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Abstract. We investigate a dense subgroup Γ of the second Morava stabilizer

group given by a certain group of quasi-isogenies of a supersingular elliptic
curve in characteristic p. The group Γ acts on the Bruhat-Tits building for

GL2(Q`) through its action on the `-adic Tate module. This action has finite

stabilizers, giving a small resolution for the homotopy fixed point spectrum
(EhΓ

2 )hGal by spectra of topological modular forms. Here, E2 is a version of

Morava E-theory and Gal = Gal(Fp/Fp).
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1. Introduction

1.1. Background. Fix a prime p. One systematic way of understanding the p-
local stable homotopy groups of a finite complex X is to study its chromatic tower,
given by the inverse system

XE(0) ← XE(1) ← XE(2) ← · · · .

Here XE(n) is Bousfield localization with respect to the Johnson-Wilson spectrum
E(n). The chromatic convergence theorem of Hopkins and Ravenel [29] states that
this tower converges in the sense that

X ' holim
n

XE(n)

for all p-local finite complexes X, and that the induced filtration on the homotopy
groups of X is exhaustive. The chromatic program for understanding the stable
homotopy of X begins with understanding the filtration quotients of this tower.
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This is equivalent to studying the localizations XK(n) with respect to Morava K-
theory. A very nice summary of this process may be found in the introduction of
[15].

We confine our attention to the case X = S, the sphere spectrum. Morava [26]
developed a method of understanding the layers SK(n), which was strengthened by
work of Hopkins-Miller [30], Goerss-Hopkins [16], Devinatz-Hopkins [12], and Davis
[9]. We briefly summarize their work. Let En be (maximally unramified) Morava
E-theory. It is a complex orientable spectrum whose associated formal group is the
Lubin-Tate universal deformation of the Honda height n formal group Hn over Fp.
Our notation is unconventional: En is usually taken with respect to the finite field
Fpn instead. We choose to work over Fp because any two height n formal groups
are isomorphic over Fp [28, A2.2.11]. Let Sn denote the Morava stabilizer group
Aut(Hn). Let Gn denote the larger group of automorphisms which are allowed to
act non-trivially on the ground field Fp

Gn = Aut/Fp
(Hn) = Sn oGal.

Here Gal is the Galois group Gal(Fp/Fp). The spectrum En is an E∞-ring spectrum
which is a continuous Gn-spectrum, and there is an equivalence

SK(n) ' EhGn
n ' (EhSn

n )hGal.

Computationally, it has proven easier to work with homotopy fixed point spectra
EhFn for finite subgroups F of the Morava stabilizer group. For example, when
n = 1, the p-complete real K-theory spectrum KOp is equivalent to the homotopy
fixed point spectrum (EhC2

1 )hGal. Choose ` to be a topological generator of the
group Z×p /{±1}. The J-theory spectrum is given as the fiber

J → KOp
ψ`−1−−−→ KOp

where ψ` is the `th Adams operation. Adams-Baird and Ravenel [5], [27] proved
that there is an equivalence SK(1) ' J . Thus the K(1)-local sphere admits a
complete description in terms of K-theory.

Goerss, Henn, Mahowald, and Rezk [15] gave a similar decomposition of SK(2)

at the prime 3. In their work, certain spectra related to the Hopkins-Miller spec-
trum of topological modular forms (TMF ) played the role that K-theory played in
chromatic level 1. This decomposition shed considerable light on the very difficult
K(2)-local computations of Shimomura and Wang [33]. However, the decompo-
sition was produced by means of obstruction theory and computation, and the
attaching maps in their decomposition were not identified explicitly. The decom-
position was also specific to the prime 3.

1.2. A higher analog of the J-theory spectrum. It is natural to ask if there
is an analog of the J-theory spectrum for chromatic level 2 which is built out
topological modular forms in a manner similar to the way in which the J-theory
spectrum is built out of K-theory. In [2], motivated by [15] and [24], we introduced
a spectrum Q(`) as the totalization of a semi-cosimplicial spectrum

(1.2.1) TMF ⇒ TMF × TMF 0(`) V TMF 0(`).

The spectrum TMF is the Hopkins-Miller spectrum of topological modular forms,
and the spectrum TMF 0(`) is an analogous spectrum associated to the congruence
subgroup Γ0(`) of SL2(Z). Diagram 1.2.1 has a very natural abstract construction
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in terms of moduli of certain diagrams of isogenies of elliptic curves. We refer the
reader to [2] for this construction, which relies on unpublished work of Hopkins,
Miller, and their collaborators. However, in [2] we also gave a K(2)-local con-
struction for the case p = 3 and ` = 2 which only used the Goerss-Hopkins-Miller
Theorem. In Section 6.1 we extend this K(2)-local construction to all primes p and
`.

The J-theory spectrum may also be regarded as the homotopy fixed point spec-
trum

J = (Eh±`
Z

1 )hGal

where ±`Z is the dense subgroup of the Morava stabilizer group S1
∼= Z×p generated

by `. The dense subgroup ±`Z is the subgroup of the group of automorphisms of
the multiplicative formal group Ĝm which is generated by the quasi-isogenies of the
multiplicative group Gm of degree a power of `.

In this paper we aim to give a similar homotopy fixed point construction of the
spectrum Q(`)K(2). To this end we define a subgroup Γ of S2 generated by isogenies
of a supersingular elliptic curve of degree a power of `. For appropriate choices of
`, Tyler Lawson and the author [4] have shown that this subgroup is dense in S2

(it is dense in an index 2 subgroup if p = 2). There is an extension ΓGal of Γ of the
form

1→ Γ→ ΓGal → σZ → 1
where σZ is the dense subgroup of Gal generated by the Frobenius. The group ΓGal
is dense in G2 (respectively, an index 2 subgroup if p = 2). Let E(Γ) denote the
homotopy fixed point spectrum

E(Γ) = EhΓGal
2 .

Because ΓGal is dense in G2, one expects that E(Γ) is closely related to the the
K(2)-local sphere SK(2) = EhG2

2 . The precise conjecture is explained in Section 1.6.
We shall discuss the following.
(1) The group Γ acts on the Bruhat-Tits building for GL2(Q`) with finite sta-

bilizers.
(2) This action gives a presentation of the group Γ in terms of the category of

supersingular curves over Fp.
(3) The action of Γ on the building induces a decomposition of E(Γ) in terms

of K(2)-local topological modular forms.
(4) This decomposition induces an equivalence Q(`)K(2) ' E(Γ).

The remainder of the introduction is devoted to a more detailed discussion the
results and organization of this paper.

Remark 1.2.2. There is work by other authors which bears some similarity to the
contents of this paper.

• Gorbounov, Mahowald, and Symonds [17] produced dense amalgamated
products of finite subgroups of the Morava stabilizer group Sp−1. Our dense
subgroups appear to differ from theirs in the overlapping case of p = 3.
• In the case of p = 3, the computations of Gorbounov, Siegel, and Symonds

[18] reflect algebraically an analog of Conjecture 1.6.1.
• Andrew Baker [1] has shown that for p > 3 the E2-term of the ANSS for
SK(2) can be computed as the cohomology of the p-completed groupoid of
supersingular elliptic curves and isogenies.
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1.3. The subgroup Γ. For the remainder of this paper assume we are given a
fixed supersingular elliptic curve C over Fp and a prime ` coprime to p. Our work
will turn out to be independent of the choice of supersingular curve — the choice is
tantamount to choosing a basepoint in a connected category supersingular curves.
For convenience we shall insist that C admits a definition over Fp (for every prime
p such a supersingular curve exists [36]).

Since C is supersingular, the formal completion C∧ of C at the identity is isomor-
phic to the Honda height 2 formal group H2. One may regard C∧ as the p-divisible
group C[p∞].

Our intention is to study the simultaneous action of the endomorphism ring
End(C) on the p-torsion and `-torsion of C. Let Γ ⊂ End(C)⊗Q be the group of
quasi-isogenies of C with degree equal to a power of `. Then we have the following
diagram.
(1.3.1)

M2(Z`) ∼= End(C[`∞])
� _

��

End(C)? _

(−)∧`

oo � �

(−)∧p

//
� _

��

End(C[p∞])

M2(Q`) End(C)[1/`]? _oo
' �

44jjjjjjjjjjjjjjjjj

GL2(Q`)
� ?

OO

Γ? _oo
� ?

OO

� �

dense
// Aut(C[p∞]) = S2

?�

OO

Tate [35],[37] proved that the top inclusions are actually the ` and p-completions
of the endomorphism ring, respectively. In [4], we proved the following theorem.

Theorem 1.3.2 (Behrens-Lawson [4]). Let ` be a topological generator of Z×p
(Z×2 /{±1} if p = 2). For p > 2, the group Γ is dense in S2. For p = 2, the group Γ
is dense in the index 2 subgroup S̃2 which is the kernel of the composite

S2
N−→ Z×2 → (Z/8×)/{1, `}.

1.4. The building. We shall denote Xss to be the set of isomorphism classes of
supersingular elliptic curves over Fp. Let Xss

0 (`) be the set of isomorphism classes
of pairs (C ′,H) where C ′ is a supersingular elliptic curve and H is a Γ0(`)-structure
(a subgroup of order ` contained in C ′(Fp)). Given a pair (C ′,H) ∈ Xss

0 (`), let
Aut(C ′,H) be the group of automorphisms φ of C ′ such that φ(H) = H.

