
SHIMURA VARIETIES OF TYPE U(1, n− 1) IN
CHARACTERISTIC ZERO

The complex theory of the moduli space of elliptic curves, and its associated ellip-
tic modular forms, admits an elementary exposition involving the upper half plane.
These notes are supposed give a similarly tractable description of the Shimura va-
rieties of type U(1, n − 1), and the holomorphic automorphic forms associated to
these, following:

• R.E. Kottwitz, Points on some Shimura varieties over finite fields.
• M. Harris and R. Taylor, The geometry and cohomology of some simple

Shimura varieties.
• H. Hida, p-Adic automorphic forms on Shimura varieties.
• A. Borel, Introduction to Automorphic forms.

It has become common practice to treat the moduli problems represented by
these Shimura varieties as certain isogeny classes of weakly polarized abelian vari-
eties with complex multiplication and level structure. The isogeny class approach,
(due to Deligne?) gives the cleanest formulation of the moduli. There are many
subtleties associated to this moduli problem which it hides, however, so in this
document we shall formulate the moduli in terms of isomorphism classes. These
subtleties are then more plainly exposed.

1. Notation

Let A denote the rational adeles. If S is a set of places of Q, we shall use the
convention that places in the superscript are omitted and places in the subscript
are included.

AS =
∏
v∈S

′
Qv

AS =
∏
v 6∈S

′
Qv

This notational philosophy will be extended to other contexts as we see fit.
Begin with the following data:

F = quadratic imaginary extension of Q.
OF = ring of integers.

B = central simple algebra over F , dimF B = n2.

(−)∗ = positive involution on B of the second kind.
OB = maximal order in B.

V = left B-module.

(−,−) = Q-valued non-degenerate alternating form on V which is ∗-hermitian.

(This means (αx, y) = (x, α∗y).)

L′ = OB-invariant lattice in V , (−,−) restricts to give integer values on L′.
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We will sometimes let the choice of L′ vary — this will correspond to looking at
various connected components of the Shimura variety. We fix a particular lattice L
to act as a “basepoint”. From this data we define:

L̂′ = the profinite completion of L′

C = EndB(V ).

(−)ι = involution on C defined by (av, w) = (v, aιw).

OC(L′) = order of elements x ∈ C such that x(L′) ⊆ L′.

G(R) = {g ∈ (C ⊗Q R)× : gιg ∈ R×}
U(R) = {g ∈ (C ⊗Q R)× : gιg = 1}

K∞ = {g ∈ G(A∞) : g(L̂) = L̂}
G(Q)+ = {g ∈ G(Q) : gιg > 0}
Γ(L′) = {g ∈ G(Q)+ : g(L′) = L′}

We are interested in the case where we have:

V = B

L = OB

U(R) = U(1, n− 1)

It then follows that we have

C = Bop

OC(L) = Oop
B (by maximality of OB)

Γ(L′) = {g ∈ OC(L′)× : gιg ∈ Q>0}.

In our case ∗ may equally well be regarded as an involution ∗ on C, and there
exists (using the Noether-Skolem theorem) an element β ∈ B so that β∗ = −β that
encodes (−,−):

(x, y) = TrF/Q TrB/F (xβy∗).

Let γ be the element β regarded as an element of C. Then ι is given by

zι = γ−1z∗γ.

Tensoring with R, and fixing a complex embedding of F , we may identify the
completions of our simple algebras with matrix algebras over C:

B∞ = Mn(C)
∗ = conjugate transpose

C∞ = Mn(C) (identified with B through the transpose)

β =


e1i

−e2i
. . .

−eni



Here the ei’s are positive real numbers.
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Let ε ∈ B∞ be the idempotent consisting of a 1 in the (1, 1) entry and zeros
elsewhere. The summand εV∞ is then the subspace of matrices in B∞ with non-
zero entries concentrated in the first row.

εV∞ =




v1 · · · vn

0 · · · 0
...

...
0 · · · 0

 : vi ∈ C

 ⊂ B∞

We may thus view elements of εV∞ as vectors ~v = (v1, . . . , vn) in Cn Under this
identification the algebra C∞ = Mn(C) acts on εV∞ by the standard representation.

For x = [xi,j ] ∈ C∞, the involution ι is given by:

xι =


x1,1 − e2

e1
x2,1 · · · − en

e1
xn,1

− e1
e2

x1,2 x2,2 · · · en

e2
xn,2

...
...

