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Z/2 Analysis

Mark J. Behrens

University of Chicago

Abstract

We mimic the development of real analysis, replac-
ing the real line with the field Z/2.

1 Functions and derivatives

Let Z/2 be the field with two elements. By a function, we mean
a map of sets
f:Z]2>17)2

and we shall denote the collection of all such maps F.
Given f € F, and a € Z/2, we define the derivative of f at a

to be

ﬂ(a) = lim M.

dz e T —a
One must interpret this very carefully on 7Z/2. We recall from
calculus that the limit is evaluated at z close to, but not equal
to a. Therefore the limit of the expression is the expression
evaluated at the unique point = € Z/2 not equal to a. It is clear
that the denominator is non-zero for such z, lience the derivative
always exists, and every function is differentiable.

(3)




Theorem.
df 1 f non-constant
sl (=

0 f constant

This follows immediately from the definition of t},e

As a corollary, we are able to obtain g complete class
functions.

derivative.
ification of

Corollary. Every function f(x)

is of the form o + Bx, where
0'1 .B E Z/2

Proof. Given f(z), if it is constant, f(z)
Assume that f is non-constant. Then

d
@) -z)=1-1=0

= a for some a € 7/2.

by the previous theorem. Therefore, again by the previous theo-
rem, we can conclude that f(z) -z is constant, so f

(z)=a+z
for some a € Z/2.

O
Note that in fact, as a ring (under pointwise multiplication
of functions) we have F = Z/2[z)/(z? = x).
The first non-trivial result of Z/?2 analysis is the fact that

the derivative, while being linear, does not obey a product rule.
This is seen by observing that

ixs # 3z? (= z)
dz

but is in fact the constant function 1. It is straightforward, but
tedious to verify that the proper product rule is

f—fumu»=umf“M@ﬁ—ﬂwﬂ@+fummy—ﬂ@M@
z r—a

; = f(a+1)g'(e) + 9(a) f'(a) (setting z = a + 1)

2 Measure and integration
A Z/2-valued measure on Z/? is a function
1:P(Z[2) - Z/2

(where P(Z/2) is the power set of Z]2) satisfying the following
two conditions.

1. p(@) =0
2 WX TY) = p(X) + u(Y)

where II denotes disjoint union. Denote the set of all Z/2 valued
measures on Z/2 by Meas(Z/2). 1t is interesting to note that
there is a natural correspondence Meas(Z/2) = F obtained by
associating to a measure y a function fu where f,(a) = i({a}).
In particular, Meas(Z/2) has the same number of elements as

F

Define, for a subset X of Z/?2, a function f, and

a measure
i, the integral

/fmw=zﬂmm)
X aEX

3 Results

We now state and prove our deepest results. The first is a Ricsz
representation theorem.

Theorem. The map

Meas(Z/2) —» F*



obtamed by sending a measure ju to the lincar functional L, de-
fined by

Ly(f)= [ fdu

Z/?

w5 an wsomorphism of Z/2-vector spaces.

Proof. Clearly the correspondence is linear. Since Meas(Z/2)
has the same dimension as F, we need only show the map is
injective. But if [ fdu =0 for every function f, then in partic-

ular this is true for f = x4}, the characteristic function on the
singleton {a}. But

/X(aldu = n({a})

so we conclude that p was the zero measure. Thus our homo-
morphism has no kernel. 0

We close by the main computational tool for Z/2 integral
calculus with respect to Lebesgue measure. This measure dz is
uniquely characterized by

1. dz(X) = dz(X + a) (Haar measure)
2. dz({0}) = 1 (Normalization)

We prove a Z/2 fundemental theorem of calculus.
Theorem. ; e
= | =)
Proof. For we calculate

0 =)

n@:Af@@:ﬂm+fm it

so the function F(z) is non-constant if f(1) = 1 and is constant
if f(1) = 0. The result follows from the first theorem of this

paper. O
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EXISTENCE AND APPLICATIONS OF THE HAPP