The group Γ naturally acts on the `-adic Tate module V`(C), giving an inclusion
into the group GL2(Q`). Let J ′ be the Bruhat-Tits building for GL2(Q`). J ′ is a
2-dimensional contractible simplicial complex on which GL2(Q`) acts. The induced
Γ action on J ′ has finite stabilizers, which are given naturally by certain groups
automorphisms of supersingular elliptic curves.
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Theorem (Theorem 3.4.4). The building J ′ is Γ-equivariantly homeomorphic to
the geometric realization of a Γ-equivariant semi-simplicial complex J ′•. The sim-
plices of J ′• are given as follows:

J ′0 =
∐

C′∈Xss

Γ/Aut(C ′),

J ′1 =
∐

(C′,H)∈Xss
0 (`)

Γ/Aut(C ′,H) q
∐

C′∈Xss

Γ/Aut(C ′),

J ′2 =
∐

(C′,H)∈Xss
0 (`)

Γ/Aut(C ′,H).

1.5. A resolution of E(Γ). The semi-simplicial complex of Theorem 3.4.4 gives
rise to the following semi-cosimplicial construction.

Proposition (Proposition 6.2.6). There is a semi-cosimplicial E∞-ring spectrum
of the form

∏
C′∈Xss

E
hAut(C′)
2 ⇒

∏
C′∈Xss

E
hAut(C′)
2

×∏
(C′,H)∈Xss

0 (`)

E
hAut(C′,H)
2

V
∏

(C′,H)∈Xss
0 (`)

E
hAut(C′,H)
2

which totalizes to give the homotopy fixed point spectrum EhΓ2 .

As we shall explain in Section 5, the K(2)-localizations of TMF and TMF 0(`)
are given as products of the following homotopy fixed point spectra:

TMFK(2) '

( ∏
C′∈Xss

E
hAut(C′)
2

)hGal
,

TMF 0(`)K(2) '

 ∏
(C′,H)∈Xss

0 (`)

E
hAut(C′,H)
2

hGal

.

These constructions, due to Hopkins, Miller, and their collaborators, have not yet
appeared in the literature. Section 5 may be regarded as a self-contained construc-
tion of the K(2)-local versions of these spectra of topological modular forms.

It turns out, upon taking Galois homotopy fixed points, that the semi-cosimplicial
spectrum given by Proposition 6.2.6 is theK(2)-localization of the semi-cosimplicial
spectrum of Diagram (1.2.1) defining Q(`). We therefore have the following theo-
rem.

Theorem (Theorem 6.2.1). The spectra Q(`)K(2) and E(Γ) are naturally equiva-
lent.

We also produce a decomposition of EhΓ
1
Gal

2 (Theorem 6.3.1), where Γ1
Gal is the

subgroup of Γ consisting of elements of norm 1.

1.6. Relation to K(2)-local sphere. While the spectrum J is equivalent to the
K(1)-local sphere, it appears that the K(2)-local sphere is built out of the spectrum
Q(`)K(2) and a spectrum dual to Q(`)K(2). More precisely, we make the following
conjecture.
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Conjecture 1.6.1. Let ` be a generator of Z×p (respectively Z×2 /{±1} for p = 2).
Then if p is odd, the sequence

(1.6.2) DK(2)Q(`)
Dη−−→ SK(2)

η−→ Q(`)K(2)

is a cofiber sequence. Here η is theK(2)-localization of the unit of the ring spectrum
Q(`), and DK(2) denotes the Spanier-Whitehead dual in the K(2)-local category.

At the prime 2, let S̃ denote the homotopy fixed point spectrum EhG̃2
2 . Here,

G̃2 = S̃2oGal is an index 2 subgroup of G2, where S̃2 is the group of Theorem 1.3.2.
Then there is a cofiber sequence

DS̃,K(2)Q(`)
Dη−−→ S̃

η−→ Q(`)K(2)

where DS̃,K(2) denotes the Spanier-Whitehead dual in the category of K(2)-local

S̃-modules.

Remark 1.6.3. There is an equivalence

SK(2) ' S̃hC2 .

The generator of the group C2 lifts to a torsion-free element of the group G2.
Therefore, the K(2)-local sphere at the prime 2 differs mildly from the spectrum
S̃.

Remark 1.6.4. Conjecture 1.6.1 hypothesizes that the sequence (1.6.2)extends to
a cofiber sequence. There are possibly many different extensions, and the lack
of a natural candidate represents a major gap in our understanding of K(2)-local
homotopy theory.

The intuition that something like Conjecture 1.6.1 should be true is due to Mark
Mahowald. In [2], we proved Conjecture 1.6.1 in the case p = 3 and ` = 2. The
author intends to combine Theorem 1.3.2 with Theorem 6.2.1 to prove a version of
Conjecture 1.6.1 for p > 3 in a future paper.

1.7. Organization of the paper. In Section 2, we describe the ring of endomor-
phisms of the supersingular curve C, and describe its action on the formal group
of C and the `-adic Tate module of C. We define the group Γ and show that it
is may be viewed as an `-arithmetic group associated to a form of GL2. We also
describe an SL2-variant, and define an associated dense subgroup Γ1 of the norm
1 subgroup Sl2 ⊂ S2.

In Section 3, we introduce the building J ′ for GL2(Q`) from the point of view of
Z`-lattices in Q2

` . We then translate this description to one in terms of subgroups
of C using the Weil pairing. We immediately deduce the Γ-equivariant structure of
J ′.

In Section 4, we introduce the building (tree) for SL2(Q`) and run a similar
analysis to that of Section 3, with the group Γ replaced by its norm 1 counterpart
Γ1. We deduce amalgamation formulas for Γ1 using Bass-Serre theory.

We begin Section 5 with a review of the Goerss-Hopkins-Miller functor, and
a technical discussion of the homotopy fixed point construction of Devinatz and
Hopkins. We then give an exposition of the construction of the spectra TMFK(2)

and TMF 0(`)K(2) of Goerss, Hopkins, Miller and their collaborators.
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In Section 6, we give a K(2)-local construction of the spectrum Q(`). We then
show that this spectrum is naturally equivalent to the spectrum E(Γ). We end by
describing a variant where the group Γ is replaced by the norm 1 subgroup Γ1.

Acknowledgments. The author would like to thank Daniel Davis, Paul Goerss,
Hans-Werner Henn, Mike Hopkins, Johan de Jong, Tyler Lawson, Mark Mahowald,
Cathy O’Neil, Charles Rezk, and John Rognes. This paper would not have materi-
alized without the generosity with which they shared their mathematical knowledge
and ideas.

2. The ring of endomorphisms of C

Let End(C) be the ring of endomorphisms of C defined over the algebraic closure
Fp. Let D be the ring of quasi-isogenies

D = End0(C) = End(C)⊗Q.

Because C is supersingular, D is the quaternion algebra over Q ramified at p and
∞ [34]. The subring End(C) ⊂ D is a maximal order. For v a valuation, let
Dv = D⊗Q Qv be the completion of D at v. We shall recall in this section how the
elliptic curve C gives a very explicit description of these local algebras.

2.1. The `-torsion of C. For any prime ` different from p, there is a non-canonical
isomorphism of groups

C[`∞] ∼= Z/`∞ × Z/`∞.
Let T`(C) be the `-adic Tate module. It is the inverse limit of the inverse system

C[`]
[`]←− C[`2]

[`]←− C[`3]
[`]←− · · · .

The Z`-module T`(C) is free of rank 2. Since every endomorphism of C restricts to
an endomorphism of C[`k], we see that T`(C) is a module over the ring End(C). We
recall the following fundamental theorem of Tate (the case where A is an elliptic
curve, as well as Corollary 2.1.2, may be deduced from the work of Deuring [10]).

Theorem 2.1.1 (Tate [35]). Let A is an abelian variety over the finite field Fq.
Then the natural map

End(A)⊗ Z` → EndZ`[Frobrel
q ](T`(A))

is an isomorphism, where Frobrelq is the endomorphism induced by the qth relative
Frobenius.

For supersingular elliptic curves C ′, some power of the relative Frobenius will lie
in the center of End(T`(C ′)), so we have the following corollary.

Corollary 2.1.2. Let C ′ be a supersingular elliptic curve over Fp. Then the natural
map

End(C ′)⊗ Z` → EndZ`
(T`(C ′))

is an isomorphism.

Corollary 2.1.3. The algebra D` is split (isomorphic to M2(Q`)).

The Tate module may be equated with the Pontryagin dual of the `-torsion
subgroup C[`∞] as follows.
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Proposition 2.1.4. The Weil pairing induces a Galois equivariant isomorphism

ẽ : T`(C)→ Hom(C[`∞], µ`∞) = C[`∞]∗

where µ`∞ is the `-torsion in the multiplicative group F×p , and the Galois group
acts by conjugation on Hom(C[`∞], µ`∞).

Proof. Recall that the Weil pairing is a bilinear Galois equivariant non-degenerate
pairing

e`k : C[`k]× C[`k]→ µ`k .

Non-degeneracy implies that the adjoint homomorphism is an isomorphism.