...
− e1

en
x1,n

e2
en

x2,n · · · xn,n


The pairing (−,−) restricts to an R-valued alternating pairing on ε, given explicitly
by the formula

(~v, ~w) = Im(−2e1v1w1 + 2e2v2w2 + · · ·+ 2envnwn).

There is a natural way to associate an i-hermitian form Hi(−,−) to (−,−), by the
formula

Hi(~v, ~w) = (i~v, ~w) + i(~v, ~w).
(The subscript i on Hi(−,−) indicates the dependence this construction on the
complex structure i on V∞.) The pairing (−,−) is then recovered by (−,−) =
Im Hi(−,−). The pairing Hi(−,−) is given by

Hi(~v, ~w) = −2e1v1w1 + 2e2v2w2 + · · ·+ 2envnwn.

Let x ∈ C∞ be a matrix with columns ~ci ∈ Cn. Then we have:

x ∈ G(R) if there is an r ∈ R× so that


Hi(~c1,~c1) = −2re1,

Hi(~cj ,~cj) = 2rej for j > 1,

Hi(~ci,~cj) = 0 for i 6= j.

(1.1)

x ∈ U(R) if we have


Hi(~c1,~c1) = −2e1,

Hi(~cj ,~cj) = 2ej for j > 1,

Hi(~ci,~cj) = 0 for i 6= j.

(1.2)

2. The hermitian symmetric domain

Say J ∈ C∞ is a complex structure if it satisfies:
(1) J2 = −1.
(2) J ι = −J .

Because i ∈ C∞ is central, if J is a complex structure, then the product iJ satisfies
(iJ)2 = 1, and we may therefore decompose any hermitian C∞-module W as W+

J ⊕
W−

J where

W+
J = W i=J

W−
J = W i=−J .
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We shall say that a complex structure J is compatible if:

(1) dimC(V∞)+J = n, or equivalently, dimC(εV∞)+J = 1.
(2) The pairing (v, Jw) is symmetric on V∞.
(3) The pairing (v, Jw) is positive on V∞.

These three conditions equivalent to:

(1) J has 1-dimensional i-eigenspace and (n− 1)-dimensional −i-eigenspace.
(2) J commutes with γ.
(3) γ = ρJ for ρ a positive matrix which commutes with γ and J (the eigen-

values of ρ are necessarily {e1, ..., en}).
Let H be the space of compatible complex structures. An example of a compat-

ible complex structure is given by

I =


i
−i

. . .
−i

 ∈ C∞.

We then have

(εV∞)+I = {(v1, 0 . . . 0)}
(εV∞)−I = {(0, v2, . . . vn)}.

Proposition 2.1. The group U(R) acts transitively on the spaceH by conjugation.

Proof. Because γ, ρ, and J all commute, they are simultaneously diagonalizable.
The positivity of ρ, together with the dimensionality of the ±i-eigenspaces of J
show that there exists a unitary x so that

γ = xγx∗

I = xJx−1.

We see that x lies in U(R). Thus every compatible complex structure lies in the
U(R)-orbit of I. �

Let K∞ be the stabilizer of I ∈ H.

Proposition 2.2. The subgroup K∞ is given by

U((εV∞)+I )× U((εV∞)−I ).

The group K∞ is therefore abstractly isomorphic to U(1)× U(n− 1).

Proof. Suppose that x is an element of U(R) so that

xIx−1 = I.

Then we deduce

1 = I−1x−1Ix

= I−1xιIx

= I−1γ−1x∗γIx.
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Now we have

γI =

−e1

. . .
−en

 .

Let HI(−,−) be the I-hermitian form on εV∞ given by

HI(~v, ~w) = (I~v, ~w) + i(~v, ~w)
= −2e1v1w1 − · · · − 2envnwn.

We deduce that if x has column vectors ~ci, then we must have

x ∈ K∞ if and only if

{
HI(~cj ,~cj) = −2ej ,

HI(~ci,~cj) = 0 for i 6= j.

It is therefore clear that we have the containment

U((εV∞)+I )× U((εV∞)−I ) ⊆ K∞.

Writing x as [xi,j ], and comparing with condition (1.2), we see that{
e1|x1,1|2 = e1

e1|x1,1|2 + · · ·+ en|xn,1|2 = e1

from which we deduce (since the ei are positive) that xj,1 = 0 for j ≥ 1 and so ~c1

is of the form (x1,1, 0, . . . 0) for |x1,1|2 = 1. Since for j ≥ 1 we have

0 = HI(~cj ,~c1) = −2e1x1,jx1,1,

we conclude that x1,j = 0 for all j > 0. Therefore our element x takes the form
∗

∗ · · · ∗
...