CATEGORY
SAMEER X. D’COSTA AND CATHERINE D. LEIGH

ABSTRACT. We will prove the existence of the Happy Category @ Given any

category P*, the existence of a “free association” functer F from P* to
translates all problems in P* to computations in the Happy Category: These
computations are joyful, radiant, pleasing, lighthearted, gratifying, jovial, and
as exhilarating as listening to Stephen Spallone sing. We shall demonstrate a
singularly pulchritudinous application.
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We wish to show some applications of the Happy Category.
This new branch of mathematics has tremendoug ap{)li(‘z\tions in
many old branches of mathematics (which are described usiye
the language of categories). Hopefully it will be used to (le\'olo;
new branches of math which will have a profound impact on
the way math is done in the next century. (For existence and
uniqueness of the Happy Category please see our previous paper
in the Annals of Mathematics Vol. XIXCMIV.)

The Happy category is basically a collection of ” nice” objects
and "nice” maps. We will prove

Theorem. A matriz algebra of a division algebra is a simple
algebra.

as an example of this powerful technique. For this we use the
"free association functor.” (The definitions are all contained in
the aforementioned paper — Ed.)

Proof. To prove that a matrix algebra of a division algebra is

a simple algebra, free associating, we see that we just need to
prove

matriz = matriz algebra X = simple

algebra
so we just have to prove that the matrix is simple. Suppose not.
Then the matrix is complex. From the movie we learned that
things that seem real in the real world are actually imaginary. So
this means that real symmetric matrices have imaginary eigen-
values. This is not true. So the matrix is simple. So the matrix
algebra is a simple algebra. O

Corollary. The direct sum of matriz algebras over a division
ring is semi-simple.

Proof. Each component of the direct sum is simple. So a bunch

of components collectively are not so simple, i.e. semi-simple.
O

These techniques are going to revolutionize mathematics. Thanks

to Rochelle and Pallavi for helping.
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Quantum Taxicab Geometry

Brian Johnson
University of Chicago

We briefly describe the quantum taxi, followed by
an introduction to the resulting geometry and its re-
lationship to "ordinary” quantum geometry. We con-

clude with a brief discussion of conics in the quantum
taxicab plane.

1 The quantum taxicab

Figure 1 illustrates the myrid collection of obstructions that im-
pede the common taxicab from travelling from point A to point
B, and these have been well studied in the literature, or at least
have been folklore in taxidermy.

point B

s gl
/ person

: /
polntia pothole

Figure 1: the Newtonian taxi \
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Our technique is to replace the classical taxi with a quantuim
taxi. Roughly, the quantization is achieved by replaceing the
air conditioner (A.C.) with a complicated contruction known as F’-
the Anti-Observation Generator (A.O.G). It should be clear to ' %—/
(e reader that this new quantized taxi, while a bit stuffy in the '
summer months, has far nicer properties then its classical coun-
terpart. The contruction of supertaxis is still an open problem. I PN
Figure 2 illustrates the construction of the quantum taxi.

taxi could be anywhere on this line

il A.O0.G.
e
axi /

anti-pbservatons

/ Figure 3: a quantum taxicab geodesic
LG ai®

Figure 2: quantization of the clgssical taxi

3 The geometry of the quantum taxicab

We first attack the problem of defining lines in the quantum
taxicab metric. A naive attempt mibght be to try the perpen-

2 The induced metric on the plane dicular bisector method. That is, define a line to be determined

Consider a grid of streets in R?. Now the anti-observaton effect
yields an uncertainty principle in the taxi’s vertical position.
So, if the quantum taxicab travels a horizontal distance d, the
vertical distance of the taxicab cannot be measured, hence the
taxicab could be, having travelled west, say, only one block,
anywhere from here to Chatanooga. In figure 3, this quantum
distance is illustrated.

O

by two points, a and b, say, to be the set
Ly = {z : d(a,z) = d(z,b)}.

This set is displayed as the shaded region in figure 4. The prob-
lem, as should be readily apparent, is that the resulting subset
of the plane is not one dimentional, hence defies our intuitive
notion of a line. This is clearly unacceptable.

