HW1: BONUS PROBLEM

Recall that we proved Euler's theorem:
Theorem 1. Let S^{2} be a sphere with a polygonal decomposition, with V vertices, E edges, and F faces. Then the Euler characteristic

$$
\chi\left(S^{2}\right)=V-E+F
$$

is equal to 2 .

A platonic solid is a polyhedron where every side is a q-gon, and every vertex intersects the same number of edges (say every vertex intersects p edges). On the first day of class I pointed out that every platonic solid gives rise to a polygonal decomposition of S^{2} (by "inflating" it to make it a ball). Prove that the only possible Platonic solids are the tetrahedron, cube, octahedron, dodecahedron, and icosahedron, using Euler's theorem. (Hint: first show that $2 E=q F$ and $2 E=p V$ - this plus Euler's equation, and the fact that p, q and F must all be integers greater than or equal to 3 , puts severe limitations on the possible values of p, q, and F.)

[^0]
[^0]: Date: January 16, 2015.

