is always positive so we don't need to take the absolute value) now, we know by the change of variables formula that

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y=\int_{0}^{1} \int_{0}^{\sqrt{u}} u v \frac{1}{2 u} d v d u=\left.\int_{0}^{1} \frac{v^{2}}{4}\right|_{v=0} ^{v=\sqrt{u}} d u=\int_{0}^{1} \frac{u}{4} d u=\frac{1}{8}
$$

If we compute this integral in the usual way, we get;

$$
\int_{0}^{1} \int_{0}^{1} x^{3} y d x d y=\int_{0}^{1} \frac{y}{4} d y=\frac{1}{8}
$$

6. Let R be the parallelogram enclosed by the lines $x+3 y=0, x+3 y=2, x+y=1$, and $x+y=4$. Evaluate the following integral by making appropriate change of variables

$$
\iint_{R} \frac{x+3 y}{(x+y)^{2}} d A
$$

Solution: Observe the set of equations:

$$
\begin{array}{rlrl}
x+3 y & =0 & x+3 y & =2 \\
x+y & =1 & x+y & =4
\end{array}
$$

So, if we let

$$
u=x+3 y \quad \text { and } v=x+y
$$

then the transformation of R, denote S, is given by the region bounded by the lines

$$
\begin{array}{ll}
u=0 & u=2 \\
v=1 & v=4
\end{array}
$$

So, S is the region bounded by the rectangle $[0,2] \times[1,4]$ in the $u v$-plane.
Next, we need to compute the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

In order to compute these partials, we need to write x and y in terms of u and v. We have

$$
\begin{array}{rr}
x+3 y=u & (e q 1) \\
x+y=v & (e q 2)
\end{array}
$$

$(e q 1)-(e q 2)$ is equivalent to $2 y=u-v \Longrightarrow y=\frac{1}{2} u-\frac{1}{2} v$. And $(e q 1)-3(e q 2)$ gives $-2 x=u-3 v \Longrightarrow x=-\frac{1}{2} u+\frac{3}{2} v$. So,

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)=-\frac{1}{2}
$$

Note that since $\frac{\partial(x, y)}{\partial(u, v)}={\frac{\partial(u, v)^{-1}}{\partial(x, y)}}^{-1}$, we could have solved for the latter Jacobian instead and taken its reciprocal since it was a bit faster to compute in this case.

And so, we get

$$
\begin{aligned}
\iint_{R} \frac{x+3 y}{(x+y)^{2}} d A & =\iint_{S} \frac{u}{v^{2}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A \\
& =\int_{1}^{4} \int_{0}^{2} \frac{u}{v^{2}}\left|-\frac{1}{2}\right| d u d v \\
& =\left.\int_{1}^{4} \frac{1}{4} u^{2} v^{-2}\right|_{u=0} ^{u=2} d v \\
& =\int_{1}^{4} v^{-2} d v \\
& =-\left.\frac{1}{v}\right|_{1} ^{4}=-\frac{1}{4}+1=\frac{3}{4}
\end{aligned}
$$

7. Evaluate the line integral $\int_{C}(z-2 x y) d s$ along the curve C given by $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, $0 \leq t \leq \frac{\pi}{2}$.

Solution: $\int_{C}(z-2 x y) d s$ is a line integral with respect to arc length (because of the $d s$ at end). Since $\mathbf{r}(t)=\langle\sin t, \cos t, t\rangle$, we get $x(t)=\sin t, y(t)=\cos t, z(t)=t$. So, $z-2 x y=t-2 \sin t \cos t$. And $\mathbf{r}^{\prime}(t)=\langle\cos t,-\sin t, 1\rangle$. So,

$$
d s=\left|\mathbf{r}^{\prime}(t)\right| d t=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}} d t=\sqrt{\cos ^{2} t+(-\sin t)^{2}+1^{2}} d t=\sqrt{2} d t
$$

Thus, for $0 \leq t \leq \frac{\pi}{2}$,

$$
\begin{aligned}
\int_{C}(z-2 x y) d s & =\int_{0}^{\pi / 2}(t-2 \sin t \cos t) \sqrt{2} d t \\
& =\sqrt{2}\left[\frac{1}{2} t^{2}-\sin ^{2} t\right]_{0}^{\pi / 2} \\
& =\sqrt{2}\left[\frac{\pi^{2}}{8}-1\right] .
\end{aligned}
$$

8. Find $\int_{C} 2 x y^{3} d s$ where C is the upper half of the circle $x^{2}+y^{2}=4$.

Solution: First, let's parametrize the curve $C . C$ is the upper half of the circle $x^{2}+y^{2}=4$. So, we can let

$$
x(t)=2 \cos t, \quad y(t)=2 \sin t \quad \text { for } 0 \leq t \leq \pi
$$

Then, $x^{\prime}(t)=-2 \sin t$ and $y^{\prime}(t)=2 \cos t$. Therefore,

$$
d s=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=\sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}} d t=\sqrt{4 \sin ^{2} t+4 \cos ^{2} t} d t=2 d t
$$

Thus, for $0 \leq t \leq \pi$,

$$
\begin{aligned}
\int_{C} 2 x y^{3} d s & =\int_{0}^{\pi} 2(2 \cos t)(2 \sin t)^{3} 2 d t \\
& =\int_{0}^{\pi} 64\left(\sin ^{3} t\right)(\cos t) d t \\
& =16\left[\sin ^{4} t\right]_{0}^{\pi} \\
& =0
\end{aligned}
$$

