
Fourier Analysis for Engineers

M. Behrens

January 12, 2002

1 Motivation: Finite dimensional vector spaces

The periodic theory of Fourier analysis may be likened to the decomposition of an ordinary
vector into its components with respect to a basis. To motivate the infinite dimensional
situation encountered in Fourier analysis, we’ll examine what happens in a very familiar
setting: C 3, three dimensional complex space. We have an inner product (like a dot product)
defined by:

〈(v1, v2, v3), (w1, w2, w3)〉 =
3∑

k=1

vkwk

where vi, wi ∈ C and the bar denotes complex conjugation:

x + jy = x − jy

Let e1, e2, e3 be the standard basis of C 3:

e1 = (1, 0, 0)

e2 = (0, 1, 0)

e3 = (0, 0, 1)

Then it is readily seen that the collection {ek} actually forms an orthonormal basis. That
is:

〈ek, el〉 =

{
1 if k = l,

0 if k 6= l

Then:
〈(z1, z2, z3), ek〉 = zk

so we can recover the components of our vector by taking inner products with the elements
of out orthonormal basis. Then we can express our vector as a sum of these components
times the elements of the orthonormal basis:

(z1, z2, z3) =
3∑

k=1

〈(z1, z2, z3), ek〉ek =
∑

k

zkek
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Furthermore, given the coefficients, we can determine the length of the vector:

‖(z1, z2, z3)‖2 =
∑

k

|zk|2

where for a complex number z = x + jy:

|z|2 = x2 + y2 = zz

While this process seems trivial in the finite dimensional case, it is exciting in the infinite
dimensional situation.

2 Periodic Theory

Suppose that f is a square integrable periodic function defined on the real line and tak-
ing values in the complex numbers. We shall assume that f has period 2π. The square
integrability condition translates to saying that:∫ 2π

0

|f(t)|2dt < ∞

Certainly any smooth (infinitely differentiable) function satisfies this requirement, since in
this case f would have to take on a maximum by continuity. We shall call the space of all
smooth periodic functions which are square integrable:

L2(T)

(T stands for the 1-torus, or simply the circle, since any function which is periodic may be
thought of as being defined on the circle.)

Now, we would like an orthonormal basis for L2(T). For starters, we need an inner
product to make sense of what it means to be ‘orthonormal’.

Definition. Define an inner product on L2(T):

〈f, g〉 =
1

2π

∫ 2π

0

f(t)g(t)dt

Our candidate for an orthonormal basis is the collection:

{ejnt : where n is any integer (positive or negative)}

Proposition. {ejnt} forms an orthonormal basis of L2(T)
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Proof. Since we are working in an infinite dimensional vector space, being a basis means
that every periodic function can be written as an infinite sum of the functions {ejnt}. This
fact is highly non-trivial, and the proof is omitted.

The orthonormality relations are much easier to see:

〈ejnt, ejmt〉 =
1

2π

∫ 2π

0

ejntejmtdt

=
1

2π

∫ 2π

0

ejnte−jmtdt

=
1

2π

∫ 2π

0

ej(n−m)tdt

=
1

2π

∫ 2π

0

cos((n − m)t)) + j sin((n − m)t)dt

=

{
1 if n = m,

0 if n 6= m

The Fourier coefficients of a periodic function f are defined to be the components of f
with respect to our orthonormal basis.

Definition. Let f ∈ L2(T). The Fourier coefficients of f are defined as:

f(n) =
1

2π

∫ 2π

0

f(t)e−jntdt

Note that in our fancy notation, we have:

f(n) = 〈f, e−jnt〉

Also take note that we may regard the collection of Fourier coefficients as a discrete time
function, that is, a complex valued function on the integers.

The key to Fourier analysis is that we can go backwards. That is, given the Fourier
coefficients, we can recover the function itself.

Theorem. Let f ∈ L2(T). Then:

f(t) =
∞∑

n=−∞

f(n)ejnt

Proof. We know that since {ejnt} forms a basis of L2(T), f may be written as a sum of these
basis elements:

f(t) =
∑

n

cne
jnt
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for some complex numbers cn. We just need to prove that cn = f(n). But:

f(n) = 〈f(t), ejnt〉

= 〈
∑
m

cmejmt, ejnt〉

=
∑
m

cm〈ejmt, ejnt〉

= cn

The last equality follows from the fact that the ejnt’s are orthonormal.