...
∗ · · · ∗

 .

�

It turns out that the domain H = U(R)/K∞ admits a canonical complex struc-
ture, but we do not pursue the details here.

3. Polarized abelian varieties over C

A polarized abelian variety of dimension g over C is given by a lattice Λ in a
g-dimensional complex vector space W together with a Riemann form (−,−) on
W . To be a Riemann form, the form (−,−) is required to satisfy

(1) (−,−) is an R-valued R-bilinear alternating form.
(2) (−,−) takes integer values on Λ.
(3) (−, i−) is symmetric and positive.

To such forms we may associate a hermitian form H(−,−) via the formula

H(v, w) = (iv, w) + i(v, w).

Then (−,−) is recovered as Im H(−,−). Define

W ∗ = {α : W → C : α conjugate linear}
Λ∗ = {α ∈ W ∗ : Im α(Λ) ⊆ Z}.
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Then Λ∗ is a lattice in W ∗. Associated to a non-degenerate Riemann form (−,−)
is a C-linear isomorphism

λ̃ : W → W ∗

v 7→ H(v,−).

The isomorphism λ̃ restricts to give a finite index embedding

λ̃ : Λ ↪→ Λ∗.

Say the index is N . Then we may define a Riemann form (−,−)λ on W ∗ by the
equation

(α, β)λ = N · (λ̃−1(α), λ̃−1(β)).
The torus A = W/Λ is complex analytic. Given a non-degenerate Riemann form,

we may produce an ample line bundle L on A. Therefore, A admits an embedding
into projective space, giving A the structure of a projective variety (GAGA). The
line bundle L gives rise to a polarization. The dual abelian variety is given by
A∨ = W ∗/Λ∗, and the map λ̃ descends to give the isogeny corresponding to the
polarization of A induced by the Riemann form (−,−):

λ : A → A∨.

This completes a sketch of the equivalence of categories

{Lattices with non-degenerate Riemann forms}
l

{Polarized abelian varieties/C}

4. The Tate module and the Weil pairing

For N a positive integer there is a Weil pairing e on A[N ] and A∨[N ] given by

(4.1) A[N ]×A∨[N ]
eN (−,−) // µN

N−1Λ/Λ×N−1Λ∗/Λ∗ evN

// N−1Z/Z

∼= exp(2πi−)

OO

Here the map evN is given by

evN (v, α) = N · Im α(v).

The composite

λN (−,−) : A[N ]×A[N ] 1×λ−−−→ A[N ]×A∨[N ] eN−−→ µN

is the λ-Weil pairing. Everything is compatible, so we may take the inverse limit
over N to get a pairing on the Tate module

T̂ (A)× T̂ (A)
λ(−,−)−−−−−→ Ẑ(1).

We may likewise take the inverse limits of the pairings

(−,−) : Λ/N × Λ/N → Z/N

to get a pairing
Λ̂× Λ̂ → Ẑ.
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Proposition 4.1. Under the isomorphisms

N−1Λ/Λ ·N−−→∼= Λ/NΛ

N−1Z/Z ·N−−→∼= Z/N

and the isomorphisms of Diagram (4.1), the λ-Weil pairing is sent to the Riemann
form (−,−). In particular, there are canonical isomorphisms making the following
diagram commute.

Λ̂× Λ̂
(−,−) //

∼=
��

Ẑ
∼=

��
T̂ (A)× T̂ (A)

λ(−,−)
//// Ẑ(1)

5. The coarse moduli functor

Let K be a field containing F . We denote the canonical embedding of F in K
by u+, and its conjugate embedding by u−:

u± : F ↪→ K.

Suppose that W is a K-vector space (so it is in particular an F -vector space) and
that there is a ring homomorphism

j : B → EndK(W ).

Then there is a decomposition

W = W+
j ⊕W−

j

where

W+
j = {x ∈ W : F acts through j by u+}

W−
j = {x ∈ M : F acts through j by u−}.

A polarization λ : A → A∨ defines a λ-Rosati involution ∗ on End0(A) by
f∗ = λ−1f∨λ. If the polarization is principle, the Rosati involution leaves End(A)
invariant.

