Worksheet 11

1. Compute the surface integral $\iint_{S}(x+y+z) d S$, where S is a surface given by $\mathbf{r}(u, v)=\langle u+v, u-v, 1+2 u+v\rangle$ and $0 \leq u \leq 2,0 \leq v \leq 1$.

Solution: First, we know

$$
\iint_{S}(x+y+z) d S=\iint_{D}[(u+v)+(u-v)+(1+2 u+v)]\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

where D is the domain of the parameters u, v given by $0 \leq u \leq 2,0 \leq v \leq 1$.
We have $\mathbf{r}_{u}=\langle 1,1,2\rangle$ and $\mathbf{r}_{v}=\langle 1,-1,1\rangle$. Then, $\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle 1,1,2\rangle \times\langle 1,-1,1\rangle=\langle 3,1,-2\rangle$. So,

$$
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=|\langle 3,1,-2\rangle|=\sqrt{3^{2}+1^{2}+(-2)^{2}}=\sqrt{14} .
$$

Thus,

$$
\begin{aligned}
\iint_{S}(x+y+z) d S & =\int_{0}^{1} \int_{0}^{2}(4 u+v+1) \sqrt{14} d u d v \\
& =11 \sqrt{14}
\end{aligned}
$$

2. Let S be the portion of the graph $z=4-2 x^{2}-3 y^{2}$ that lies over the region in the $x y$-plane bounded by $x=0, y=0$, and $x+y=1$. Write the integral that computes $\iint_{S}\left(x^{2}+y^{2}+z\right) d S$.

Solution: First, we need a parametrization of the surface S. Since S is a surface given by the equation $z=4-2 x^{2}-3 y^{2}$, we can choose x and y to be the parameters. So,

$$
\mathbf{r}(x, y)=\left\langle x, y, 4-2 x^{2}-3 y^{2}\right\rangle,
$$

and the domain D of the parameters x, y is given by the region in the $x y$-plane bounded by $x=0, y=0$, and $x+y=1$ (see picture below)

Now, $\mathbf{r}_{x}=\langle 1,0,-4 x\rangle$ and $\mathbf{r}_{y}=\langle 0,1,-6 y\rangle$. So, $\mathbf{r}_{x} \times \mathbf{r}_{y}=\langle 4 x, 6 y, 1\rangle$ and $\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=|\langle 4 x, 6 y, 1\rangle|=\sqrt{16 x^{2}+36 y^{2}+1}$. Thus,

$$
\begin{aligned}
\iint_{S}\left(x^{2}+y^{2}+z\right) d S & =\iint_{D} x^{2}+y^{2}+\left(4-2 x^{2}-3 y^{2}\right)\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| d A \\
& =\int_{0}^{1} \int_{0}^{-x+1}\left(4-x^{2}-2 y^{2}\right) \sqrt{16 x^{2}+36 y^{2}+1} d y d x
\end{aligned}
$$

3. Compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ and S is a surface given by

$$
x=2 u, \quad y=2 v, \quad z=5-u^{2}-v^{2}
$$

where $u^{2}+v^{2} \leq 1 . S$ has downward orientation.

Solution: We have $\mathbf{r}(u, v)=\left\langle 2 u, 2 v, 5-u^{2}-v^{2}\right\rangle$, so $\mathbf{r}_{u}=\langle 2,0,-2 u\rangle$ and $\mathbf{r}_{v}=\langle 0,2,-2 v\rangle$ and so

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle 2,0,-2 u\rangle \times\langle 0,2,-2 v\rangle=\langle 4 u, 4 v, 4\rangle
$$

Note that $\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle 4 u, 4 v, 4\rangle$ gives unit normal vectors pointing upward (z-component is positive). But, S has downward orientation so

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=-\iint_{u^{2}+v^{2} \leq 1} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A
$$

Now, $\mathbf{F}(\mathbf{r}(u, v))=\left\langle 2 v,-2 u, 5-u^{2}-v^{2}\right\rangle$. So

$$
\mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)=\left\langle 2 v,-2 u, 5-u^{2}-v^{2}\right\rangle \cdot\langle 4 u, 4 v, 4\rangle=20-4 u^{2}-4 v^{2}
$$

Thus,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =-\iint_{u^{2}+v^{2} \leq 1}\left(20-4 u^{2}-4 v^{2}\right) d A \\
& \stackrel{\text { polar }}{=}-\int_{0}^{2 \pi} \int_{0}^{1}\left(20-4 r^{2}\right) r d r d \theta \\
& =-18 \pi .
\end{aligned}
$$

4. Compute the flux of the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ over the part of the cylinder $x^{2}+y^{2}=4$ that lies between the planes $z=0$ and $z=2$ with normal pointing away from the origin.

Solution: We want to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the part of the cylinder $x^{2}+y^{2}=4$ that lies between the planes $z=0$ and $z=2$ with normal pointing away from the origin.