We conclude the study of the periodic case with Parzifal’s identity, which relates the size
of a function to the size of its Fourier coefficients.

Theorem. Let f ∈ L2(T). Then:

1

2π

∫ 2π

0

|f(t)|2dt =
∑

n

|f(n)|2

Proof. We just compute:

1

2π

∫ 2π

0

|f(t)|2dt = 〈f, f〉

= 〈
∑

n

f(n)ejnt,
∑
m

f(m)ejmt〉

=
∑
n,m

f(n)f(m)〈ejnt, ejmt〉

=
∑

n

|f(n)|2

where the last equality holds by orthonormality.

3 Discrete Time Fourier Analysis

The discrete time case is really just the periodic case backwards, with the sign on j re-
versed. We shall consider the collection of all discrete time complex valued square integrable
functions. By square integrable, we mean:∑

n

|x[n]|2 < ∞

We shall denote this space as:
L2(Z)

Where Z stands for the integers.
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Definition. Define, for x ∈ L2(Z), the Fourier transform X of x to be the periodic function:

X(ω) =
∑

n

x[n]e−jnω

We very swiftly work through the results that we essentially already proved in the last
section. We have a Fourier inversion result, which says that our discrete time function may
be recovered from our Fourier transform:

Theorem. Let x ∈ L2(Z) and X be its Fourier transform. Then:

x[n] =
1

2π

∫ 2π

0

X(ω)ejnωdω

We get a Parzifal identity:

Theorem. Let x ∈ L2(Z) and X be its Fourier transform. Then:

∑
n

|x[n]|2 =
1

2π

∫ 2π

0

|X(ω)|2dω

Piece of cake, since we already know these for the periodic theory.

4 Fourier Transform: Non-discrete Case

We wish to consider the collection of all complex valued functions on the real line which
are square integrable. Here we assume nothing about periodicity. By square integrable, we
mean: ∫

|f(t)|2dt < ∞

where if the limits of integration are left off we take it to be an integral from −∞ to ∞. We
shall denote this space:

L2(R)

It is more difficult to fully understand what the meaning is of the Fourier transform on R.
In some sense, it takes a time distribution and yields a frequency distribution. Then, given
the frequency distribution, you can reconstruct the time distribution.

Definition. Let f ∈ L2(R). The Fourier transform of f is denoted f̂ , and is also an element
in L2(R), defined by:

f̂(ω) =

∫
f(t)e−jωtdt

There is a Fourier inversion theorem, which says that given the Fourier transform of a
function, one can recover the actual function.

5



Theorem. Let f ∈ L2(R). Then:

f(t) =
1

2π

∫
f̂(ω)ejωtdω

The proof of the Fourier inversion theorem, if done rigorously, is lengthy, and will not be
included here. There is also a result that vaguely reminds one of the Parzifal identity, called
the Plancharel theorem:

Theorem. Let f ∈ L2(R). Then:∫
|f(t)|2dt =

∫
|f̂(ω)|2dω

So the size of the Fourier transform is the same as that of the original function. Define
the convolution of f, g ∈ L2(R) to be:

f ∗ g(t) =

∫
f(s)g(t − s)ds

Then Fourier transform possesses the following pleasant property: it turns convolution into
multiplication.

Proposition. Let f, g ∈ L2(R). Then:

f̂ ∗ g(ω) = f̂(ω)ĝ(ω)

Proof.

f̂ ∗ g(ω) =

∫
f ∗ g(t)e−jωtdt

=

∫ ∫
f(s)g(t − s)e−jωtdsdt

=

∫ ∫
f(s)g(s′)e−jω(s+s′)dsds′ (where s′ = t − s)

=

(∫
f(s)e−jωsds

) (∫
g(s′)e−jωs′

ds′
)

= f̂(ω)ĝ(ω)

Finally, we finish with a convenient (and enlightening) little fact. If we translate our
function and take the Fourier transform, we get a change of phase:

Proposition. Let f ∈ L2(R) and define g(t) = f(t − x). Then:

ĝ(ω) = e−jωxf̂(ω)
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Proof.

ĝ(ω) =

∫
g(t)e−jωtdt

=

∫
f(t − x)e−jωtdt

=

∫
f(s)e−jω(s+x)ds (letting s = t − x)

= e−jωx

∫
f(s)e−jωsds

= e−jωxf̂(ω)
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