M20550 Calculus III Tutorial Worksheet 9

1. Calculate the line integral $\int_C (y^2 + x) dx + 4xy dy$ where C is the arc of $x = y^2$ from (1, 1) to (4, 2).

Solution: First, we need to parametrize the curve C. Since C is a part of the curve $x = y^2$, we can let y = t; then we have $x = t^2$. Moreover, since the curve C is the part from (1,1) to (4,2), we get $1 \le y \le 2$. So, we have $1 \le t \le 2$. Thus, a parametrization of C is as follows:

$$x(t) = t^2$$
, $y(t) = t$ for $1 \le t \le 2$.

Now, $\int_C (y^2 + x) dx + 4xy dy$ is a line integral with respect to x and y because we see the dx and dy. Here,

$$dx = x'(t) dt = 2t dt$$
 and $dy = y'(t) dt = 1 dt$.

So, for $1 \le t \le 2$,

$$\int_C (y^2 + x) \, dx + 4xy \, dy = \int_1^2 \left[\left(t^2 + t^2 \right) 2t + 4(t^2)(t) \right] dt$$
$$= \int_1^2 8t^3 \, dt$$
$$= \left[2t^4 \right]_1^2$$
$$= 2^5 - 2 = 30.$$

2. Evaluate the line integral $\int_C z^2 dx + x dy + y dz$ where C is the line segment from (1, 0, 0) to (4, 1, 2).

Solution: First, we parametrize C, the line segment from (1,0,0) to (4,1,2). For $0 \le t \le 1$, C can be written as the vector function $\mathbf{r}(t) = \langle 1,0,0 \rangle + t \left(\langle 4,1,2 \rangle - \langle 1,0,0 \rangle \right) = \langle 1,0,0 \rangle + t \langle 3,1,2 \rangle$. So, x(t) = 1 + 3t, y(t) = t, and z(t) = 2t for $0 \le t \le 1$. Then, dx = x'(t) dt = 3 dt, dy = y'(t) dt = 1 dt, dz = z'(t) dt = 2 dt.

Hence, for
$$0 \le t \le 1$$
,

$$\int_C z^2 dx + x \, dy + y \, dz = \int_0^1 \left[(2t)^2 (3) + (1+3t)(1) + t(2) \right] dt$$

$$= \int_0^1 \left[12t^2 + 5t + 1 \right] dt$$

$$= \left[4t^3 + \frac{5}{2}t^2 + t \right]_0^1$$

$$= \frac{15}{2}.$$

3. Compute $\int_C x^2 ds$ where C is the intersection of the surface $x^2 + y^2 + z^2 = 4$ and the plane $z = \sqrt{3}$.

Solution: The intersection of the sphere $x^2 + y^2 + z^2 = 4$ and the plane $z = \sqrt{3}$ is the circle

$$x^{2} + y^{2} + \left(\sqrt{3}\right)^{2} = 4, \quad z = \sqrt{3}$$

or simply $x^2 + y^2 = 1$, $z = \sqrt{3}$.

Thus, a parametrization of C could be

$$\mathbf{r}(t) = \left\langle \cos t, \sin t, \sqrt{3} \right\rangle \quad \text{for } 0 \le t \le 2\pi.$$

Then, $\mathbf{r}'(t) = \langle -\sin t, \cos t, 0 \rangle \implies |\mathbf{r}'(t)| = \sqrt{(-\sin t)^2 + \cos^2 t} = 1.$ So $ds = |\mathbf{r}'(t)| dt = 1 dt$. Finally, for $0 \le t \le 2\pi$,

$$\int_C x^2 ds = \int_0^{2\pi} (\cos^2 t) dt$$

= $\int_0^{2\pi} \frac{1}{2} (1 + \cos 2t) dt$
= $\frac{1}{2} \left[t + \frac{1}{2} \sin(2t) \right]_0^{2\pi}$
= π .

- 4. Determine whether or not the following vector fields are conservative:
 - (a) $\mathbf{F} = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$ (b) $\mathbf{F} = \mathbf{i} + \sin z \mathbf{j} + y \cos z \mathbf{k}$

Solution: (a) Since **F** is a vector field on \mathbb{R}^2 , we use the criterion $\frac{\partial P}{\partial y} \stackrel{?}{=} \frac{\partial Q}{\partial x}$ to see if **F** is conservative or not. We have $\mathbf{F} = \langle 3 + 2xy, x^2 - 3y^2 \rangle$. So, P = 3 + 2xy and $Q = x^2 - 3y^2$ and $\frac{\partial P}{\partial y} = 2x = \frac{\partial Q}{\partial x}$. Since $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, **F** is a conservative vector field on \mathbb{R}^2 . Name:

(b) Since **F** is a vector field on \mathbb{R}^3 , we use the criterion curl $\mathbf{F} \stackrel{?}{=} \mathbf{0}$ to see if **F** is conservative or not. We have $\mathbf{F} = \langle 1, \sin z, y \cos z \rangle$. And

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 & \sin z & y \cos z \end{vmatrix} = \langle \cos z - \cos z, 0, 0 \rangle = \langle 0, 0, 0 \rangle = \mathbf{0}.$$

Since curl $\mathbf{F} = \mathbf{0}$, \mathbf{F} is a conservative vector field on \mathbb{R}^3 .

5. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = -2xy \mathbf{i} + 4y \mathbf{j} + \mathbf{k}$ and $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + \mathbf{k}$, $0 \le t \le 2$.

Solution: Since x = t, $y = t^2$, z = 1, we have $\mathbf{F}(\mathbf{r}(t)) = -2t^3\mathbf{i} + 4t^2\mathbf{j} + \mathbf{k} = \langle -2t^3, 4t^2, 1 \rangle,$ and $\mathbf{r}'(t) = \mathbf{i} + 2t\mathbf{j} = \langle 1, 2t, 0 \rangle$

The line integral of \mathbf{F} along C is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{2} \langle -2t^{3}, 4t^{2}, 1 \rangle \cdot \langle 1, 2t, 0 \rangle dt$$

$$= \int_{0}^{2} (-2t^{3} + 8t^{3}) dt$$

$$= \int_{0}^{2} 6t^{3} dt$$

$$= \frac{6t^{4}}{4} \Big|_{0}^{2}$$

$$= \frac{3 \cdot 2^{4}}{2} - 0$$

$$= 24$$

Remark: Note that \mathbf{F} is not a conservative vector field, so we cannot apply the Fundamental Theorem of Line Integrals in this example. To see this note that

$$\begin{array}{c|c} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \hline \text{curl } \mathbf{F} = \nabla \times \mathbf{F} = \left| \begin{array}{c} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \hline -2xy & 4y & 1 \end{array} \right| = \langle 0, 0, 2x \rangle \neq \mathbf{0}. \end{array}$$

Solution: Since we know **F** is a conservative vector field, $\mathbf{F} = \nabla f$ for some scalar function f(x, y). So, $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r}$. Then, by the fundamental theorem of line integral (FTLI), we have $\int_C \nabla f \cdot d\mathbf{r} = f(1, 0) - f(-1, 0)$. So, let's go about and find the potential function f(x, y) of **F** first.

We know $\mathbf{F} = \nabla f$, so $\langle y^2 \cos(xy^2) + 3x^2, 2xy \cos(xy^2) + 2y \rangle = \langle f_x, f_y \rangle$. Thus, we have

$$f_x = y^2 \cos(xy^2) + 3x^2 \tag{1}$$

$$f_y = 2xy\cos(xy^2) + 2y \tag{2}$$

Using equation (1), we have $f = \int (y^2 \cos(xy^2) + 3x^2) dx = \sin(xy^2) + x^3 + g(y)$. Now, we need to find g(y) to complete f.

With $f = \sin(xy^2) + x^3 + g(y)$, we compute $f_y = 2xy\cos(xy^2) + g'(y)$. Then from equation (2) above, we must have

$$2xy\cos(xy^2) + g'(y) = 2xy\cos(xy^2) + 2y \implies g'(y) = 2y \implies g(y) = y^2 + C.$$

We only need a potential function to apply FTLI, so we can pick C = 0. So, a potential function f(x, y) of the vector field **F** is

$$f(x,y) = \sin(xy^2) + x^3 + y^2.$$

Finally,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} \stackrel{\text{FTLI}}{=} f(1,0) - f(-1,0)$$
$$= (\sin 0 + 1^3 + 0^2) - (\sin 0 + (-1)^3 + 0^2)$$
$$= 2.$$

7. Use Green's Theorem to evaluate

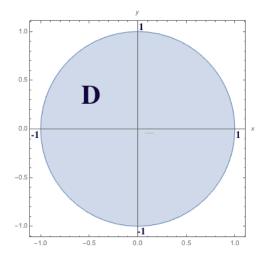
$$\int_C \left(-\frac{y^3}{3} + \sin x\right) \, dx + \left(\frac{x^3}{3} + y\right) \, dy,$$

where C is the circle of radius 1 centered at (0, 0) oriented counterclockwise when viewed from above.

Solution: Let D be the region enclosed by the unit circle C in this problem. By Green's Theorem, we have

$$\int_C \left(-\frac{y^3}{3} + \sin x \right) \, dx + \left(\frac{x^3}{3} + y \right) \, dy = \iint_D x^2 - (-y^2) \, dA.$$

(Here, we have $P = -\frac{y^3}{3} + \sin x$ and $Q = \frac{x^3}{3} + y$, so $\frac{\partial P}{\partial y} = -y^2$ and $\frac{\partial Q}{\partial x} = x^2$.) So, instead of computing the line integral $\int_C \left(-\frac{y^3}{3} + \sin x\right) dx + \left(\frac{x^3}{3} + y\right) dy$, we are going to compute the double integral $\iint_D x^2 + y^2 dA$, where D is the unit disk as shown below.



Using polar coordinates,

$$\iint_D x^2 + y^2 \, dA = \int_0^{2\pi} \int_0^1 r^3 \, dr \, d\theta = 2\pi \left(\frac{1}{4}\right) = \frac{\pi}{2}.$$

Hence,

$$\int_C \left(-\frac{y^3}{3} + \sin x\right) \, dx + \left(\frac{x^3}{3} + y\right) \, dy = \frac{\pi}{2}$$