

$\pi_{i}\left(S^{n}\right)$													
			\rightarrow	3		5	6	7	8	9	10	11	12
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0
\downarrow	2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{12}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{15}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
	3	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{12}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{15}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
	4		0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{24} \times \mathbb{Z}_{3}$	\mathbb{Z}_{15}	\mathbb{Z}_{2}
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{30}
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_{2}
	7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0

Infinite subgroups completely understood

Values stabilize along diagonals:

$$
\pi_{n+k}\left(S^{k}\right)=\pi_{n+k+1}\left(S^{k+1}\right) \text { for } k \gg 0
$$

Stable homotopy groups:

$$
\pi_{\mathrm{n}}{ }^{\mathrm{s}}:=\lim \pi_{\mathrm{n}+\mathrm{k}}\left(\mathrm{~S}^{\mathrm{k}}\right) \quad \mathrm{k} \rightarrow \infty
$$

Primary decomposition:

$$
\pi_{n}{ }^{s}=\bigoplus_{p \text { prime }}\left(\pi_{n}^{s}\right)_{(p)}
$$

e.g.: $\quad \pi_{3}{ }^{s}=Z_{24}=Z_{8}+Z_{3}$

Stable Homotopy Groups of Spheres at the prime 2

Computation: Mahowald-Tangora-Kochman
Picture: A. Hatcher

- Each dot represents a factor of 2, vertical lines indicate additive extensions

$$
\text { e.g.: } \quad\left(\pi_{3}^{S}\right)_{(2)}=\mathbb{Z}_{8}, \quad\left(\pi_{8}^{S}\right)_{(2)}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

- Vertical arrangement of dots is arbitrary, but meant to suggest patterns

Computation: Nakamura -Tangora
Picture: A. Hatcher

- Each dot represents a factor of 2, vertical lines indicate additive extensions

$$
\text { e.g.: } \quad\left(\pi_{3}^{S}\right)_{(2)}=\mathbb{Z}_{8}, \quad\left(\pi_{8}^{S}\right)_{(2)}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

- Vertical arrangement of dots is arbitrary, but meant to suggest patterns

Computation: Nakamura -Tangora
Picture: A. Hatcher

$\left(\pi_{n}{ }^{5}\right)_{(5)} \quad \underline{v}_{3}-$-periodic layer
${ }_{2013}^{20 / 4 .} 21$. 20/2-2•19. $20 / 2 \cdot 2 \cdot$

$\begin{array}{llllllllllllllllllllllll}39 & 79 & 119 & 159 & 199 & 239 & 279 & 319 & 359 & 399 & 439 & 479 & 519 & 559 & 599 & 639 & 679 & 719 & 759 & 799 & 839 & 879 & 919 & 959 \\ 999\end{array}$

Example: KO (real K-theory)

Hurewicz image of TMF $(p=2)$

$\pi_{*} T M F_{(2)}$

