
TOPOLOGICAL AUTOMORPHIC FORMS: A FANTASY

MARK BEHRENS

I jotted down some thoughts on bringing Shimura varieties into stable homotopy
theory. I think this sort of idea is in many people’s minds right now. Jack Morava
convinced Paul Goerss to give a talk about Harris and Taylor’s proof of the local
langlands correspondence, hoping to start discussion on how to bring the “simple”
Shimura varieties considered there into homotopy theory. Paul had suggested in
his talk that Jacob Lurie’s newly formed techniques might be applicable to these
simple Shimura varieties, due to the presense of idempotents that give 1-dimensional
summands of the formal groups involved.

These thoughts are an attempt to flesh out Jack’s and Paul’s suggestions in a
simple case. They are really summaries of some discussions with Tyler Lawson,
Mike Hopkins, Bob Kottwitz, Johan de Jong, and Jacob Lurie. To ease the passage
to the “simple” Shimura varieties considered by Harris and Taylor in their proof
of the local Langlands conjecture, in this document I will describe the set-up for
some very simple Shimura varieties that were of relevance to the Langlands story
for GL2. At the end we say very little bit about the outlook for the Kottwitz-
Harris-Taylor Shimura varieties. It should go without saying that this is a very
non-rigorous document. The subject of Shimura varieties is so new to me that
some things I say here might be outright wrong, so beware!

1. Topological Modular forms

For the sake of comparison, what is tmf , and how its constructed? We use
the the modular curve X(1), or more precisely the moduli stack M of generalized
elliptic curves.

1.1. The Hopkins-Miller approach I: K(2)-local TMF . If we only want to
model the moduli stack M near a supersingular point in characteristic p, then
Serre-Tate theory and the Hopkins-Miller theorem does all of the work. We have

TMFK(2) =

 ∏
C supersingular

E(Fp, Ĉ)h Aut(C)

hGal(Fp/Fp)

.

The product ranges over isomorphism classes of supersingular curves defied over
Fp. E(Fp, Ĉ) is the spectrum that the Hopkins-Miller theorem associates to the
formal group Ĉ.

1.2. The Hopkins-Miller approach II: elliptic spectra. An elliptic spectrum
(R,E, φ) consists of the following data.

• An even periodic ring-spectrum R, with associated formal group FR.
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• A generalized elliptic curve E defined over R0, with associated formal group
FE .

• An isomorphism φ : FR → FE .

The spectrum tmf is the connected cover of the homotopy inverse limit

TMF = holim
(R,E,φ)

E∞, étale

R.

The homotopy inverse limit is over a suitable category of elliptic spectra (R,E, φ)
so that R is E∞ and the classifying map C : spec(R0) →M is étale. Hopkins and
Miller needed to show that there are “enough” elliptic spectra so that the homotopy
inverse limit is interesting. They originally did this in the A∞ context, and Goerss
and Hopkins upgraded to E∞.

Let M be the moduli stack of generalized elliptic curves. Define ω to be the
line bundle over M whose fiber over a point corresponding to a generalized elliptic
curve E is given by

ωE = t∗E

where tE is the tangent space at the identity of E. Then there is a spectral sequence

Hs(M, ω⊗t) ⇒ π2t−s(TMF ).

1.3. The Lurie approach: the derived moduli stack. Jacob Lurie modifies
the Hopkins-Miller approach with the introduction of “derived” schemes which are
built out of E∞-ring spectra instead of rings. In this way, he can replace the
unnatural notion of an elliptic curve E defined over the ring R0 with the more
natural notion of a derived elliptic curve E defined over the E∞-ring spectrum R.
A derived elliptic curve E over an E∞ ring spectrum R is a derived scheme

E → spec R

whose underlying ordinary scheme is an elliptic curve over R0. E must also be a
very commutative abelian group object. That is to say, E must be endowed with
the structure of a lift of the functor of points E(A) = HomR(spec(A), E) through
abelian groups, as displayed below.

Topological abelian groups

��
Commutative R-algebras

33hhhhhhhhhh

E(−)
// Spaces

Lurie defines an enhanced elliptic spectrum (R, E , φ) to be the following data.

• An E∞-ring spectrum R, with associated derived formal group FR =
spf RCP∞+ .

• A derived elliptic curve E defined over R, with associated derived formal
group FE .

• An isomorphism φ : FR → FE .