Note that this is not a closed surface (it has no top nor bottom), otherwise, we would use Divergence Theorem. This flux integral doesn't seem to be difficult to compute directly. First, we parametrize S : let $x=2 \cos u, y=2 \sin u, z=v$. Then

$$
\mathbf{r}(u, v)=\langle 2 \cos u, 2 \sin u, v\rangle, \quad \text { domain } D \text { is } 0 \leq u \leq 2 \pi, 0 \leq v \leq 2
$$

Then, $\mathbf{r}_{u}=\langle-2 \sin u, 2 \cos u, 0\rangle$ and $\mathbf{r}_{v}=\langle 0,0,1\rangle$. So,

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle-2 \sin u, 2 \cos u, 0\rangle \times\langle 0,0,1\rangle=\langle 2 \cos u, 2 \sin u, 0\rangle
$$

Now, let's check our orientation. Let's take the point where $u=\pi / 2$ and $v=1$, ie $(x, y, z)=(0,2,1)$. At the point $(0,2,1)$, the unit normal vector points in the direction of the vector $\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)(\pi / 2,1)=\langle 0,2,0\rangle$. This means the unit normal vector is pointing away from the origin. So, our parametrization of S gives the correct orientation for S. Moving on!
Now, $\mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)=\langle 2 \cos u, 2 \sin u, v\rangle \cdot\langle 2 \cos u, 2 \sin u, 0\rangle=4$.
Thus,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A \\
& =\iint_{D} 4 d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 4 d v d u \\
& =16 \pi
\end{aligned}
$$

5. Find the flux of the vector field $\mathbf{F}(x, y, z)=\langle 0, z, 1\rangle$ across the hemi-sphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$ with orientation away from the origin.

Solution: If we do this problem from scratch, we need to start by parametrizing the hemi-sphere:

$$
x(\phi, \theta)=2 \sin \phi \cos \theta, \quad y(\phi, \theta)=2 \sin \phi \sin \theta, \quad z(\phi, \theta)=2 \cos \phi
$$

where $0 \leq \phi \leq \pi / 2$ and $0 \leq \theta \leq 2 \pi$. Then $\mathbf{r}(\phi, \theta)=\langle 2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi\rangle$, where $0 \leq \phi \leq \pi / 2$ and $0 \leq \theta \leq 2 \pi$. And we get

$$
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=\left\langle 4 \sin ^{2} \phi \cos \theta, 4 \sin ^{2} \phi \sin \theta, 4 \sin \phi \cos \phi\right\rangle
$$

We now want to check the orientation of the surface. Let $\phi=\pi / 4$ and $\theta=\pi / 2$, then at the point $(0, \sqrt{2}, \sqrt{2})$, we get the vector $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}(\pi / 4, \pi / 2)=\langle 0,2,2\rangle$ points away from the origin. Thus, our parametrization gives the correct orientation of the surface.
Then, we have the flux of \mathbf{F} across the given hemi-sphere H can be compute using the formula

$$
\iint_{H} \mathbf{F} \cdot d \mathbf{S}=\iint_{\substack{0 \leq \phi \leq \pi / 2 \\ 0 \leq \theta \leq 2 \pi}} \mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right) d A
$$

$\mathbf{F}(\mathbf{r}(\phi, \theta))=\langle 0,2 \cos \phi, 1\rangle$ and

$$
\mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right)=8 \sin ^{2} \phi \cos \phi \sin \theta+4 \sin \phi \cos \phi
$$

Thus,

$$
\begin{aligned}
\iint_{H} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2}\left(8 \sin ^{2} \phi \cos \phi \sin \theta+4 \sin \phi \cos \phi\right) d \phi d \theta \\
& =\int_{0}^{2 \pi}\left(\left.\frac{8}{3} \sin ^{3} \phi\right|_{0} ^{\pi / 2} \sin \theta+\left.2 \sin ^{2} \phi\right|_{0} ^{\pi / 2}\right) d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{8}{3} \sin \theta+2\right) d \theta \\
& =-\left.\frac{8}{3} \cos \theta\right|_{0} ^{2 \pi}+2 \cdot 2 \pi \\
& =4 \pi
\end{aligned}
$$

Another Solution: If you already know that for a sphere of radius 2 with orientation away from the origin, its unit normal vector is given by $\mathbf{n}=\left\langle\frac{1}{2} x, \frac{1}{2} y, \frac{1}{2} z\right\rangle$ and
$\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=4 \sin \phi$, then we could use the definition of the flux integral to compute $\iint_{H} \mathbf{F} \cdot d \mathbf{S}$ as follows:

$$
\begin{aligned}
\iint_{H} \mathbf{F} \cdot d \mathbf{S} & =\iint_{H} \mathbf{F} \cdot \mathbf{n} d S \\
& =\iint_{D}\langle 0, z, 1\rangle \cdot\left\langle\frac{1}{2} x, \frac{1}{2} y, \frac{1}{2} z\right\rangle d S \\
& =\iint_{H}\left(\frac{1}{2} y z+\frac{1}{2} z\right) d S \\
& =\iint_{\substack{0 \leq \phi \leq \pi / 2 \\
0 \leq 0 \leq 2 \pi}}(2 \sin \phi \cos \phi \sin \theta+\cos \phi)\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}(2 \sin \phi \cos \phi \sin \theta+\cos \phi) 4 \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2}\left(8 \sin ^{2} \phi \cos \phi \sin \theta+4 \sin \phi \cos \phi\right) d \phi d \theta \\
& =4 \pi
\end{aligned}
$$