ẽ`k : C[`k]
∼=−→ Hom(C[`k], µ`k)

x 7→ e`k(x,−)

One of the properties of the Weil pairing is that the following diagram commutes
[34, III.8.1]

C[`k+1]
ẽ

lk+1 //

[`]

��

Hom(C[`k+1], µ`k+1)

ι∗

��
C[`k]

ẽ
lk // Hom(C[`k], µ`k)

where ι : C[`k] ↪→ C[`k+1] is the inclusion. The isomorphism ẽ is the composite

T`(C) = lim
k
C[`k]

∼=−→ lim
k

Hom(C[`k], µ`k)
∼=−→ lim

k
Hom(C[`k], µ`∞)

∼=−→ Hom(colim
k

C[`k], µ`∞)
∼=−→ Hom(C[`∞], µ`∞).

�

The isomorphism ẽ induces an End(C)-module structure on Hom(C[`∞], µ`∞).
This action is given explicitly in the following lemma.

Lemma 2.1.5. Let α be an element of C[`∞]∗ = Hom(C[`∞], µ`∞), and let φ be
an endomorphism of C. Then the action of φ on α is given by pre-composition

φ · α = α ◦ φ̂

where φ̂ is the dual isogeny.

Proof. This is immediate from the following ajointness property of the Weil pairing
[34, III.8.2]. For x and y in C[`k], we have

e`k(φ(x), y) = e`k(x, φ̂(y)).

�
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2.2. The p-torsion of C. Because C is supersingular, it has no non-trivial p-
torsion points. The p-divisible group C[p∞] is entirely formal, meaning that it
coincides with the height 2 formal group C∧.

The endomorphism ring of C∧ is the maximal order of the Qp-division algebra
Dp,1/2 of Hasse invariant 1/2. The following theorem is due to Tate.

Theorem 2.2.1 (Tate [37]). The natural map

End(C)⊗ Zp → End(C[p∞]) = End(C∧)

is an isomorphism.

Corollary 2.2.2. The algebra Dp is non-split (isomorphic to Dp,1/2).

Remark 2.2.3. The fundamental exact sequence of class field theory implies that
the local invariants of D must add to zero. Therefore, the quaternion algebra D
must ramify at infinity, giving an isomorphism

D∞ ∼= H.

2.3. The reduced norm. Let R be a ring. Consider the degree map

deg : End(C)→ Z.

If we choose an additive basis of End(C), then the degree map is expressed by a
degree 2 polynomial in 4 variables. The degree map extends multiplicatively to a
reduced norm

NR = deg ⊗R : End(C)⊗R→ R.

In particular, NQ coincides with the reduced norm of the quaternion algebra D.

2.4. The group scheme G. The various groups which appear in Diagram (1.3.1)
are conveniently given as the R-points of an affine group scheme G for various R.
Define G to be the scheme whose R-points are given by

G(R) = (End(C)⊗R)×

= {x ∈ End(C)⊗R : NR(x) ∈ R×}.

This functor is represented by an affine scheme because End(C) is free abelian and
the reduced norm is given by a polynomial.

Corollary 2.1.2 and Theorem 2.2.1 identify the R points of G for various R.

Proposition 2.4.1. We have the following values of the functor G(−) where ` is
prime to p:

G(Z) = Aut(C),

G(Q) = D×,

G(Z`) = Aut(C[`∞]) = GL(T`(C)) ∼= GL2(Z`),
G(Q`) = GL(T`(C)⊗Q) ∼= GL2(Q`),

G(Zp) = Aut(C∧) = S2,

G(Qp) = D×
p,1/2,

G(R) = H×.
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2.5. The group Γ. We now fix ` to be a topological generator of the group Z×p
(respectively Z×2 /{±1}). Define End`(C) to be the monoid of endomorphisms of C
with degree a power of `. Let Γ be the group completion of this monoid.

Lemma 2.5.1. The group Γ is given by inverting the element [`] of the monoid
End`(C). That is to say, the natural map

End`(C)[`−1]→ Γ

is an isomorphism.

Proof. We simply need to show that End`(C)[`−1] contains inverses for every φ ∈
End`(C). If φ has degree `k, then the dual isogeny φ̂ has the property [34, III.6.2]

φφ̂ = φ̂φ = [`k].

Therefore, the element `−k · φ̂ ∈ End`(C)[`−1] is an inverse for φ. �

The group Γ is therefore the group of quasi-isogenies of C with degree a power
of `. Alternatively, Γ is given by G as

Γ = G(Z[1/`]).

There are inclusions

Γ ↪→ G(Q`) ∼= GL2(Q`),

Γ ↪→ G(Zp) = S2

induced by the inclusions of the ring Z[1/`] into Q` and Zp. Theorem 1.3.2 says
that for ` chosen as above, Γ is dense in S2 (respectively S̃2 for p = 2).

2.6. The kernel of the reduced norm. Define the affine group scheme G1 to be
the kernel of reduced norm

G1 → G
N−→ Gm.

The R-points of G1 are given by

G1(R) = {x ∈ End(C)⊗R : NR(x) = 1}.

The Zp-points give the closed subgroup

G1(Zp) = Sl2

of S2. We warn the reader that this group differs from the group S1
2 of [15] and

[2] in that we have not projected out the Teichmüller lift of F×p in Z×p . There is
therefore a short exact sequence

1→ Sl2 → S1
2 → F×p → 1.

We define Γ1 to be the group

Γ1 = G1(Z[1/`]).

The group Γ1 is dense in Sl2 [4].
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2.7. Extending by the Galois group. Let Gal ∼= Ẑ be the Galois group of Fp
over Fp. It is generated by the pth power Frobenius

σ : Fp → Fp.

In this section we will introduce compatible actions of Gal on all of our endomor-
phism rings.

Recall that given a scheme X over Fp, there are three different Frobenius mor-
phisms, given by the following diagram

X

Frobrel
p

HHH
H

$$HHH

Frobtot
p

''

��

X(p)
Frobp

//

��

X

��
spec(Fp)

σ∗
// spec(Fp)

where the scheme X(p) is the pullback of X over σ∗. The morphism Frobrelp is the
relative Frobenius, and Frobtotp is the total Frobenius. If X = Y ⊗Fp

Fp, for a scheme
Y over Fp, then there is a canonical isomorphism X ∼= X(p). In this case, Frobp is
an automorphism of X that covers the automorphism σ of Fp.

For each C ′ ∈ Xss, let σ∗C ′ ∈ Xss be the target of the map Frobp whose source
is C ′:

Frobp : C ′ → σ∗C
′.

Since the curve C was assumed to be defined over Fp, we have σ∗C = C and Frobp
takes the form

Frobp : C → C.

For each φ ∈ End(C), the Frobenius σ acts on φ by

σ∗φ = Frobp φFrob−1
p ∈ End(C).

Now if φ arises from an isogeny defined over Fpr , then we have (σ∗)rφ = φ. We
conclude that we get an induced continuous action of Gal on End(C) by ring
homomorphisms. (To be precise, this really should be regarded as an action of
Galop, since iterates of Frobp covers the action of Galop on spec(Fp), but since Gal
is abelian, we will ignore this minor point.)

Define End/Fp
(C) to be the completed twisted group ring

End/Fp
(C) = End(C)[[Gal]]

= lim
r

End(C)[Gal(Fpr/Fp)].

The ring End/Fp
(C) consists of endomorphisms of C which do not cover the identity

on Fp.
The automorphism Frobp : C → C does not induce a map on Fp-points, because

it is not a morphism of schemes over Fp. The relative Frobenius is not an automor-
phism of schemes (since it is not invertible), but it does induce an automorphism
on Fp-points

Frobrelp : C(Fp)→ C(Fp).
The following lemma is easily proven using local coordinates.
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Lemma 2.7.1. Let φ be an element of End(C). Then, on Fp-points, the endomor-
phism σ∗φ is given by the composite

σ∗φ : C(Fp)
(Frobrel

p )−1

−−−−−−−→ C(Fp)
φ−→ C(Fp)

Frobrel
p−−−−−→ C(Fp).

Let σZ be the dense subgroup of Gal generated by σ. The action of σZ on End(C)
by ring automorphisms induces an action of σZ on Γ by group automorphisms. Since
the norm map is invariant under this action, the action of Gal restricts to the norm
1 subgroup Γ1. These actions give rise to extensions

ΓGal = Γ o σZ,

Γ1
Gal = Γ1 o σZ.

We have containments

Γ1
Gal ⊂ ΓGal ⊂ (End/Fp

(C)[1/`])×.

In the last containment, the element σ of Gal gets mapped to the automorphism
Frobp ∈ End/Fp

(C).
The Tate module T`(C) = limn C[`n] inherits a Galois action through the action

of Frobrelp , and conjugation by Frobrelp induces a Galois action on EndZ`
(T`(C)).

Lemma 2.7.1 implies the following corollary.

Corollary 2.7.2. The natural map

End(C)→ EndZ`
(T`(C))

is Galois equivariant.

In a manner completely analogous to the case of End(C), we may define an action
of Gal on End(Ĉ) by conjugation with the automorphism Frobp. The extended
Morava stabilizer group is defined by this action:

G2 = S2 oGal = Aut/Fp
(Ĉ).

The following lemma is clear.