Lurie proves a derived version of Artin’s representablity theorem, and applies it
to the functor

R 7→ {enhanced elliptic spectra (R, E , φ)}
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to produce a representing derived stack Mder. The spectrum TMF is recovered as
the global sections of the structure sheaf Oell (a sheaf of E∞-ring spectra over M).

TMF = Γ(M,Oell)

Hopkins and his collaborators had already produced the sheaf Oell, but their meth-
ods were more ad hoc.

2. From modular curves to Shimura varieties

Milne’s 1979 paper “Points on Shimura varieties mod p” gives a beautiful expo-
sition on the Shimura varieties we describe in this section. It’s short, completely
self-contained, and goes straight to positive characteristic - I heartily recommend
it for the poor topologist trying to figure out what the heck a Shimura variety is.
Let B be the rational indefinite quaternion algebra ramified at the primes

q1, . . . , qm

and fix a maximal order O ⊂ B. Define the discriminant ∆ to be the product
of the qi. Let ∗ be a positive involution on B. Define the affine group scheme
G = GL1(Oop) to have R-points given by

G(R) = (Oop ⊗R)×.

Fix an isomorphism
O ⊗ R ∼= M2(R)

so that ∗ corresponds to the transpose. Under this isomorphism we may regard
GL1(C) as being contained in G(R). The adélic points of G is given by a restricted
product

G(A) = G(R)×
∏
p

′
G(Qp).

Define K to be the subgroup

GL1(C)×
∏
p

G(Zp).

You can the exchange the product above with more arbitrary compact open sub-
groups of the G(Af ), and this corresponds to “level structures”. We choose this K
for simplicity. Consider the adélic quotient

S(C) = G(Q)\G(A)/K.

The resulting complex curve may be given the more familiar description as a quo-
tient of the upper half-plane by a Fuchsian group.

S(C) = Γ\H
Here Γ is the group SL1(O). It turns out that if B is ramified somewhere (i.e. is a
division algebra) then S(C) is a projective complex curve. There are no cusps!

If B is split everywhere (B = M2(Q), O = M2(Z)) then we have Γ = SL2(Z),
so we have

S(C) = SL1(Z)\H = X(1)− cusps.
Therefore S(C) parameterizes elliptic curves over C.

What does S(C) parameterize for more general B? A point of S(C) corresponds
to the data (A, [λ], i), where

• A is a complex 2-dimensional abelian variety.
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• [λ] is a Q-equivalence class of polarization λ : A → A∨.
• i is an inclusion of rings i : O ↪→ End(A) such that the involution ∗ on B

is compatible with the Rosati involution on End0(A).

Remark 2.1. Milne seems to indicate that the weak polarization [λ] is determined
by i. Therefore, it is redundant data.

We briefly explain this terminology. The dual abelian variety A∨ is the abelian
variety Pic0(A). An invertible sheaf L on A gives rise to an isogeny

λL : A → A∨.

This isogeny is described as follows. Given x ∈ A, the invertible sheaf λL(x) ∈ A∨

is the pullback of L under the composite

A = {x} ×A ↪→ A×A
m−→ A

where m is the multiplication map. A polarization is an isogeny λ : A → A∨ of the
form λL for some L.

Two polarizations λ and λ′ are Q-equivalent if, when viewed as being contained
in the ring of quasi-isogenies

Hom0(A,A∨) = Hom(A,A∨)⊗Q

there exists a c ∈ Q× so that λ′ = c · λ. A Q-equivalence class of polarizations is
called a weak polarization.

A polarization λ gives rise to an involution ∗ on End0(A) called the Rosati
involution. Given a quasi-endomorphism α, α∗ is the unique quasi-endomorphism
making the following diagram commute.

A
α∗ //

λ

��

A

λ

��
A∨

α∨
// A∨

The Rosati involution only depends on the Q-equivalence class [λ].
It turns out that the functor

R 7→
{

weakly polarized abelian varieties over R with O multiplication
compatible with the Rosati involution

}
satisfies Artin’s representablity theorem if it is restricted to Z[∆−1] algebras R.
Thus there is a moduli stack S(G,K) of this data defined over Z[∆−1] such that the
complex points of the associated course moduli space are given by S(C).

There are analogs of the modular curves X0(N) where we place level structures
on the abelian varieties. Enough level makes these moduli stacks representable by
schemes.

Note that when B is split and O = M2(Z) then there are commuting idempotents
e1, e2 in O.

e1 =
(

1 0
0 0

)
e2 =

(
0 0
0 1

)
The pairs (A, i) are 2-dimensional abelian varieties with O-multiplication. The
idempotents ei canonically split A as the product of two identical elliptic curves

A ∼= E × E.
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Thus, as expected, S(G,K) in this case is nothing more than the moduli space of
elliptic curves.