Define a contravariant functor

X : Fields/F → Sets

by associating to K/F a set of isomorphism classes of tuples of data

X (K) = {(A, λ, j, η)}/ ∼=
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where:

A = abelian variety over K of dimension n2.

λ : A → A∨, a polarization.

j : OB ↪→ End(A) so that


j is an inclusion of rings.
j(b∗) = j(b)∗, in End0(A).
dimK(Lie(A)+j ) = n.

η : L̂
∼=−→ T̂ (A) so that η


is OB-linear.
is Gal(K/K)-invariant.
sends (−,−) to an (A∞)×-multiple of

the λ-Weil pairing.

We declare that two tuples (A, λ, j, η) and (A′, λ′, j′, η′) are equivalent if there is
an isomorphism of abelian varieties

φ : A
∼=−→ A′

so that:

λ = rφ∨λ′φ, r ∈ Q×

j′(b)φ = φj(b), b ∈ OB

η′ = φ∗ηk for some k ∈ K∞.

We shall refer to the K∞ orbit of η as η. Note that the action of K∞ equates
any two choices of η. Nevertheless, it is important that one choice of η exists. We
could rephrase our level structure as saying that the elements of

∏
p H1(Qp, G)

given by λ(−,−) and (−,−) coincide, together with an integral condition on the
Tate module itself. This is discussed in the next two sections.

6. Forms of (−,−)

Let K be any field of characteristic 0. Let VK = V ⊗K be the BK = B ⊗K-
module with ∗-hermitian non-degenerate K-bilinear alternating pairing

(−,−) : VK ⊗K VK → K

induced from the pairing (−,−) on V . We shall regard a different pairing (−,−)′

as similar to (−,−) if there is an element z of (C ⊗K)× so that

(zx, zy) = r(x, y)

for r ∈ K×. We shall say they are equivalent if r = 1. In particular, the auto-
morphisms of (−,−) are given by the similitude group G(K). A different pairing
(−,−)′ is a form of (−,−) if it is similar to (−,−) over K. The forms of (−,−)
are classified by the non-abelian Galois cohomology group H1(K, G).

Thus the orbit of level structures η associated to a point (A, λ, j, η) ∈ X (K)
imposes an additional condition on the polarized abelian variety (A, λ): for each
finite prime p, we require (by choosing an OB-linear isomorphism Lp

∼= Tp(A)) that
the λ-Weil pairing on Vp(A) = Tp(A) ⊗ Q is similar to the p-local pairing (−,−)p

on Vp.
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We now assume that K is either Q, or Qv for a place v of Q which is not split in
F . Then a non-degenerate ∗-hermitian alternating form (−,−)′ must be given by

(x, y)′ = TrF⊗K/K TrB⊗K/F⊗K(xβ′y∗)

where β′ ∈ (B⊗K)∗=−1. Write γ′ for the corresponding element of CK = Bop⊗K.
Then (−,−)′ is similar to (−,−) if and only if there exists an element z ∈ C×

K so
that

γ = rz∗γ′z

for r ∈ K×.
Now specialize to the case of K = R. Using the polar decomposition of a

transformation z ∈ (CR)× = GLn(C), we deduce that an R-form (−,−)′ of (−,−)
is classified by |signβ′|, the absolute value of the signature sign(a, b) = b−a, where
β′ has a positive imaginary eigenvalues and b negative imaginary eigenvalues.

Given a form (−,−)′ of (−,−) over Q, such that (−,−)′v is similar to (−,−)v

over Qv for all places v of Q, is it similar to (−,−)? The answer is yes, because of
the following proposition.

Proposition 6.1 (Kottwitz, Hida). The map

H1(Q, G) →
∏
v

H1(Qv, G)

is injective.

Kottwitz proves this for n even and showed that the kernel is finite for n odd.
Hida observes (p319) that because the totally real number field contained in F is
Q, there is no kernel for n odd as well (in our case, his group GU is equal to our
G).

7. G-lattice classes

The complex points of X arise as quotients A = V∞/L′ for certain integral
lattices L′. The existence of the level structure η indicates that the lattice L′ must
satisfy certain local conditions as well. In this section we will formulate a notion of
equivalence of such lattices.

Say that a lattice L′ ⊂ V∞ is of type L if there exist for each prime p, elements
gp ∈ G(Qp) such that

gp(L′p) = Lp.

We shall say that two lattices L′, L′′ of type L are equivalent if there exists an
element g ∈ G(Q)+ so that

g(L′) = L′′.

