M20550 Calculus III Tutorial
 Worksheet 10

1. A particle starts at the origin $(0,0)$, moves along the x-axis to $(2,0)$, then along the curve $y=\sqrt{4-x^{2}}$ to the point $(0,2)$, and then along the y-axis back to the origin. Find the work done on this particle by the force field $\mathbf{F}(x, y)=y^{2} \mathbf{i}+2 x(y+1) \mathbf{j}$.
2. Evaluate $\int_{C}\left(x^{4} y^{5}-2 y\right) d x+\left(3 x+x^{5} y^{4}\right) d y$ where C is the curve below and C is oriented in the clockwise direction.

3. Compute $\operatorname{div} \mathbf{F}$ and $\operatorname{curl} \mathbf{F}$ for the following vector fields.
(a) $\mathbf{F}=x^{2} y \mathbf{i}-\left(z^{3}-3 x\right) \mathbf{j}+4 y^{2} \mathbf{k}$
(b) $\mathbf{F}=\left(3 x+2 z^{2}\right) \mathbf{i}+\frac{x^{3} y^{2}}{z} \mathbf{j}-(z-7 x) \mathbf{k}$
4. (a) Compute div \mathbf{F}, where $\mathbf{F}=\left\langle e^{y}, z y, x y^{2}\right\rangle$.
(b) Is there a vector field \mathbf{G} on \mathbb{R}^{3} such that $\operatorname{curl} \mathbf{G}=\left\langle x y z,-y^{2} z, y z^{2}\right\rangle$? Why?
5. Show that any vector field of the form

$$
\mathbf{F}(x, y, z)=f(y, z) \mathbf{i}+g(x, z) \mathbf{j}+h(x, y) \mathbf{k}
$$

is incompressible (i.e. has div $\mathbf{F}=0$ everywhere).
6. Fill in the sentences below by circling one option:

We can take the gradient of a (vector field/scalar function), and the output is a (vector field/scalar function).
We can take the divergence of a (vector field/scalar function) and the output is a (vector field/scalar function).
We can take the curl of a (vector field/scalar function), and the output is a (vector field/scalar function).
7. Which of the following combinations of grad, div, and curl make sense?

$$
\begin{array}{ccc}
\nabla(\nabla(f)) & \operatorname{div}(\nabla(f)) & \operatorname{curl}(\nabla(f)) \\
\nabla(\operatorname{div}(\mathbf{F})) & \operatorname{div}(\operatorname{div}(\mathbf{F})) & \operatorname{curl}(\operatorname{div}(\mathbf{F})) \\
\nabla(\operatorname{curl}(\mathbf{F})) & \operatorname{div}(\operatorname{curl}(\mathbf{F})) & \operatorname{curl}(\operatorname{curl}(\mathbf{F}))
\end{array}
$$