3. Characteristic p

3.1. Mod p points. Suppose that p does not divide ∆. Consider a mod p point
of S(G,K). That is, we are given a triple (A, [λ], i) where A is defined over Fp and
possesses O-multiplication. In what follows, we will drop the weak polarization
from the notation.

Let tA be the tangent space of A at the identity, and let A(p) be the p-divisible
group of A. Then there is a short exact sequence of p-divisible groups

0 → A(p)f → A(p) → A(p)et → 0

where A(p)f is the 2-dimensional formal group given by completing A at the iden-
tity, and A(p)et is an étale group scheme given by the p-torsion points of A.

Since p does not divide ∆, B is split at p, and there is an isomorphism

Op = O ⊗ Zp
∼= M2(Zp).

There are thus commuting idempotents e1 and e2 of Op which gives decompositions

tA ∼= (tA)0 ⊕ (tA)0
A(p) ∼= A(p)0 ⊕A(p)0

where (tA)0 and A(p)0 are 1-dimensional! Thus the structure of O multiplication
on A gives rise to a 1-dimensional formal group A(p)f,0.

Milne shows that A is either isogenous to a product of supersingular elliptic
curves or a product of ordinary elliptic curves. There is one supersingular isogeny
class, and there is one “ordinary” isogeny class for each totally imaginary quadratic
extension E/Q in which p splits and which splits B. If A is in the supersingular
isogeny class, then the height of A(p)f,0 is 2 and A(p)et,0 = 0. Otherwise, the height
of A(p)f,0 is 1, and A(p)et,0

∼= Z/p.
It is natural to look at the endomorphisms of A preserving i

O′ = EndO(A).

If A is supersingular, then O′ is a maximal order of the definite rational quaternion
algebra B′ ramified at

p, q1, . . . , qm,∞.

If A is ordinary, O′ is an order of the CM field E corresponding to the isogeny class
of A.

3.2. Deformation theory. Let (A, i) be a mod p point of S(G,K) as in the last
section. Serre-Tate theory says that the category of deformations of A over a
complete local ring with residue field Fp is equivalent to the category deformations
of the p-divisible group A(p). Presumably, the deformations of A which extend the
O multiplication are the same as deformations of the p-divisible O-module A(p).
Since O is split at p, it would seem that this is the same thing as deformations of
the 1-dimensional p-divisible group A(p)0.

Assume that A supersingular. Then A(p)0 is entirely formal and of height 2. Let
Ã(p)0 be the Lubin-Tate universal deformation of A(p)0 over W(Fp)[[u1]]. Serre-
Tate theory gives a deformation Ã of A corresponding to the p-divisible group
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Ã(p)0 ⊕ Ã(p)0. Note that both the O-multiplication on A (and the weak polariza-
tion?) may be extended to Ã because (1) the Lubin-Tate deformation is functorial
and (2) Serre-Tate theory gives an equivalence of categories.

Let Aut(A, i) be the (finite) group of endomorphisms of A which preserve i. It
is the group of units of the maximal order O′. It is also a finite subgroup of the
Morava stabilizer group S2 = (O′p)×.

It would seem that if A is a supersingular point, then a formal neighborhood of
the point (A, i) of S(G,K) is modeled by the stacky quotient

spf(W(Fp)[[u1]])// Aut(A, i)

4. Automorphic forms

Automorphic forms are complex valued functions on G(Q)\G(A) that satisfy
certain conditions. The group G(A) acts on this space of functions by right trans-
lation. We don’t to consider all automorphic forms, at least not yet, just the ones
that are the appropriate generalizations of modular forms.

The “strong approximation theorem” states that the group G(Q) is dense in
G(Af ), where Af is the finite ádeles. It follows that there is a decomposition

G(A) = G(Q)G(R)+G(Ẑ)

where G(R)+ ∼= GL2(R)+ consists of those matrices with positive determinant. We
may therefore write every G(Q)-coset G(Q)g in G(Q)\G(A) in the form

G(Q)g = G(Q)g∞u

for g∞ ∈ G(R)+ and u ∈ G(Ẑ).
Assume that B is split, so that G = GL2. A modular form of weight f of weight

k restricts away from the cusps to a section of a line bundle ω⊗k over

G(Q)\G(A)/K = Γ\H

where Γ = G(Q)∩G(R)+G(Ẑ) = SL2(Z). The fiber of ω over a point corresponding
to an elliptic curve E is given by

ωE = t∗E

where tE is the tangent space at the identity of E.
Given a modular form f(τ) of weight k (defined on the upper half plane) we may

define an automorphic form

φf : G(Q)\G(A) → C.