Lemma 2.7.3. The natural map

End(C)→ End(Ĉ)

is Galois equivariant.

Thus the inclusion Γ ↪→ S2 extends to an inclusion

ΓGal ↪→ G2.

Theorem 1.3.2 implies the following proposition.

Proposition 2.7.4. The group ΓGal is dense in G2 (respectively, an index 2 sub-
group if p = 2).
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3. The building for GL2(Q`)

3.1. Construction using lattices. Let V be a Q` vector space of dimension 2.
The Bruhat-Tits building for GL(V ) is a contractible 2-dimensional simplicial com-
plex J ′(V ) on which GL(V ) naturally acts [7].

A lattice L of V is a rank 2 free Z`-submodule such that the V = Q ⊗ L. The
complex J ′ = J ′(V ) is the geometric realization of a semisimplicial set

J ′0 ⇐ J ′1 W J ′2
where the sets J ′i are given as the following sets of flags of lattices in V .

J ′0 = {L0 : L0 a lattice in V },
J ′1 = {L0 < L1 : L1/L0

∼= Z/` or Z/`× Z/`},
J ′2 = {L0 < L1 < L2 : L1/L0

∼= Z/` and L2/L0
∼= Z/`× Z/`}.

The ith face maps are given by deleting the ith terms of the flags. This semisim-
plicial set is GL(V ) equivariant with the group acting by permuting the flags.

We give a description of the underlying topological space of J ′. Let J be the
`+1-regular tree (the building for SL(V )). It is the infinite tree where every vertex
has valence `+ 1.

Proposition 3.1.1 (See, for instance, [6]). The building J ′ is homeomorphic to
J × R. In particular, it is contractible.

3.2. Lattices and virtual subgroups. We now fix V to be the 2-dimensional
Q`-vector space

V = V`(C) = T`(C)⊗Q.
We shall give a different perspective of the building J ′(V`(C)) which is more con-
venient for understanding the action of the subgroup Γ of GL(V`(C)). The lattices
of the previous section will be replaced with certain generalized subgroups of the
group C[`∞], which we shall refer to as virtual subgroups. These should be thought
of as the kernels of certain quasi-isogenies. In this section we define the set of vir-
tual subgroups of C[`∞], and show that they are in bijective correspondence with
the set of lattices in V`(C).

Let Sub`(C) be the set of finite subgroups of C[`∞]. The set Sub`(C) carries a
natural action of the monoid End`(C) (Section 2.5). Namely, given an endomor-
phism φ in End`(C), let φ act on Sub`(C) by

φ : H 7→ φ̂−1(H).

The inverse image φ̂−1(H) is again a finite subgroup of C[`∞]. The order of the
kernel of φ̂ is the degree

deg(φ̂) = deg(φ)
which is a power of `.

Observe that the submonoid of (`k)th power maps

[`N] = {[`k] : k ∈ N} ⊂ End`(C)

acts freely on Sub`(C). We define the set of virtual subgroups of C[`∞] to be the
the set

Sub0
`(C) = Sub`(C)[`−1] = {[`k] ·H : k ∈ Z,H ∈ Sub`(C)}



14 MARK BEHRENS

where we have inverted the action of [`]. Because the group Γ is given by inverting
` in the monoid End`(C) (Lemma 2.5.1), we see that the action of End`(C) on
Sub0

`(C) extends to an action of the group Γ. Explicitly, for a quasi-isogeny ψ = `kφ

and a virtual subgroupH = `k
′
H̃, where φ ∈ End`(C) and H̃ ∈ Sub`(C), this action

is given by

ψ ·H = ψ̂−1(H) := [`k+k
′
] · φ̂−1(H̃).

As described in Section 2.7, the set Sub`(C) possesses a natural Galois action
through the action of Frobrelp on C[`∞]

σ ·H = Frobrelp (H)

and this action extends to Sub0
`(C). By Lemma 2.7.1, this action is compatible

with the Galois action on Γ, giving Sub0
`(C) the structure of a ΓGal-set.

The cardinality map

ord : Sub`(C)→ `N,

which takes a subgroup to its order, extends to a map

ord : Sub0
`(C)→ `Z.

This map is Γ-equivariant, where φ ∈ Γ acts on the right-hand side by multiplication
by the degree N(φ).

Let L(V`(C)) be the set of lattices in V`(C). It is a Γ-set under the inclusion
Γ ↪→ GL(V`(C)), and the compatible Galois action (Section 2.7) induces a ΓGal-
action on L(V`(C)).

Proposition 3.2.1. There is a ΓGal-equivariant isomorphism

κ : L(V`(C))→ Sub0
`(C).

Proof. The map κ is the composite

κ : L(V`(C)) ẽ−→ L(C[`∞]∗ ⊗Q) ker−−→ Sub0
`(C)

where ẽ is the Galois equivariant isomorphism of Proposition 2.1.4, under which
C[`∞]∗ inherits the Γ action given in Lemma 2.1.5. We describe the map ker. If
we are given a lattice L ⊂ C[`∞]∗ ⊗ Q which is actually contained in C[`∞]∗, we
define ker(L) to be the subgroup of C given by

ker(L) =
⋂
α∈L

kerα ∈ Sub`(C).

If L is a general lattice in C[`∞]∗ ⊗ Q, then there exists a k such that `kL is
contained in C[`∞]∗. Define ker(L) to be the virtual subgroup

ker(L) = [`−k] · ker(`kL).

This is easily seen to be independent of the choice of k.
In order to show that ker is Γ-equivariant, it suffices to check the Γ-equivariance

on elements φ of Γ contained in End`(C) and on lattices contained in C[`∞]∗. We
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then have

ker(φ · L) = ker({α ◦ φ̂ : α ∈ L})

=
⋂
α∈L

ker(α ◦ φ̂)

=
⋂
α∈L

φ̂−1(ker(α))

= φ̂−1(ker(L))

= φ · ker(L).

The Galois equivariance of ker is easily verified:

ker(σ · L) =
⋂
α∈L

ker(Frobrelp ◦α ◦ (Frobrelp )−1)

=
⋂
α∈L

ker(α ◦ (Frobrelp )−1)

=
⋂
α∈L

Frobrelp (kerα)

= Frobrelp (ker(L))

= σ · ker(L).

To see that the map ker is a bijection, we construct an inverse. Given a finite
subgroup H of C[`∞], define LH to be the subgroup of C[`∞]∗ given by

LH = {α ∈ C[`∞]∗ : α(H) = 1}.

We claim that LH is a lattice, that is, that the inclusion

LH ⊗Q ↪→ C[`∞]∗ ⊗Q

is a bijection. It suffices to show that there exists a positive integer k such that
C[`∞]∗ is contained in `−kLH , or equivalently, such that `kC[`∞]∗ is contained in
LH . This is accomplished by choosing k such that H is contained in the `k torsion
of C. The mapping H 7→ LH extends to a map

Sub0
`(C)→ L(C[`∞]∗ ⊗Q)

which is inverse to the map ker. �

Suppose that H = [`k] · H̃ and H ′ = [`k
′
] · H̃ ′ are virtual subgroups of C[`∞], for

H̃, H̃ ′ ∈ Sub`(C). We may assume that k = k′. We shall say that H is contained
in H ′ and write

H ≤ H ′

if H̃ is contained in H̃ ′. Define the quotient to be

H ′/H = H̃ ′/H̃.

Observe that this depends on the choice of k, but any two choices of k will give
canonically isomorphic quotients.

Lemma 3.2.2. Suppose that L0 ≤ L1 are lattices in V`(C). Then there is a
containment

κ(L1) ≤ κ(L0)
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of virtual subgroups and a (non-canonical) isomorphism

L1/L0
∼= κ(L0)/κ(L1)

between the quotients.

Proof. Let the lattices ẽ(Li) ⊂ C[`∞]∗ ⊗ Q be the images of the lattices Li under
the map ẽ of Proposition 2.1.4. We may as well assume that the lattices ẽ(Li) are
contained in C[`∞]∗. The subgroups κ(Li) are the kernels of the dual projections

0→ κ(Li)→ C[`∞]→ ẽ(Li)∗ → 0.

There are therefore isomorphisms

(L1/L0)∗ ∼= ker(L∗1 � L∗0) ∼= κ(L0)/κ(L1)

using the exactness of the Pontryagin dual and the 3 × 3 lemma. Since L1/L0 is
finite, it is non-canonically isomorphic to its Pontryagin dual (L1/L0)∗. �

3.3. Construction of J ′ using virtual subgroups. The map κ of Proposi-
tion 3.2.1 and Lemma 3.2.2 gives the following alternative description of the sets
of simplices in the semi-simplicial set

J ′0 ⇐ J ′1 W J ′2
in terms of flags of virtual subgroups of C[`∞]:

J ′0 = {H0 : H0 a virtual subgroup of C[`∞]},
J ′1 = {H1 < H0 : H0/H1

∼= Z/` or Z/`× Z/`},
J ′2 = {H2 < H1 < H0 : H1/H2

∼= Z/` andH0/H2
∼= Z/`× Z/`}.

The ith face maps are given by deleting the ith terms of the flags. This semisimpli-
cial set is Γ equivariant with the group acting by permuting the flags. This action
agrees with the action given by the inclusion Γ ↪→ GL(V`(C)) since the map κ was
proven to be Γ-equivariant.