Let ClL(G) denote the set of equivalence classes of lattices of type L. It is given by
the double coset space

ClL(G) ∼= G(Q)+\G(A∞)/K∞.

For convenience, we shall assume that we have chosen a preferred representative
L′ of each lattice equivalence class [L′]. Note that if L′ is a lattice of type L, and
N is a positive integer, the lattice NL′ is an equivalent lattice of type L. We may
therefore assume that each representative L′ is chosen so that (−,−) takes integer
values on L′.
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8. Complex points

Define the Shimura variety Sh0
C to be the disjoint union of complex quotients

Sh0
C =

∐
L′∈ClL(G)

Γ(L′)\H.

I put the superscript 0 to indicate that the Shimura variety is a coarse moduli
space.

Theorem 8.1. There is a canonical isomorphism

Sh0
C

∼=−→ X (C).

To a lattice L′ and a point J ∈ H, we shall associate a tuple

(A(L′,J), λ, j, η) ∈ X (C).

Namely, give V∞ the complex structure afforded by J , and let:

A(L′,J) = V∞/L′.

λ = polarization given by the non-degenerate Riemann form (−,−).
j = the obvious action of OB on A(L′,J).

η = the canonical level structure.

Note that Proposition 4.1 gives a canonical isomorphism T̂ (A(L′,J)) ∼= L̂′, so a
level structure exists because the lattice L′ is of type L. Any two choices of level
structure differ by an element of K∞. Thus we have a map

Φ′ :
∐

L′∈ClL(G)

H → X (C).

An element g ∈ Γ(L′), gives rise to a different complex structure J ′ = gJg−1.
The complex structure J ′ is compatible: the positivity of gιg allows us to deduce
the positivity condition on J ′ with respect to (−,−). The element g acts naturally
on V through OB-linear maps, sending J to J ′, and since it preserves L′ it induces
a j-linear isomorphism

g∗ : A(L′,J) → A(L′,J ′).

Because g lies in G(Q), it is a similitude of (−,−), and thus it preserves the weak
polarization. Therefore the map Φ′ descends to a map

Φ :
∐

L′∈ClL(G)

Γ(L′)\H → X (C).

Φ is injective. Suppose that (J ′, L′) and (J ′′, L′′) are two pairs of lattices and
compatible complex structures that yield equivalent elements of X (C) under the
map Φ. Let

φ : (A(L′,J ′), λ, j, η) → (A(L′′,J ′′), λ, j, η)
be the isomorphism. Because φ must preserve the polarization, we have

λ = rφ∨λφ.

Taking the degree of both sides, we see that r = 1. Now φ must arise from a map

g : V∞ → V∞

which maps the lattice L′ onto L′′ and such that J ′′g = gJ ′. We want to show
that g lies in Γ(L′). Because φ preserves the polarization on the nose, the map g
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must preserve (−,−) on the nose. Because it sends a rational lattice to a rational
lattice, we deduce that g actually lies in EndQ(V ). We have deduced that g lies in
U(Q), so in particular we have gιg ∈ Q>0. We deduce that L′ = L′′, because we
have shown these lattices represent the same lattice class. Because φ is OB-linear,
we see that g is OB-linear, and therefore (because it preserves the lattice) we have
g ∈ OC(L′)×. Therefore g lies in Γ(L′). We have therefore shown that the map Φ
is injective.

Φ is surjective. The surjectivity of the map Φ is not typical of the PEL Shimura
varieties of type A, as observed by Kottwitz. Rather, one expects

X (C) =
∐

i∈ker1(Q,G)

∐
L′∈ClL(G(i))

Γ(L′)\H(i)

where ker1(Q, G) is the finite kernel of the map

H1(Q, G) →
∏
v

H1(Qv, G).

However, in our case (Proposition 6.1), this kernel is trivial. We shall soon see how
this sort of thing enters into the discussion.

