M20550 Calculus III Tutorial Worksheet 9

1. Calculate the line integral $\int_{C}\left(y^{2}+x\right) d x+4 x y d y$ where C is the arc of $x=y^{2}$ from $(1,1)$ to $(4,2)$.
2. Evaluate the line integral $\int_{C} z^{2} d x+x d y+y d z$ where C is the line segment from $(1,0,0)$ to $(4,1,2)$.
3. Compute $\int_{C} x^{2} d s$ where C is the intersection of the surface $x^{2}+y^{2}+z^{2}=4$ and the plane $z=\sqrt{3}$.
4. Determine whether or not the following vector fields are conservative:
(a) $\mathbf{F}=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$
(b) $\mathbf{F}=\mathbf{i}+\sin z \mathbf{j}+y \cos z \mathbf{k}$
5. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=-2 x y \mathbf{i}+4 y \mathbf{j}+\mathbf{k}$ and $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\mathbf{k}, 0 \leq t \leq 2$.
6. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left(y^{2} \cos \left(x y^{2}\right)+3 x^{2}\right) \mathbf{i}+\left(2 x y \cos \left(x y^{2}\right)+2 y\right) \mathbf{j}$ is a conservative vector field and C is any curve from the point $(-1,0)$ to $(1,0)$.
7. Use Green's Theorem to evaluate

$$
\int_{C}\left(-\frac{y^{3}}{3}+\sin x\right) d x+\left(\frac{x^{3}}{3}+y\right) d y
$$

where C is the circle of radius 1 centered at $(0,0)$ oriented counterclockwise when viewed from above.