3.4. The Γ orbits in J ′. We shall explicitly identify the Γ orbits of the sets J ′i ,
and determine their isotropy.

Recall that Xss is the set of isomorphism classes of supersingular elliptic curves
C ′ defined over Fp, and Xss

0 (`) is the set of isomorphism classes of pairs (C ′,H) of
supersingular curves C ′ with a cyclic subgroup H of order `. Fix representatives of
these isomorphism classes. We shall make use of the following result of Kohel.

Theorem 3.4.1 (Kohel, [20, Cor. 77]). Let C ′ and C ′′ be supersingular elliptic
curves over Fp. Then for all k � 0, there exists an isogeny φ : C ′ → C ′′ of degree
`k.

Since there are finitely many elliptic curves, there exists an e > 0 so that we
may choose isogenies

φC′ : C → C ′

of degree `2e for every C ′ ∈ Xss. We may as well assume that φC = [`e]. This
uniformity in the degrees of the isogenies φC′ has the effect of simplifying some of
our proofs. Our insistence on using isogenies of degree an even power of ` will come
into play in Section 4.3 (see Lemma 4.3.1).
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Our choices of the isogenies φC′ give embeddings

ιC′ : Aut(C ′) ↪→ Γ

of the automorphism groups Aut(C ′) for C ′ ∈ Xss. Given an automorphism γ ∈
Aut(C ′), let ιC′(γ) be the quasi-isogeny of C given by

ιC′(γ) = [`−2e] · (φ̂C′ ◦ γ ◦ φC′).

The factor of [`−2e] makes ιC′ a homomorphism of groups. For (C ′,H) ∈ Xss
0 (`)

we regard the subgroups Aut(C ′,H) of Aut(C ′) to be embedded in Γ by ιC′ .

Proposition 3.4.2. The Γ-sets J ′i decompose into Γ-orbits as follows:

J ′0 =
∐

C′∈Xss

J ′0[C ′],

J ′1 =
∐

(C′,H)∈Xss
0 (`)

J ′1[C ′,H] q
∐

C′∈Xss

J ′1[C ′],

J ′2 =
∐

(C′,H)∈Xss
0 (`)

J ′2[C ′,H].

These orbits are given as follows:

J ′0[C ′] = {H0 : C/H̃0
∼= C ′},

J ′1[C ′,H] = {H1 < H0 : (C/H̃0, ` · H̃1/H̃0) ∼= (C ′,H)},

J ′1[C ′] = {H1 < H0 : C/H̃0
∼= C ′ andH0 = ` ·H1},

J ′2[C ′,H] = {H2 < H1 < H0 : (C/H̃0, ` · H̃1/H̃0) ∼= (C ′,H)

andH0 = ` ·H2}

where the subgroups H̃i of C are obtained from the virtual subgroups Hi by mul-
tiplying by a suitable uniform power of `.

Proof. We explain the decomposition of J ′0. The arguments are essentially the
same for the other J ′i . We first verify that the set J ′0[C ′] is closed under the action
of Γ. It suffices to check that if H0 is a subgroup of C such that C/H0

∼= C ′ and
φ is an isogeny in End`(C), then φ ·H0 = φ̂−1(H0) has the property that there is
an isomorphism C/φ̂−1(H0) ∼= C ′. This isomorphism exists because φ̂−1(H0) is the
kernel of the composite

C
φ̂−→ C → C/H0

∼=−→ C ′.

We now verify transitivity. Suppose that H0 and H ′
0 are elements of J ′0[C ′]. We

may assume that the virtual subgroups Hi are actually subgroups. Let φH0 and
φH′

0
be the quotient maps

φH0 : C → C/H0,

φH′
0

: C → C/H ′
0.

By hypothesis, there is an isomorphism

γ : C/H0

∼=−→ C/H ′
0.
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Let ψ be the composite

ψ : C
φH0−−−→ C/H0

γ−→ C/H ′
0

φ̂H′0−−−→ C.

Then we have
ψ ·H0 = [`i] ·H ′

0

where `i is the order of H0, so (`−iψ) · H0 = H ′
0. The action of Γ is therefore

transitive. �

Proposition 3.4.3. The orbits of Proposition 3.4.2 are identified as follows:

J ′i [C ′] ∼= Γ/Aut(C ′),

J ′i [C ′,H] ∼= Γ/Aut(C ′,H).

Proof. For each C ′ in Xss, let KC′ be the kernel of the isogeny φC′ . For each
(C ′,H) in Xss

0 (`), let K(C′,H) be the kernel of the composite

C
φC′−−→ C ′ � C ′/H.

Then the stabilizers of certain well-chosen points of J ′i are easily determined:

StabΓ(KC′) = Aut(C ′),

StabΓ(`−1 ·K(C′,H′) < KC′) = Aut(C ′,H),

StabΓ(`−1 ·KC′ < KC′) = Aut(C ′),

StabΓ(`−1 ·KC′ < `−1 ·K(C′,H) < KC′) = Aut(C ′,H).

�

Combining Propositions 3.4.2 and 3.4.3, we have the following theorem.

Theorem 3.4.4. There are ΓGal-equivariant isomorphisms

J ′0 ∼=
∐

C′∈Xss

Γ/Aut(C ′),

J ′1 ∼=
∐

(C′,H)∈Xss
0 (`)

Γ/Aut(C ′,H) q
∐

C′∈Xss

Γ/Aut(C ′),

J ′2 ∼=
∐

(C′,H)∈Xss
0 (`)

Γ/Aut(C ′,H).

(3.4.5)

Proof. We are only left with verifying the Galois equivariance of these isomor-
phisms. We will only treat the case of J ′i with i = 0. The cases of i > 0 are
completely analogous.

Recall that we have embedded Aut(C ′) in Γ by conjugating with φC′ . Our
practice of denoting the Γ orbit corresponding to C ′ by Γ/Aut(C ′) is misleading,
because it conceals the manner in which we have embedded Aut(C ′). The orbit is
more precisely given by

Γ/φ−1
C′ Aut(C ′)φC′ .

The decomposition of J ′0 is given by the composite

Γ/φ−1
C′ Aut(C ′)φC′

∼=−→
f

Γ ·KC′
∼=−→ J ′0[C ′]
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where KC′ ∈ Sub0
`(C) is the kernel of φC′ . The map f is given by

f(xφ−1
C′ Aut(C ′)φC′) = x ·KC′

for x ∈ Γ.
The action of σ ∈ Gal

σ : J ′[C ′]→ J ′[σ∗C ′]
is given by

σ ·H = Frobrelp (H)

for H ∈ Sub`(C) with C/H ∼= C ′. Using Lemma 2.7.1, we have

Frobrelp (KC′) = yC′ ·Kσ∗C′

for
yC′ = `−2e · (σ∗φ̂C′) · φσ∗C′ ∈ Γ.

Thus the compatible σ action

σ : Γ ·KC′ → Γ ·Kσ∗C′

is given by

σ · (x ·KC′) = (σ∗x) · σ ·KC′

= (σ∗x) · yC′ ·Kσ∗C′ .

We now compute the image of the subgroup φ−1
C′ Aut(C ′)φC′ under the action

of σ∗ on Γ.

σ∗(φ−1
C′ Aut(C ′)φC′) = Frobp φ−1

C′ Aut(C ′)φC′ Frob−1
p

= (σ∗φC′)−1 Frobp Aut(C ′) Frob−1
p (σ∗φC′)

= (σ∗φC′)−1 Aut(σ∗C ′)(σ∗φC′)

= yC′φ
−1
σ∗C′

Aut(σ∗C ′)φσ∗C′y
−1
C′ .

With this in mind, the natural action of σ∗ on Γ/φ−1
C′ Aut(C ′)φC′ is given by

σ : Γ/φ−1
C′ Aut(C ′)φC′ → Γ/φ−1

σ∗C′
Aut(σ∗C ′)φσ∗C′

x · φ−1
C′ Aut(C ′)φC′ 7→ σ∗x · yC′ · φ−1

σ∗C′
Aut(σ∗C ′)φσ∗C′ .

(3.4.6)

This action makes the map f Galois equivariant. �

3.5. The semi-simplicial structure of J ′. In Section 3.4 we gave a Γ-equivariant
orbit decomposition of the n-simplices of J ′•. In this section we shall describe the
face maps in terms of this orbit decomposition.

We shall first need some definitions. Recall from Section 3.4 that we have fixed
representatives C ′ (respectively (C ′,H)) for each isomorphism class of Xss (respec-
tively Xss

0 (`)). We also fixed isogenies

φC′ : C → C ′

of degree `2e for each C ′ ∈ Xss.
For each pair (C ′,H) ∈ Xss

0 (`), there is an induced degree ` isogeny given by
the quotient

qH : C ′ → C ′/H.
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Let Ĥ ⊂ C ′/H be the kernel of the dual isogeny q̂H . Then there exists a pair
(CH , d(H)) ∈ Xss

0 (`) and an isomorphism

αH : C ′/H → CH

which sends Ĥ to d(H). Define φH to be the composite

φH : C ′
qH−−→ C ′/H

αH−−→ CH .