N
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Figure 3

One might also make the more sophisticated attempt of defin-
ing a line in terms of shortest distance. Given points a and b,
define the line segment from a to b to be the set

L' = {z : d(a,z)+ d(z,b) = d(a, b)}

The problem, again, is with the uncertainty inherent in the
quantum taxicab. This line segment is illustrated as the shaded
region in figure 5. We are led to believe that lines don’t work in
the quantum taxicab plane. .
Fis5
a

.

Figure 5
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Interestingly enough, though, the quantum taxicab is not per-
verse enough to exclude conic sections of hausdorff dimension 1. P
These are illustrated in figure 6. It is interesting to note that
each branch of the hyperbola is congruent to a parahola. !

(12)

Figure 6:
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Recall that a geometry is said to satisfy the Karl-Dieter Crisma
(KDC) property if every pair of intersecting circles in general po-
sition intersect at right angles. The main result is the following,
whose proof follows from the form that cicles in the quantum
taxicab geometry take.

Theorem The quantum taxicab geometry satisfied
the KDC property.

(3)
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Algebraic Algebras
Hugh Thomas

lone on the occasion of his twenty-fift}
. to Steven Spal y-Jytn
dedicated birthday

Abstract

By analogy with algebraic’ groups and algebraic
mon(;idS, algebraic algebras over a field K are by def-
inition algebras whose elements are endowed with the
structure of the closed points of an algebraic variety,
such that the operations of the algebra are continuous
in the Zariski topology on that variety. We prove that
every I(-algebra which is finite-dimensional as a vec-
tor space can be given the structure of an algebraic
algebra.

An algebraic group over K is a group endow‘ed wi.th t'he ’st.r\}i’-
ture of the set of closed points of an alg.ebrmc vanelt} to::iiet\,'
such that the group operations are c?ntu;uou\sN Yonwthlzll 't‘o‘lm;‘;(.
(1], and similarly for algebraic mox.101ds [‘_] eFirS.t it
an analogous definition of algebrmc.alge Hras. :
precise what we mean by an algebra:

(lS) 4

requirements than distributativity over addition and scalar mul
tiplication.

Now, we can make the following definition:

Definition. An algebraic algebra over K 1s an algebra ovel
K, whose elements are endowed with the structure of the set o]
closed points of an algebraic variety over I, such that all the

algebra operations are continuous in the Zariski topology on that
variety.

This note is devoted to proving the following theorem

Theorem. A K -algebra which is finite-dimensional as a K-
vector space can be given the structure of an algebraic algebru.

Proof. Let A be a K-algebra of dimension n as a i'-vector space.
Choose a basis e;,...,e, of A. Let ¢ : K" — A be the obvious
isomorphism taking (zy,...,z,) to ) zie;. Use ¢ to endow |
with the topology of affine n-space.

Pulling back via ¢, we can think of addition on A as defining
a map from K?" — K", and similarly for scalar multiplication
and multiplication. By showing that these maps are continuous
in the Zariski topology, we show that 4 with the above topology
is an algebraic algebra.

To check that they are continuous in the Zariski topology;,
it suffices to show that their co-morphisms are ring morphisms.
Let K[X] = K[X,,...,X,)], and similarly for K[}] and K[Z].
The co-morphism for addition, from K[X] to K[Y]® K[Z] takes
Xi to Y; + Zj, so addition is continuous. The co-morphism for
scalar multiplication, taking K[X] to K[} ® K[T] takes X; to
TY7, so scalar multiplication is continuous.

Multiplication is only slightly trickier. Multiplication in A
can be completely described by giving structure constants [",J €

A

,?‘_/}_ull17I||il]||]]|ll’|l‘i|]ll|lll]
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cient of ex In €€ ]Th(‘n[th(* comorphism for multi-
(x| to K[V @ K(Z) takes X 5y
K[X] ‘ b2 30512

ap, SO multiplication is also continuous, and A

Iy, the coefl
plir:ltion, taking
which is 2 ring m

)as been given the structure of an algebraic algebra. O
as be

(-

Note that this theorem leaves open the possibility that there
~ould exist non-standard realizations of certain K-algebras as
|gebraic algebras, 11 which the K-algebra, though abstx'actl;'

.somorphic to some affine space, would have a different topology
(=
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