M20550 Calculus III Tutorial
 Worksheet 10

1. A particle starts at the origin $(0,0)$, moves along the x-axis to $(2,0)$, then along the curve $y=\sqrt{4-x^{2}}$ to the point $(0,2)$, and then along the y-axis back to the origin. Find the work done on this particle by the force field $\mathbf{F}(x, y)=y^{2} \mathbf{i}+2 x(y+1) \mathbf{j}$.

Solution: First we note that the curve C (drawn below) is a positively oriented, piecewise-smooth, simple closed curve in the plane. Let D be the region bounded by C.

The components of the vector field, $P=y^{2}$ and $Q=2 x(y+1)$, have continuous partial derivatives on an open region containing D (namely, all of \mathbb{R}^{2}). We may apply Green's Theorem:

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Note that we have $\frac{\partial Q}{\partial x}=2(y+1)=2 y+2$ and $\frac{\partial P}{\partial y}=2 y$. Finally, we compute the work done on the particle by the force field.

$$
\begin{aligned}
W=\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} y^{2} d x+2 x(y+1) d y \\
& \stackrel{\text { Green }}{=} \iint_{D}(2 y+2-2 y) d A \\
& =2 \iint_{D} d A
\end{aligned}
$$

Note that this is just twice the area of the region D. We may compute this as a double integral using polar coordinates $\left(W=2 \int_{0}^{\pi / 2} \int_{0}^{2} r d r d \theta\right)$ or by using the formula for the area of a circle. Thus,

$$
W=2(\text { Area of } D)=2\left(\frac{\pi \cdot 2^{2}}{4}\right)=2 \pi
$$

2. Evaluate $\int_{C}\left(x^{4} y^{5}-2 y\right) d x+\left(3 x+x^{5} y^{4}\right) d y$ where C is the curve below and C is oriented in the clockwise direction.

Solution: This problem uses Green's theorem. One main clue is the shape of the curve C (it has 8 pieces!). Let D be the region enclosed by the curve C. And since the orientation of C is clockwise, instead of counterclockwise, we have

$$
\begin{aligned}
\int_{C}\left(x^{4} y^{5}-2 y\right) d x+\left(3 x+x^{5} y^{4}\right) d y & =-\iint_{D}\left[\left(3+5 x^{4} y^{4}\right)-\left(5 x^{4} y^{4}-2\right)\right] d A \\
& =-\iint_{D} 5 d A \\
& =-5 \iint_{D} 1 d A \\
& =-5 \cdot \operatorname{Area}(D) \\
& =-5 \cdot 9 \\
& =-45
\end{aligned}
$$

3. Compute div \mathbf{F} and curl \mathbf{F} for the following vector fields.
(a) $\mathbf{F}=x^{2} y \mathbf{i}-\left(z^{3}-3 x\right) \mathbf{j}+4 y^{2} \mathbf{k}$
(b) $\mathbf{F}=\left(3 x+2 z^{2}\right) \mathbf{i}+\frac{x^{3} y^{2}}{z} \mathbf{j}-(z-7 x) \mathbf{k}$

Solution: (a) $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(x^{2} y\right)+\frac{\partial}{\partial y}\left(-\left(z^{3}-3 x\right)+\frac{\partial}{\partial z}\left(4 y^{2}\right)=2 x y\right.$.
For the curl, we compute

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & -\left(z^{3}-3 x\right) & 4 y^{2}
\end{array}\right| \\
& =\left(8 y+3 z^{2}\right) \mathbf{i}+\left(3-x^{2}\right) \mathbf{k}
\end{aligned}
$$

(b) $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(3 x+2 z^{2}\right)+\frac{\partial}{\partial y}\left(\frac{x^{3} y^{2}}{z}\right)+\frac{\partial}{\partial z}(-(z-7 x))=2+\frac{2 x^{3} y}{z}$. Again, we have

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 x+2 z^{2} & \frac{x^{3} y^{2}}{z} & -(z-7 x)
\end{array}\right| \\
& =\frac{x^{3} y^{2}}{z^{2}} \mathbf{i}+(4 z-7) \mathbf{j}+\frac{3 x^{2} y^{2}}{z} \mathbf{k}
\end{aligned}
$$

4. (a) Compute div \mathbf{F}, where $\mathbf{F}=\left\langle e^{y}, z y, x y^{2}\right\rangle$.
(b) Is there a vector field \mathbf{G} on \mathbb{R}^{3} such that $\operatorname{curl} \mathbf{G}=\left\langle x y z,-y^{2} z, y z^{2}\right\rangle$? Why?

