9 - complex cobordism

Monday, October 5, 2015 2:35 AM

Thm! (Lazard) $\sum \Im \mathbb{Z} \left[\mathcal{P}_{i_1} \mathcal{N}_{2_1} - \cdots \right]$ we will not prove this

.

Thy: (Quiller)

He map
$$L \longrightarrow MU$$
 dassify $x + mu^{\gamma}$ is
an iso.
(e) $MU_{\pi} = \mathbb{Z}[\pi_{1}, \pi_{2}, \dots]$ ($\pi_{i}l = 2i$
(e) $0X + \gamma = \infty + \int_{univ} \gamma$ (pf deferred)

Logarithms Pc

(pF)

$$\log_{F} : F \longrightarrow F_{adq}$$

 $\log_{F} (x) = \int \frac{dx}{F_{y}(x, 0)} \begin{bmatrix} Exercise - check + his \end{bmatrix}$
works

Write
$$\log_F(x) = \sum_{i=1}^{r} m_i x^{i+1}$$

 $e_{xp_F}(x) = \log_F(x) = \sum_{i=1}^{r} b_i x^{i+1}$
 $x_{fF}^* = e_{xp_F}(\log_F(x) + \log_F(y))$

-

Define
$$L = \mathbb{Z}[b_1, b_2, ---]$$

 $e \times p_{\overline{F}}(x) := \Sigma \cdot b_i \cdot \infty^{i+1}$
 $log_{\overline{F}}(x) := e \times p_{\overline{F}}(x)$
 $\chi_{1+\gamma} := e \times p_{\overline{F}}(log_{\overline{F}}(x)) + log_{\overline{F}}(\gamma)$

$$\overline{L}$$
 classifies formel groups struttly isomether
to Fudy
This $\overline{L} \otimes Q \cong L \otimes Q$.

Lemma (histord)
Consider the map

$$L \xrightarrow{s} \overline{L}$$
 classifying \overline{F}
Then $f(x_i) = \begin{cases} b_i \mod decomposition, \quad i \neq p^{k} - i, p min. \\ p b_i \mod decomposition, \quad i = p^{k} - i \\ p p m. \end{cases}$