We demonstrate surjectivity: Suppose that (A′, λ′, j′, η′) is a point in X (C). The
pair (A′, λ′) gives a complex vector space W , a lattice Λ ⊂ W , and a non-degenerate
Riemann form (−,−)′ on (W,Λ). The order OB acts through j′ on Λ by lattice
automorphisms. Since B is simple, we may we once and for all identify

Λ ∼= L′

W ∼= V∞.

for some OB-lattice L′ in V∞ of type L. The pairing (−,−)′ induces a non-
degenerate alternating pairing (−,−)′ on V∞ which probably differs from (−,−).
The fact that j′ sends ∗ to the the Rosati involution implies that (−,−)′ is ∗-
hermitian. The complex structure on W induces a complex structure J ′ on V∞
which is compatible with (−,−)′. Because (−,−)′ gives integer values on L′, it ac-
tually lifts to a rational pairing (−,−)′ on V . Let λ′ be the polarization of A(L′,J ′)

given by the form (−,−)′. Take η′ to be the level structure on AJ′ induced from
the j-linear isomorphism A′ ∼= A(L′,J ′) of weakly polarized abelian varieties. We
then get an isomorphism

(A′, λ′, j′, η′) ∼= (A(L′,J ′), λ
′, j, η′).

We just need to show that we can change J ′ to a complex structure compatible
with (−,−), so that (−,−)′ and η′ get changed to (−,−) and η.

Associated to the weird pairing (−,−)′:

• There exists β′ ∈ B∗=−1 so that

(x, y)′ = TrF/Q TrB/F (xβ′y∗).

• β′ may be regarded as γ′ ∈ C, and the involution ι′ associated to (−,−)′

is given by

zι′ = (γ′)−1z∗γ′.
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• Because (V∞)+J′ is 1-dimensional, J ′ diagonalizes to

J ′ ∼


i
−i

. . .
−i

 .

• Because (−, J ′−)′ is symmetric, we may deduce that J ′ commutes with γ′,
and so they simultaneously diagonalize, giving

γ′ ∼


e′1i

−e′2i
. . .

−e′ni

 .

• Because (−, J ′−)′ is positive, we may deduce that the entries e′i in the
matrix above are positive real numbers.

We conclude that the forms (−,−)′ and (−,−) are similar over R, because they
have the same signature. The level structure guarantees that the forms (−,−)′ and
(−,−) are similar over Qp for all p. Thus, by Proposition 6.1 the forms (−,−)′

and (−,−) are similar over Q. Therefore, there exists an element x ∈ C× giving
an OB-linear similitude

x : (V, (−,−)′) ∼−→ (V, (−,−)).

The similitude x has a problem: it need not be positive, and therefore the
complex structure x−1J ′x need not be compatible with (−,−). However, there is
a decomposition

(8.1) G(R) = G(R)+G(Q).

At the infinite place we used the fact that |sign(γ′)| = |sign(γ)|, but we showed that
there was an equality of the signatures without taking absolute values. Therefore
there exists an element y∞ ∈ G(R)+ giving a positive similitude (similitude norm
is positive)

y∞ : (V∞, (−,−)′) → (V∞, (−,−)).

Let z ∈ G(R) be a similitude which completes the diagram

(V∞, (−,−))

z

��

z1

((QQQQQQQQQQQQQ

(V∞, (−,−)′)
y∞

//

x

66lllllllllllll
(V∞, (−,−))

z−1
∞

// (V∞, (−,−))

where z = z∞z1 is a decomposition by (8.1), for z1 ∈ G(Q) and z∞ ∈ G(R)+.
Let w = z1x be the element in G(Q) which, by the commutativity of the above
diagram, lies in G(R)+. We deduce that

w : (V, (−,−)′) → (V, (−,−))

is a positive similitude. Let L′′ be the lattice

L′′ = w(L′).
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Because L′ is of type L, the lattice L′′ is also of type L. By altering w by an
element of G(Q)+, we may assume that L′′ is one of our preferred representatives
in ClL(G). The transformation w gives an isomorphism

w : A(L′,J ′)

∼=−→ A(L′′,J ′′)

where J = w−1J ′w. It is easy to check that J is compatible with (−,−). Therefore
J lies in the hermitian symmetric space H. Giving the abelian variety A(L′′,J) the
polarization λ associated to (−,−), and a level structure η arising from the fact
that L′′ is of type L, the isomorphism w induces an isomorphism

w : (A(L′,J ′), λ
′, j, η′)

∼=−→ (A(L′′,J), λ, j, η).

This completes the verification that Φ is surjective.

Remark 8.2. The variety Sh0
C has many equivalent descriptions which do not

depend on a choice of a collection of representing lattices for the lattice classes in
ClL(G):

Sh0
C
∼= G(Q)+\(G(A∞)/K∞ ×H)
∼= G(Q)+\(G(A∞)×G+(R))/K∞(K ′

∞)+

∼= G(Q)\G(A)/K∞K ′
∞.