The function φf applied to a coset G(Q)g = G(Q)g∞u given by

φf (G(Q)g) = f(g∞(i))(det(g∞)−1/2(ci + d))−k

where

g∞ =
(

a b
c d

)
.

The function φf is nearly K-invariant, but not completely. When the action of K
is restricted to the subgroup U(1) < K, the 1 dimensional representation spanned
by φf is of weight k.
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We now move back to the case of a general indefinite quaternion algebra B.
Consider the complex projective curve

S(C) = G(Q)\G(A)/K = Γ\H.

Our isomorphism O ⊗ R ∼= M2(R) gives commuting idempotents e1 and e2 on the
tangent space tA. These idempotents decompose tA into two identical summands
of complex dimension 1

tA = (tA)0 ⊕ (tA)0.
Let ω be the line bundle over S(C) whose fiber over a point corresponding to
(A, [λ], i) is given by

ω(A,[λ],i) = (tA)∗0.
Then we are interested in the subspace A(G, K)k of the space of automorphic forms
on G(A) associated to the global sections

H0(S(C), ω⊗k).

I don’t really have any idea what the topological analog of a general automorphic
form on G(A) is, just the ones that arise from in the manner described above.

4.1. K(2)-local TAF . Here the situation is easy given the Hopkins-Miller theorem,
and our description of S(G,K) near the supersingular locus. We might define K(2)-
local TAF (G, K) by

TAF (G, K)K(2) =

 ∏
(A, i) supersingular

E(Fp, A(p)0)h Aut(A,i)

hGal(Fp/Fp)

.

4.2. p-complete TAF . Assume that p does not divide the discriminant ∆. Let’s
say a p-complete automorphic spectrum of type (G, K) is a tuple (R,A, [λ], i, φ)
consisting of the following data. Fix an isomorphism Op

∼= M2(Zp) and let e1 and
e2 be the corresponding commuting idempotents.

• An p-complete even periodic ring-spectrum R, with associated formal group
FR.

• An abelian variety A defined over R0, with weak polarization [λ], and an
inclusion i : O ↪→ End(A) compatible with the Rosati involution. I am
led to believe that we must also require that the summands ei(tA) of the
tangent space tA are rank 1 locally free R0-modules.

• An isomorphism φ : FR → A(p)f,0.
The spectrum TAF (G, K)p could be defined as the homotopy inverse limit

TAF (G, K)p = holim
(R,A,[λ],i,φ)

p-complete E∞, étale

R.

The homotopy inverse limit should be taken over a suitable category of automorphic
spectra (R,A, [λ], i, φ) so that R is p-complete and E∞, and such that the classifying
map (A, [λ], i) : spec(R0) → S(G,K) is étale. One might expect this spectrum to
have a nice connective cover taf(G, K)p, since the Shimura variety has no cusps!

Define ω to be the line bundle over

S(G,K),p = S(G,K) ⊗Z[∆−1] Zp

whose fiber over a point corresponding to a tuple (A, [λ], i) is given by

ω(A,[λ],i) = e1(tA)∗.
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If there are enough p-complete E∞ étale automorphic spectra, then there will be a
spectral sequence

Hs(S(G,K),p, ω
⊗t) ⇒ π2t−s(TAF (G, K)p).

4.3. TAF over Z[∆−1]. How do get the integral version? Well, let’s invert the
discriminant for now. We’ll try to imitate the definition of S(G,K) over Z[∆−1].

Define an automorphic spectrum of type (G, K) to be a tuple (R,A, [λ], i, φ)
consisting of the following data.

• An even periodic ring-spectrum R, such that ∆ is invertible in R0, with
associated formal group FR.

• An abelian variety A defined over R0, with weak polarization [λ], and an
inclusion i : O ↪→ End(A) compatible with the Rosati involution. I think
we also need that if R′ is an R0-module which splits B, then the associated
summands ei(tA ⊗R0 R′) of the tangent space tA ⊗R0 R′ are rank 1 locally
free R′-modules.

• For each R′ as above, an isomorphism φR′ : FR ⊗R0 R′ → e1(Â⊗R0 R′).

