Worksheet 11

1. Compute the surface integral $\iint_{S}(x+y+z) d S$, where S is a surface given by $\mathbf{r}(u, v)=\langle u+v, u-v, 1+2 u+v\rangle$ and $0 \leq u \leq 2,0 \leq v \leq 1$.
2. Let S be the portion of the graph $z=4-2 x^{2}-3 y^{2}$ that lies over the region in the $x y$-plane bounded by $x=0, y=0$, and $x+y=1$. Write the integral that computes $\iint_{S}\left(x^{2}+y^{2}+z\right) d S$
3. Compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ and S is a surface given by

$$
x=2 u, \quad y=2 v, \quad z=5-u^{2}-v^{2}
$$

where $u^{2}+v^{2} \leq 1 . S$ has downward orientation.
4. Compute the flux of the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ over the part of the cylinder $x^{2}+y^{2}=4$ that lies between the planes $z=0$ and $z=2$ with normal pointing away from the origin.
5. Find the flux of the vector field $\mathbf{F}(x, y, z)=\langle 0, z, 1\rangle$ across the hemi-sphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$ with orientation away from the origin.

