

$\pi_i(S^n)$												
		$i \rightarrow 1 2$	3 4	5	6	7	8	9	10	11	12	
$\stackrel{n}{\downarrow}$	1 2 3 4 5 6 7	0 Z 0 0 0 0 0 0 0 0	$\mathbb{Z} \mathbb{Z}_2$ 0 \mathbb{Z}	\mathbb{Z}_2^-	\mathbb{Z}_{12}		$\begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_{24} \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \end{array}$	$\begin{array}{c} 0 \\ \mathbb{Z}_3 \\ \mathbb{Z}_3 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_{24} \\ \mathbb{Z}_2 \end{array}$	$\begin{array}{c} 0\\ \mathbb{Z}_{15}\\ \mathbb{Z}_{15}\\ \mathbb{Z}_{24} \times \mathbb{Z}_3\\ \mathbb{Z}_2\\ 0\\ \mathbb{Z}_{24} \end{array}$		$\begin{array}{c} 0 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_{30} \\ \mathbb{Z}_2 \\ 0 \end{array}$	
	8	0 0	0 0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	

Infinite subgroups completely understood

$\pi_i(S^n)$													
		<i>i</i> · 1	2	3	4	5	6	7	8	9	10	11	12
n	1	Z	0	0	0	0	0	0	0	0	0	0	0
Ţ	2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	
	4	0	0	0	\mathbb{Z}^{-}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$		$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_{24} \times \mathbb{Z}_3$		\mathbb{Z}_2
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2		\mathbb{Z}_{24}	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}^-
	6	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_2
	7	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	Z	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}_{24}	0

Values stabilize along diagonals: $\pi_{n+k}(S^k) = \pi_{n+k+1}(S^{k+1})$ for k >> 0

$\pi_i(S^n)$												
	$i \rightarrow 1 2$	3 4	4 5	6	7	8	9	10	11	12		
n 1	Z 0	0 (0	0	0	0	0	0	0		
↓ 2 2	0 Z		$\mathbb{Z}_2 \mathbb{Z}_2$			\mathbb{Z}_2	Z ₃	\mathbb{Z}_{15}	\mathbb{Z}_2			
3 4	000		$\mathbb{Z}_2 \mathbb{Z}_2$ $\mathbb{Z} \mathbb{Z}_2$	\mathbb{Z}_{12}		\mathbb{Z}_2 $\mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_3 $\mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_{15} $\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_2 \mathbb{Z}_{15}	$\mathbb{Z}_2 \times \mathbb{Z}_2$ \mathbb{Z}_2		
5	0 0	0 (0 🛛	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}		
6 7	0 0 0	0 (ℤ 0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24} \mathbb{Z}_{2}	0 ℤ ₂₄	0	\mathbb{Z}_2		
8	0 0			0	0	Z	\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}_{24}	0 <		
						R	TS	s	K	π ⁵ π		
							π°	57	\mathcal{T}_{2}^{S}	T3 7		

Stable homotopy groups:

$$\pi_n^s := \lim \pi_{n+k}(S^k) \quad k \rightarrow \infty$$

Primary decomposition:

$$\pi_n^{s} = \bigoplus_{p \text{ prime}} (\pi_n^{s})_{(p)}$$
 e.g.: $\pi_3^{s} = Z_{24} = Z_8 + Z_3$

Computation: Mahowald-Tangora-Kochman Picture: A. Hatcher

- Each dot represents a factor of 2, vertical lines indicate additive extensions e.g.: $(\pi_3^s)_{(2)} = \mathbb{Z}_8$, $(\pi_8^s)_{(2)} = \mathbb{Z}_2 \oplus \mathbb{Z}_2$
- Vertical arrangement of dots is arbitrary, but meant to suggest patterns

Computation: Nakamura -Tangora Picture: A. Hatcher

• Vertical arrangement of dots is arbitrary, but meant to suggest patterns

- Each dot represents a factor of 2, vertical lines indicate additive extensions e.g.: $(\pi_3^s)_{(2)} = \mathbb{Z}_8$, $(\pi_8^s)_{(2)} = \mathbb{Z}_2 \oplus \mathbb{Z}_2$
- Vertical arrangement of dots is arbitrary, but meant to suggest patterns

Computation: Nakamura -Tangora Picture: A. Hatcher

Example: KO (real K-theory)