Solution: (a) div $\mathbf{F}=\frac{\partial}{\partial x}\left(e^{y}\right)+\frac{\partial}{\partial y}(z y)+\frac{\partial}{\partial z}\left(x y^{2}\right)=0+z+0=z$
(b) For this problem, we need to remember the fact

$$
\text { div curl } \mathbf{F}=0 \quad \text { for any vector field } \mathbf{F} .
$$

If there is a vector field \mathbf{G} on \mathbb{R}^{3} such that $\operatorname{curl} \mathbf{G}=\left\langle x y z,-y^{2} z, y z^{2}\right\rangle$ then by the fact above, \mathbf{G} would satisfy the rule

$$
\operatorname{div} \operatorname{curl} \mathbf{G}=0 \quad \text { or } \quad \operatorname{div}\left\langle x y z,-y^{2} z, y z^{2}\right\rangle=0
$$

But, $\operatorname{div}\left\langle x y z,-y^{2} z, y z^{2}\right\rangle=\frac{\partial}{\partial x}(x y z)+\frac{\partial}{\partial y}\left(-y^{2} z\right)+\frac{\partial}{\partial z}\left(y z^{2}\right)=y z-2 y z+2 y z=y z \neq 0$.

Thus, there is no such \mathbf{G}.
5. Show that any vector field of the form

$$
\mathbf{F}(x, y, z)=f(y, z) \mathbf{i}+g(x, z) \mathbf{j}+h(x, y) \mathbf{k}
$$

is incompressible (i.e. has div $\mathbf{F}=0$ everywhere).

Solution: We have

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial}{\partial x} f(y, z)+\frac{\partial}{\partial y} g(x, z)+\frac{\partial}{\partial z} h(x, y) \\
& =0
\end{aligned}
$$

Note that the partial derivatives are all 0 because, for example, $f(y, z)$ is not a function of x and therefore its partial derivative with respect to x is 0 .
6. Fill in the sentences below by circling one option:

We can take the gradient of a (vector field/scalar function), and the output is a (vector field/scalar function).
We can take the divergence of a (vector field/scalar function) and the output is a (vector field/scalar function).

We can take the curl of a (vector field/scalar function), and the output is a (vector field/scalar function).

Solution: We can take the gradient of a scalar function, and the output is a vector field.
We can take the divergence of a vector field and the output is a scalar function.
We can take the curl of a vector field, and the output is a vector field.
7. Which of the following combinations of grad, div, and curl make sense?

$$
\begin{array}{ccc}
\nabla(\nabla(f)) & \operatorname{div}(\nabla(f)) & \operatorname{curl}(\nabla(f)) \\
\nabla(\operatorname{div}(\mathbf{F})) & \operatorname{div}(\operatorname{div}(\mathbf{F})) & \operatorname{curl}(\operatorname{div}(\mathbf{F})) \\
\nabla(\operatorname{curl}(\mathbf{F})) & \operatorname{div}(\operatorname{curl}(\mathbf{F})) & \operatorname{curl}(\operatorname{curl}(\mathbf{F}))
\end{array}
$$

Solution: The combinations that make sense here are $\operatorname{div}(\nabla(f)), \operatorname{curl}(\nabla(f))$, $\nabla(\operatorname{div}(\mathbf{F})), \operatorname{div}(\operatorname{curl}(\mathbf{F}))$, and $\operatorname{curl}(\operatorname{curl}(\mathbf{F}))$. In all of the other combinations, the output of the inner function is not a valid input for the outer function. For example, $\nabla(f)$ is a vector field, so we cannot evaluate $\nabla(\nabla(f))$ since ∇ takes scalar functions as inputs.