Here, K ′
∞ ⊂ G(R) is the stabilizer of the complex structure I, and (K ′

∞) is the
intersection of K ′

∞ with G+(R).

9. The irreducible representations of K1
∞

The Hermitian symmetric domain H admits yet another description as the quo-
tient

H = SU(R)/K1
∞.

Here, SU is the norm 1 subgroup of U , whose R points are given by

SU(R) = {g ∈ U(R) : Nr(g) = 1}

and K1
∞ is the corresponding subgroup of K∞. By Proposition 2.2, the group K1

∞
is given by

(U((εV∞)+I )× U((εV∞)−I ))det=1.

Therefore, the group K1
∞ is abstractly isomorphic to U(n− 1).

The weights of the automorphic forms on SU(R) are the dominant weights of
irreducible representations of the maximal compact group K1

∞ (all of the represen-
tations in this section are finite dimensional complex representations). We describe
these irreducible representations in geometric terms.

Remark 9.1. Because I know no representation theory, some of the statements
in this section might be flat out wrong. For this section and the next, should I be
using irreducible reps of K∞ instead of K1

∞? I’m not sure that I care, because in
the end, I am just trying to justify sections of a certain line bundle are instances of
holomorphic automorphic forms...
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To expedite notation, let W = εV∞, and let W± = W±
I . We shall regard each

of these as complex vector spaces with complex structure given by I. We have the
following isomorphism of compact Lie groups:

U(W−)
∼=−→ (U(W+)× U(W−))det=1 = K1

∞

g 7→ (det(g)−1, g).

Using the “unitary trick”, the irreducible representations of U(W−) are the
same as the holomorphic irreducible representations of GL = GLC(W−). Fix a
Borel subgroup B with maximal torus T and unipotent radical N . With respect to
our preferred basis of W−, we take the torus to be the group of diagonal matrices

z = (z1, . . . , zn−1) =

z1

. . .
zn−1.

 ,

B the upper triangular matrices, and N the upper triangular matrices with 1’s on
the diagonal.

The Stiefel manifold. Define the Stiefel manifold St = St(W−) to be the the
complex homogeneous space GL/N . It is the space of tuples (F, (~vi)) where

F = (0 = W−
0 < W−

1 < · · ·W−
n−1 = W−)

is the space of complete flags in W−, and ~vi ∈ W−
i /W−

i−1 is a choice of non-zero
vector for each i.

We may equally well regard a point in St as a sequence of equivalence classes of
linearly independent vectors

([~v1], . . . , [~vn−1])

where ~vi lies in W−, and where ~vi is equivalent to ~v′i if their difference may be
expressed in terms of the (well defined) i− 1 dimensional subspace W−

i−1 spanned
by ~v1, . . . , ~vi−1. The flag is then implicit in this data.

Let V = V(W−) be the space of holomorphic functions on St. Thus an element
f of V may be regarded as function which associates to a collection of linearly
independent vectors (~vi) in W− a complex number

f(~v1, . . . , ~vn−1)

which only depends on the equivalence classes ([~vi]). We shall refer to such a
function as a Stiefel function on W−.

The torus T acts on the right on St by

([~vi]) · z = ([zi~vi])

and the whole group GL acts on the left by

g · ([~vi]) = ([g~vi]).

These two actions commute.
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Borel-Weil theory. Let X be the lattice of characters of T . There is an associated
cone of positive weights X+ ⊂ X. We have X+ ∼= Nn−2×Z where the Z corresponds
integer powers of the determinant character.

The quotient F = St/T is the flag manifold of complete flags in W−. Define a
line bundle Lκ over F :

Lκ = St×T Cκ

↓
F = St/T

The group GL acts on V on the left by

(g · f)(~v1, . . . ~vn−1) = f(g−1~v1, . . . g
−1~vn−1).

We can decompose the representation V by

V =
⊕
κ∈X

Vκ

where we have

Vκ = H0(F ,L−κ)

= {f ∈ V : f(zi~vi) = κ(z)−1f(~vi)}.

In particular, since F is a projective variety, these representations are finite.

Theorem 9.2 (Borel-Weil). If κ is positive, then Vκ is the irreducible representa-
tion of GL of dominant weight κ, otherwise Vκ = 0.

10. Automorphic forms

Some vector bundles on H. Given a positive weight κ ∈ X+, we define a line
bundle ωκ over H by

ωκ = SU(R)×K1
∞
Vκ

↓
H = SU(R)/K1

∞.