Then d(H) is the kernel of the dual isogeny φ̂H .
For each pair (C ′,H) ∈ Xss

0 (`), define elements of g(C′,H) of Γ by

(3.5.1) g(C′,H) = `−2e−1 · (φ̂C′ ◦ φ̂H ◦ φCH
).

Proposition 3.5.2. Under the isomorphisms of Equation (3.4.5), the face maps of
the semisimplicial set J ′• are given as follows.

di :J ′1 → J ′0
d0(xAut(C ′,H)) = xg(C′,H) Aut(CH),

d1(xAut(C ′,H)) = xAut(C ′),

d0(xAut(C ′)) = x · `−1 Aut(C ′),

d1(xAut(C ′)) = xAut(C ′).

di :J ′2 → J ′1
d0(xAut(C ′,H)) = xg(C′,H) Aut(CH , d(H)),

d1(xAut(C ′,H)) = xAut(C ′),

d2(xAut(C ′,H)) = xAut(C ′,H).

Proof. We simply must evaluate the face maps of J ′, as given in Section 3.3 on the
orbit representatives chosen in the proof of Proposition 3.4.3:

d0(`−1K(C′,H) < KC′) = `−1K(C′,H)

= g(C′,H) ·KCH
,

d1(`−1K(C′,H) < KC′) = KC′ ,

d0(`−1KC′ < KC′) = `−1KC′ ,

d1(`−1KC′ < KC′) = KC′ ,

d0(`−1KC′ < `−1K(C′,H) < KC′) = `−1KC′ < `−1K(C′,H)

= g(C′,H) · (`−1K(CH ,d(H)) < KCH
),

d1(`−1KC′ < `−1K(C′,H) < KC′) = `−1KC′ < KC′ ,

d2(`−1KC′ < `−1K(C′,H) < KC′) = `−1K(C′,H) < KC′ .

�

4. The building for SL2(Q`)

In this section we recall the construction of the building J for SL2(Q`). We
then give a reinterpretation in terms of virtual subgroups of C[`∞] which is more
amenable to understanding the action of the subgroup Γ1 of SL(V`(C)).
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We decompose J into orbits under the action of Γ1, and demonstrate that this
group acts on J with finite stabilizers. We then explain how Bass-Serre theory
gives the structure of the group Γ1 as the fundamental groups of a graph of finite
groups. Much of the material in this section may be found in Serre’s book [32].

4.1. The construction of J using lattices. Let V be a Q` vector space of
dimension 2. Two lattices L and L′ in V are said to be homothetic if there exists
a c ∈ Q×

` such that
L′ = cL.

Since L and L′ are Z`-modules, c may be chosen to be `k for some integer k. The
construction of J follows the construction of J ′ except that we use homothety
classes of lattices in V . The building J is a 1-dimensional contractible simplicial
complex on which SL(V ) acts. Topologically, J is an `+ 1-regular tree.

Specifically, J is the geometric realization of a semi-simplicial SL(V ) set of the
form

J0 ⇔ J1

where the sets Ji are sets of flags of homothety classes of lattices in V :

J0 = {[L0] : [L0] a homothety class of lattice in V },
J1 = {{[L0], [L1]} : there exist reps L0 < L1 such that L1/L0

∼= Z/`}.

The group GL(V ) acts by permuting the lattice classes in the flags. This action
restricts to an action of SL(V ). Since we are taking homothety classes of lattices,
the center Q×

` ⊆ GL(V ) acts trivially on J , so the action also factors through
PGL(V ).

There is a GL(V )-equivariant projection

ν : J ′ → J
given by taking homothety classes of the lattices that make up the flags of J ′.
Under this map, the simplices of J ′1 corresponding to flags L0 < L1 with L1/L0

∼=
Z/`× Z/`, as well as all of the simplices of J ′2, become degenerate.

4.2. The construction of J using virtual subgroups. Let V = V`(C). The
same methods that construct J ′ in terms of virtual subgroups construct J in terms
of homothety classes of virtual subgroups of C[`∞]. Here, two virtual subgroups H
and H ′ are said to be homothetic if there exists an integer k such that

H ′ = [`k] ·H.

Lemma 4.2.1. Every virtual subgroup H of C[`∞] is homothetic to a unique
virtual subgroup H ′ where the order of H ′ is either 1 or `. The virtual subgroup
H ′ is uniquely expressible in the form

H ′ = [`k] ·H ′′

for some integer k, where H ′′ is a subgroup of C isomorphic to Z/`m.

Proof. The virtual subgroup H ′ is [`−i] · H where the order of H is either `2i or
`2i+1. To produce the canonical representative H ′′, we may as well assume that
the representative H of the homothety class [H] is a subgroup. Let j be maximal
so that the `j-torsion subgroup C[`j ] is contained in H. Then the subgroup H ′′ is
given by

H ′′ = H/C[`j ] ⊂ C/C[`j ].
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We may regard H ′′ as being contained in C under the canonical isomorphism [`j ] :
C/C[`j ]

∼=−→ C. �

If the order of the groupH ′ given by Lemma 4.2.1 is 1, we shall say the homothety
class [H] is even. Otherwise we shall say that the homothety class [H] is odd.

Observe that the isomorphism κ of Proposition 3.2.1 identifies homothety classes
of lattices with homothety classes of virtual subgroups. The semi-simplicial set

J0 ⇔ J1

whose realization is J may therefore be described in terms of virtual subgroups:

J0 = {[H0] : [H0] a homothety class of virtual subgroup in C[`∞]},
J1 = {([H1], [H0]) : there exist reps H1 < H0 such that H0/H1

∼= Z/`,
[H0] even, [H1] odd}.

The group Γ1 acts by permuting the classes of virtual subgroups.

4.3. The Γ1 orbit decomposition of J . We must first remark that Γ1 contains
only half of the isogenies of Γ modulo [`Z].

Lemma 4.3.1. Every quasi-isogeny φ ∈ Γ1 is expressible uniquely in the form

φ = `−iφ′

where φ′ is an endomorphism of C whose kernel is isomorphic to Z/`2i.

Proof. There is a short exact sequence

1→ Γ1 → Γ N−→ `Z → 1.

The lemma is immediate from the fact that Γ = End`(C)[`−1] and N([`]) = `2. �

The orbits of Ji are given in the following proposition, whose proof is completely
analogous to that of Proposition 3.4.2. The decomposition of J0 into the two parity
classes of Γ1 orbits is a consequence of Lemmas 4.2.1 and 4.3.1.

Proposition 4.3.2. The Γ1-sets Ji decompose into Γ1-orbits as follows:

J0 =
∐

C′∈Xss

(J0[C ′]even q J0[C ′]odd),

J1 =
∐

(C′,H)∈Xss
0 (`)

J1[C ′,H].

These orbits are given as follows:

J0[C ′]even = {[H0] : C/H0
∼= C ′ and [H0] even},

J0[C ′]odd = {[H0] : C/H0
∼= C ′ and [H0] odd},

J1[C ′,H] = {([H1], [H0]) : there exist reps H1 < H0 such that H0/H1
∼= Z/`,

[H0] even, [H1] odd, (C/H0, ` ·H1/H0) ∼= (C ′,H)}.

Recall from Section 3.4 that we have embedded the group Aut(C ′) as a subgroup
of Γ1 by conjugating by the isogeny φC′ :

ιC′ : Aut(C ′) ↪→ Γ1

α 7→ φ−1
C′ αφC′ .



BUILDINGS, ELLIPTIC CURVES, AND THE K(2)-LOCAL SPHERE 23

Fix an endomorphism φ of C of degree `2r+1 for r � 0. Such an endomorphism
exists by Theorem 3.4.1. We shall use Aut(C ′) to denote the image of the different
embedding of Aut(C ′) in Γ1 given by

ιC′ :Aut(C ′) ↪→ Γ1

α 7→ φ−1φ−1
C′ αφC′φ.

The isotropy of J is described in the following proposition.

Proposition 4.3.3. The orbits of Proposition 4.3.2 are given by:

J0[C ′]even ∼= Γ1/Aut(C ′),

J0[C ′]odd ∼= Γ1/Aut(C ′),

J1[C ′,H] ∼= Γ1/Aut(C ′,H).

Proof. For each C ′ in Xss, let Keven
C′ = KC′ be the kernel of the isogeny φC′ , and

let Kodd
C′ be the kernel of the composite

C
φ−→ C

φC′−−→ C ′.

For each (C ′,H) in Xss
0 (`), let K(C′,H) be the kernel of the composite

C
φC′−−→ C ′ � C ′/H.

Then the stabilizers of certain well-chosen points of J0[C ′]even , J0[C ′]odd , and
J1[C ′,H] are easily determined:

StabΓ1([Keven
C′ ]) = Aut(C ′),

StabΓ1([Kodd
C′ ]) = Aut(C ′),

StabΓ1([K(C′,H)], [Keven
C′ ]) = Aut(C ′,H).

�

4.4. The semi-simplicial structure of J . In this section we shall describe the
face maps in the semi-simplicial set J• in terms of the orbit decomposition given
in Section 4.3.