The spectrum TAF (G, K) then would be defined as the homotopy inverse limit

TAF (G, K) = holim
(R,A,[λ],i,φ)

E∞, étale

R.

We’d take taf(G, K) to be the connective cover.
Is there a line bundle ω over S(G,K) whose fiber over a point corresponding to a

tuple (A, [λ], i) (defined over a ring R′ which splits B) is given by

ω(A,[λ],i) = e1(tA)∗?

Then we’d expect a spectral sequence

Hs(S(G,K), ω
⊗t) ⇒ π2t−s(TAF (G, K)).

4.4. Derived Shimura varieties. Of course now it seems natural to follow the
approach of Lurie. A derived abelian variety A over an E∞ ring spectrum R should
be a derived scheme

A → spec R

whose underlying ordinary scheme is an abelian variety over R0. A must also be a
very commutative abelian group object. Would it be enough to have a polarization
on the underlying abelian variety, or would we have to develop some sort of derived
version of polarization?

May as well define enhanced automorphic spectra. Perhaps Lurie’s representablity
theorem applies to the functor

R 7→ {enhanced automorphic spectra of type (G, K)}

to produce a derived Shimura variety S(G,K),der. One would näıvely expect the
spectrum TAF (G, K) to be recovered as the global sections of the structure sheaf.
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5. Looking toward the future

5.1. The K(2)-local sphere. The spectra TAF (G, A)K(2) should be relevant for
a decomposition of the K(2)-local sphere of the nature studied by Goerss, Henn,
Mahowald, and Rezk. The building associated to GL2(Q`) came into play with the
`-adic Tate modules of elliptic curves. The same deal should happen here, except
that we will be looking at summands of the `-adic Tate modules of the Abelian
varieties. Here, ` would have to be coprime to p∆.

Tyler Lawson and I produced, using endomorphisms of elliptic curves, a dense
subgroup of the Morava stabilizer group. Seems that that the same methods should
extend to show that the group

Γ = (O′ ⊗ Z[1/`])×

is dense in the Morava stabilizer group if ` is a topological generator of Z×p . I
haven’t checked all of the details, but at least I know its closure contains the norm
1 p-Sylow subgroup for p > 2.

Mahowald always studies connective covers. In some sense TAF may be better
suited for understanding Mahowald’s computations - we don’t need to add any
cusps.

5.2. The Shimura varieties of Kottwitz, Harris, and Taylor. Harris and
Taylor proved the local Langlands correspondence for GLn by studying the “van-
ishing cycles” cohomology of the Drinfeld moduli of 1-dimensional height n formal
OF -modules, following some conjectures of Carayol. Harris and Taylor studied the
vanishing cycles cohomology group associated to some simple Shimura varieties
originally studied by Kottwitz. These Shimura varieties are less simple then the
ones I talked about, but roughly they correspond to B being an n2 division algebra
with center a CM field E over Q where p splits into w and w′. B is split at w, so
the Barsotti-Tate modules at w split into 1-dimensional summands.

The locus of the associated Shimura variety S of abelian varieties whose Barsotti-
Tate groups at w split into height n summands is zero dimensional. The completion
of S at any of these points gives a universal deformation.

The associated spectra TAFK(n) would be approximations to the K(n)-local
sphere. The whole K(n)-local sphere could be studied using a decomposition of
the type Goerss-Henn-Mahowald-Rezk produced for n = 2. Here, the building for
GLn(Q`) comes into play.

5.3. Jacobians of curves. Gorbounov, Hopkins, and Mahowald studied EOp−1

by considering certain families of curves X whose Jacobian varieties had formal
summands of dimension 1 and height n = p− 1. Ravenel recently generalized this
approach to all chromatic levels of the form n = (p− 1)f (these are precisely the n
for which the the nth Morava stabilizer group has infinite cohomological dimension).

I don’t know how the Jacobian approach is related to the approach of this doc-
ument. I will remark that one advantage to the Jacobian approach is that you get
polynomial equations that you can compute with explicitly. The Shimura varieties
don’t give you this.

The automorphisms of these families of curves act on the 1-dimensional summand
and give rise to finite subgroups of the Morava stabilizer group. The problem is that
at large chromatic levels only a fraction of the p-torsion of the Morava stabilizer
group is accounted for. I’d like to think that the Shimura varieties have a better
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chance to capture all of the p-torsion, or, as I mentioned before, to produce dense
subgroups of the Morava stabilizer group at all chromatic levels. So the Shimura
variety approach may sacrifice computability for power.