A section of ωκ is a function f which associates to a compatible complex structure
J ∈ H and a collection of n − 1 linearly independent vectors ~vi in W−

J a complex
number

f(J, (~vi))

so that
(1) f is a holomorphic Stiefel function in ~vi.
(2) f(J, (zi~vi)) = κ(z)−1f(J, (~vi)) for all z = (zi) ∈ T .

Automorphic forms. Let L′ be a representative of a lattice class in ClL(G). The
vector bundle ωκ is naturally Γ(L′)-equivariant.

Definition 10.1. A weakly holomorphic automorphic form for the congruence sub-
group Γ(L′) of weight κ is a holomorphic section of ωκ which is invariant under
the Γ(L′) action. We shall denote the space of all such automorphic forms by
Aweak

κ (L′).
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The weight κ weakly holomorphic automorphic forms may be regarded as the
space of holomorphic sections

H0(Sh0
C, ωκ) =

∏
L′∈ClL(G)

Aweak
κ (L′).

Some care must be taken though in taking this to be the definition, because the
variety Sh0

C typically has singularities.
A holomorphic automorphic form is a weakly holomorphic automorphic form

that also satisfies some growth conditions. These conditions are equivalent to in-
sisting that the form extend over a suitable compactification of Sh0

C. However, if
B is a division algebra, the variety Sh0

C is compact, and no growth conditions are
necessary.

Remark 10.2. Classically, an automorphic form on a real group such as SU(R) is
(loosely speaking — there seem to be issues with the center because Γ(L′) is not
necessarily contained in SU(R)) a K1

∞-equivariant Γ(L′)-invariant map

SU(R) →W

for a K1
∞-representation W satisfying two conditions:

(1) f satisfies a Z(sl) finiteness condition.
(2) f satisfies a growth condition.

It turns out that our holomorphy conditions constitute a particularly strong in-
stance of Z(sl)-finiteness. It is for this reason that we say that our automorphic
forms are holomorphic automorphic forms. The growth conditions constitute a
holomorphy condition at the cusps, but if Sh0

C is compact, there are none.

Concretely, a holomorphic automorphic form f of weight κ may be regarded as
a rule, which associates to a point

A = (A, λ, j, η) ∈ X (C)

and a sequence of n−1 linearly independent vectors (~vi) in (εtA)−j (where tA is the
tangent space of A), a complex number

f(A, (~vi))

satisfying:
(1) f is holomorphic in A ∈ Sh0

C and the sequence (~vi).
(2) for fixed A, f is a Stiefel function in (~vi).
(3) for z = (zi) ∈ T , we have

f(A, (zi~vi)) = κ(z)−1f(A, (~vi)).

Weights in the determinant line. There is a natural line bundle ω over Sh0
C:

its fiber over A = (A, λ, j, η) is given by

ωA = [(εtA)+j ]∗,

the dual of the summand of the tangent space tA of A at the identity.
We now demonstrate that if det ∈ X+ is the determinant character, then we

have
ω = ωdet.
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Thus, for k ∈ Z, holomorphic sections of ω⊗k give automorphic forms of weight
k · det:

H0(Sh0
C, ω⊗k) = H0(Sh0

C, ω(k·det)).
Indeed, consider the 1-dimensional representation χ of K1

∞ given by

χ : K1
∞ = (U(W+)× U(W−))det=1 → U(1)

(a, x) 7→ a.

The representation χ has character (−det) when regarded as a representation of
U(W−). It therefore coincides with the representation Vκ, and the associated line
bundle

τ =
∐
L′

Γ(L′)\(SU(R)×K1
∞

Cχ)

↓

Sh0
C =

∐
L′

Γ(L′)\(SU(R)/K1
∞).

must coincide with the vector bundle ω− det. On the other hand, the vector bundle
τ is quite explicitly the vector bundle whose fiber over a point A = (A, λ, j, η) is
the line (εtA)+j . The result now follows by taking duals.

Therefore, a weakly holomorphic automorphic form f of weight k · det may be
regarded as a rule which associates to a point

A = (A, λ, j, η) ∈ Sh0
C

and a non-zero vector ~v in (εtA)+j , a complex number

f(A,~v)

satisfying:
(1) f is holomorphic.
(2) for z ∈ C×, we have

f(A, z~v) = zkf(A,~v).