Combining Propositions 4.3.2 and 4.3.3, we have Γ1-equivariant isomorphisms

J0
∼=

∐
C′∈Xss

Γ1/Aut(C ′)q Γ1/Aut(C ′),

J1
∼=

∐
(C′,H)∈Xss

0 (`)

Γ1/Aut(C ′,H).
(4.4.1)

For each pair (C ′,H) ∈ Xss
0 (`), define an element g1

(C′,H) of Γ1 by

g1
(C′,H) = `−(r+2e+1) · (φ̂C′ ◦ φ̂H ◦ φCH

◦ φ).

Proposition 4.4.2. Under the isomorphisms of Equation (4.4.1), the face maps of
the semisimplicial set J• are given as follows:

di :J1 → J0

d0(xAut(C ′,H)) = xg1
(C′,H)Aut(CH),

d1(xAut(C ′,H)) = xAut(C ′).
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Proof. We evaluate the face maps of J , as given in Section 4.2 on the orbit repre-
sentatives chosen in the proof of Proposition 4.3.3:

d0([K(C′,H)], [Keven
C′ ]) = [K(C′,H)]

= g1
(C′,H) · [K

odd
CH

],

d1([K(C′,H)], [Keven
C′ ]) = [Keven

C′ ].

�

4.5. The structure of Γ1. A graph of groups is a graph Y whose vertices and
edges are labeled with finite groups, with inclusions compatible with the gluing data
of the graph. In [32], the notion of the fundamental group of a connected graph of
groups is given. If the graph Y is a tree, then this fundamental group is simply a
suitable amalgamation of the labeling groups. We shall give a presentation of Γ1

as the fundamental group of a graph of groups.
Let Y be the graph given by a semisimplicial set of the form

Xss qXss
⇔ Xss

0 (`).

(Here, X
ss

is Xss — we have placed a bar over it to distinguish the two identical
factors in the coproduct.) The face maps di are given by

d0 :Xss
0 (`) t−→ X

ss
↪→ Xss qXss

,

d1 :Xss
0 (`) s−→ Xss ↪→ Xss qXss

where the maps s and t are given on isomorphism classes by

s :[C ′,H] 7→ [C ′],

t :[C ′,H] 7→ [C ′/H].

We give Y the structure of a graph of groups (Y,G(−)) by labeling the edges and
vertices with groups as follows.

G[C′] = Aut(C ′) for [C ′] in Xss or X
ss

.

G[C′,H] = Aut(C ′,H) for [C ′,H] in Xss
0 (`).

We associate to the face maps di of Y monomorphisms

(di)∗ : G[C′,H] → Gdi([C′]).

The monomorphism d1 is given by the natural inclusion

(d1)∗Aut(C ′,H) ↪→ Aut(C ′).

Any automorphism of C ′ which preserves a subgroup H descends to an automor-
phism of C ′/H, and this gives the second of the two maps

(d0)∗ : Aut(C ′,H)→ Aut(C ′/H).

Lemma 4.5.1. The map (d0)∗ is a monomorphism.

Proof. Suppose that (d0)∗(α) = γ = (d0)∗(α′) for α and α′ in Aut(C ′,H). Let φ
be the quotient isogeny C ′ → C ′/H. The automorphism γ of C ′ satisfies

φ ◦ α = γ ◦ φ = φ ◦ α′.
By composing the above equation with the dual isogeny φ̂, we see that there is an
equality

` · α = ` · α′
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in the endomorphism ring End(C ′). Since this ring is torsion-free, we conclude that
α = α′. �

The group Γ1 acts on the tree J without inversions. Proposition 4.3.2 shows
that Y is the quotient Γ1 \ J . Bass-Serre theory [32, I.5.4], combined with Propo-
sition 4.3.3 immediately gives the following theorem.

Theorem 4.5.2. The group Γ1 is the fundamental group of the graph of groups
(Y,G(−)).

5. K(2)-local topological modular forms

5.1. Morava E-theories. Goerss and Hopkins [16] refined the Hopkins-Miller
Theorem [30] to produce a functor

E : FGL → E∞-ring spectra

(k, F ) 7→ E(k, F ).

Here, FGL is the category of pairs (k, F ), where k is a perfect field of characteristic
p and F is a formal group of finite height over k. The spectrum E(k, F ) is complex
orientable, and its associated formal group is the Lubin-Tate universal deformation
F .

The Goerss-Hopkins-Miller functor extends naturally to the category of pairs
(k, F ) obtained by insisting that the ground ring k =

∏
i ki is only a product of

perfect fields of characteristic p, via the assignment

E(k, F ) =
∏
i

E(ki, F |ki
).

In this paper, we are using En to denote the spectrum E(Fp,Hn), where Hn is the
Honda height n formal group. Functoriality gives rise to an action of the extended
Morava stabilizer group

Gn = Aut(Fpn ,Hn) = Aut(Hn) oGal(Fp/Fp).

We remark that the subgroupGal(Fp/Fpn) ofGal(Fp/Fp) acts trivially on Aut(Hn).
Our reason for working over Fp is that formal groups over a separably closed field

of positive characteristic p are classified by their height [21]. Therefore, given F , a
formal group of height n over Fp, there is an isomorphism α : F ∼= Hn, and hence
an isomorphism of E∞-ring spectra E(Fp, F ) ' E(Fp,Hn) = En, which depends
on the isomorphism α.

5.2. Homotopy fixed points. Because we make extensive use of homotopy fixed
point constructions, we pause to explain their meaning in the context of this paper.
Let k be a finite extension of Fpn . Devinatz and Hopkins [12] gave a construction
of homotopy fixed point spectra (which we shall denote Eh̃Hk ) of the spectrum
Ek = E(k,Hn) with respect to closed subgroups H of the profinite group

Gk = Aut(k,Hn) = Aut(Hn) oGal(k/Fp).
Actually, [12] is written in the context of k = Fpn , but there was nothing in the the-
ory of [12] that prevented these authors from replacing Fpn with the finite extension
k.

Goerss and Hopkins [16] proved that for extensions k, k′, the space of E∞-ring
maps E∞(Ek, Ek′) has contractible components. Thus the rectification methods of
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Dwyer, Kan, and Smith [13],[12, 3.2] may be used to show that the construction of
the spectrum Eh̃Hk may be made functorial in k.

For a profinite group G there is a more conventional notion of a discrete G-
spectrum that has been investigated by Thomason, Jardine, Goerss, Davis and
others (see, for instance, [9]). Let SetG be the Grothendieck site of finite discrete
G-sets. A discrete G-spectrum may be modeled as a presheaf of spectra on this
site. The homotopy fixed points are given by Quillen derived functors of the global
sections functor with respect to the model structure of [19]. Given a closed subgroup
H of G, there is a restriction functor ResGH that takes presheaves of spectra on SetG
to presheaves of spectra on SetH .

Following Daniel Davis [9], we shall regard the Devinatz-Hopkins construction
as producing a presheaf En(−) of spectra on the site SetGn

. For an open subgroup
U of Gn, let W (U) be the subgroup

W (U) = U ∩Gal(Fp/Fpn) ≤ Gal(Fp/Fpn) C Gn.

Define k(U) to be the finite fixed field

k(U) = FW (U)

p .

The value of the presheaf E(−) on the transitive finite discrete Gn-set Gn/U is
given by

En(Gn/U) = E
h̃U/W (U)
k(U)

For H a closed subgroup of Gn, we define the homotopy fixed point spectrum as
the K(n)-localization of the derived global sections of the restricted presheaf

(5.2.1) EhHn = (RΓ ResGn

H En)K(n).

Davis showed that these constructions are equivalent to those of Devinatz and
Hopkins. The statement of his theorem given below is a mild extension of the
statement which appears in [8].

Theorem 5.2.2 (Davis [8]). There is an equivalence Eh̃Hn ' EhHn .

The Galois descent properties of En are axiomatized by Rognes [31]. In his lan-
guage, the spectrum En is a K(n)-local profinite Galois extension of SK(n). The
homotopy fixed points of such spectra are remarkably well behaved, as demon-
strated in [3]. In particular we show that, when homotopy fixed point spectra are
defined in the sense of Equation 5.2.1, we may iterate the homotopy fixed point
construction.

Proposition 5.2.3 (Behrens-Davis [3]). For K a closed normal subgroup of H, a
closed subgroup of Gn, there is an equivalence (EhKn )hH/K ' EhHn .

Remark 5.2.4. Devinatz has investigated a different approach to iterated homo-
topy fixed points that differs philosophically from ours [11]. Namely, he defines
the iterated fixed point construction (Eh̃Kn )hH/K to be the spectrum Eh̃Hn and
then shows that this definition makes sense (e.g. there is an associated Lyndon-
Hochschild-Serre spectral sequence).

Our reasons for engaging in this rhetorical yoga surrounding the construction of
homotopy fixed points is twofold. Firstly, for Λ a discrete group which lies as a
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subgroup in a profinite subgroup G, and for E a discrete G-spectrum, there is a
natural map

EhG → EhΛ

where the spectrum EhΛ is the ordinary homotopy fixed point spectrum. Producing
this map using only the Devinatz-Hopkins language is less transparent. Secondly,
in this language, we can employ the following lemma more freely.

Theorem 5.2.5 (Goerss [14, Theorem 6.1]). Suppose that E is a discrete Ẑ-
spectrum. Then the natural map

EhẐ → EhZ

is an HFp-equivalence.

Goerss actually proved this theorem in the context of spaces, but the case of
spectra is handled by similar means, and is in some sense easier.

5.3. Topological modular forms: an overview. Let M be the moduli stack
of generalized elliptic curves. Goerss, Hopkins, Miller and their collaborators have
constructed a sheaf Oell (in the étale topology) of E∞-ring spectra over M. The
spectrum tmf is given by the connective cover of the global sections

tmf = τ≥0Oell(M).

The global sections Oell(M) then give the E(2)-localization tmf E(2). Let Mns be
the substack of non-singular elliptic curves. The spectrum TMF is the spectrum of
sections Oell(Mns). LetMss be a formal neighborhood of the mod p supersingular
locus of M. Then the K(2)-localization tmf K(2) = TMFK(2) is the spectrum of
sections

TMFK(2) = Oell(Mss).
LetM0(`) be the moduli stack of elliptic curves with Γ0(`)-structures. The forgetful
map

φf :Mss
0 (`)→Mss

is étale, so we may evaluate Oell on φf to realize TMF 0(`)K(2) as the spectrum of
sections Oell(Mss

0 (`)).
Because a detailed account of this story does not yet exist in the literature,

we reproduce just enough of it to give the constructions, due to Goerss, Hopkins,
Miller, and their collaborators, of TMFK(2) and TMF 0(`)K(2) that we require.
What follows is basically a recapitulation of a lecture of Charles Rezk on the subject
in a workshop on topological modular forms held in Münster, Germany in 2003.

5.4. The neighborhood of the supersingular locus. Let W = W(Fp) be the
Witt ring with residue field Fp. We shall first describe the stack Mss⊗̂Zp

W. This
formal stack is a profinite Galois covering of the stack Mss, with covering group
equal to Gal = Gal(Fp/Fp). Thus we may recover the sections of sheaves (in
the étale topology) over Mss from their sections over Mss⊗̂ZpW by taking Galois
invariants.

For each isomorphism class [C ′] in Xss we choose a representative C ′ defined
over Fp. Let k be the perfect ring given by the product

∏
Xss Fp. Let C be the

coproduct
C =

∐
C′∈Xss

C ′
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defined over k. The group Aut(C) =
∏
C′∈Xss Aut(C ′) acts on C over k. The stack

Mss ⊗Fp Fp gives the supersingular points in the formal neighborhoodMss⊗̂ZpW.
Then we have

Mss ⊗Fp Fp =
∐

C′∈Xss

spec(Fp)//Aut(C ′)

= stack

(
k,

∏
C′∈Xss

Map(Aut(C ′),Fp)

)
.

(Here stack(−,−) denotes the stackification of a Hopf algebroid in the étale topol-
ogy.) The elliptic curve C is the pullback of the universal elliptic curve to the cover
spec(k) ofMss.

Let Ĉ be the formal completion of C at the identity. Let G be the Lubin-Tate
universal deformation of the formal group Ĉ over W(k)[[u1]]. The induced action
of the group Aut(C) on Ĉ extends to an action on G over W(k).

Serre-Tate theory [22], [25] implies that the formal completion functor

{deformations of C over W(k)[[u1]]}
↓

{deformations of Ĉ over W(k)[[u1]]}

is an equivalence of categories. Therefore, there exists a deformation C̃ of C whose
formal group is the universal deformation G. Lubin-Tate theory [23] implies that
there are no non-trivial automorphisms of the deformation G which restrict to the
identity on Ĉ. Therefore, the natural map

Aut(C̃)
∼=−→ Aut(C)

is an isomorphism.
The map

χC̃ : spf(W(k)[[u1]])→Mss⊗̂Zp
W

which classifies C̃ descends to a map

χC̃ : spf(W(k)[[u1]])//Aut(C̃)→Mss⊗̂Zp
W

which is an isomorphism. The inverse classifies the universal deformation G.
Now that we have a model for the formal stack Mss⊗̂Zp

W defined over W, we
may use Galois descent to recover the formal stack over Zp. While the groupoid
of Fp-points of Mss⊗̂Zp

W is given by supersingular elliptic curves over Fp and
isomorphisms which cover the identity on Fp, the groupoid of Fp-points of Mss

consist of supersingular curves over Fp and isomorphisms which are not required to
cover the identity on Fp.

In the case of the universal supersingular elliptic curve C, the extra automor-
phisms arising from the Frobenius may be encoded in an action of the Galois group
Gal = Gal(Fp/Fp) on the groupoid (spec(k),Aut(C)). Recall from Section 2.7 that
for each curve C ′ ∈ Xss, there is a Frobenius morphism

Frobp : C ′ → σ∗C
′

where the curve σ∗C ′ is a (possibly different) curve in Xss. Thus there is a map

σ∗ : Xss → Xss.
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The action of the generator σ on the objects spec(k) is given by the composite

σ∗ : k =
∏

C′∈Xss

Fp
permute−−−−−→

∏
C′∈Xss

Fp
∏
σ−−→

∏
C′∈Xss

Fp = k.

The induced map

σ∗ : spec(k)→ spec(k)

induces the action of Gal on the objects of our groupoid.
The morphisms Frobp assemble to give an automorphism of C which covers σ∗.

C
Frobp //

��

C

��
spec(k)

σ∗
// spec(k)

The action of σ on the group Aut(C) is given by conjugation by the automorphism
Frobp of C. We have

σ∗α = Frobp αFrob−1
p

for each α ∈ Aut(C).
There is a profinite Galois covering of formal stacks.

Mss⊗̂Zp
W

Gal

��
Mss

In a manner completely analogous to Section 2.7, the automorphism group Aut(C)
may be enlarged to include the automorphism Frobp, giving rise to an extension

Aut/Fp
(C) = Aut(C) oGal.

5.5. Construction of TMFK(2). As described in Section 5.1, the Goerss-Hopkins-
Miller Theorem gives an E∞-ring spectrum

E(k, Ĉ) ∼=
∏

C′∈Xss

E(Fp, C ′)

and an action of the group Aut/Fp
(C) on this spectrum by E∞-ring maps. The

coefficient ring of this complex orientable spectrum is given by

E(k, Ĉ)∗ = W(k)[[u1]][u±1]

where |u| = −2.
The spectrum TMFK(2) is defined to be the homotopy fixed point spectrum

TMFK(2) = E(k, Ĉ)hAut/Fp (C)

=

( ∏
C′∈Xss

E(Fp, Ĉ ′)hAut(C′)

)hGal
.
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In Section 6.2 we shall find it useful to work with a version of TMFK(2) where we
do not take Galois fixed points. We thus make the definition

TMFK(2),Fp
= E(k, Ĉ)hAut(C)

=
∏

C′∈Xss

E(Fp, Ĉ ′)hAut(C′).

5.6. Γ0(`)-structures. The construction of TMF 0(`) is completely analogous. One
simply replaces everywhere the formal moduli stackMss withM0(`)ss. The auto-
morphism groups Aut(C ′) are replaced with Aut(C ′,H) for (C ′,H) ∈ Xss

0 (`).
Explicitly, let k′ be the perfect ring

k′ =
∏

Γ0(`)(C)

k =
∏

Xss
0 (`)

Fp

where Γ0(`)(C) is the set of Γ0(`)-structures on C. We define C0(`) to be the
elliptic curve over k′ given by

C0(`) =
∐

Γ0(`)(C)

C.

We give C0(`) the canonical Γ0(`)-structure H which restricts to H on the compo-
nent corresponding to the element H ∈ Γ0(`)(C).

Since the map
C[`]→ spec(k)

is étale, given a Γ0(`)-structure H on C, there is a unique extension to a Γ0(`)-
structure H̃ on C̃ over W(k)[[u1]]. The elliptic curve over W(k′)[[u1]] given by

C̃0(`) =
∐

Γ0(`)(C)

C̃

is a deformation of C0(`). The Γ0(`)-structure H extends uniquely to a Γ0(`)-
structure H̃ on C̃0(`). It restricts to H̃ on the component corresponding to the
element H ∈ Γ0(`)(C).

Define the group Aut(C0(`),H) to be the finite group of automorphisms of C0(`)
which preserve the level structure H:

Aut(C0(`),H) =
∏

(C′,H)∈Xss
0 (`)

Aut(C ′,H).

The automorphism Frobp on C of Section 5.4 will permute the Γ0(`)-structures,
inducing an action of Gal on the groupoid (spec(k′),Aut(C0(`),H)). We get an
extension of groups

Aut/Fp
(C0(`),H) = Aut(C0(`),H) oGal.

Just as in the case of TMFK(2), we use the Goerss-Hopkins-Miller theorem to
produce a spectrum E(k′, Ĉ0(`)). The spectrum TMF 0(`)K(2) is given as follows:

TMF 0(`)K(2) = E(k′, Ĉ0(`))hAut/Fp (C0(`),H)

=

 ∏
(C′,H)∈Xss

0 (`)

E(Fp, Ĉ ′)hAut(C′,H)

hGal

.
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Just as in the case of TMF , we will define TMF 0(`)K(2),Fp
to be the version

where we do not take Galois fixed points:

TMF 0(`)K(2),Fp
= E(k′, Ĉ0(`))hAut(C0(`),H)

=
∏

(C′,H)∈Xss
0 (`)

E(Fp, Ĉ ′)hAut(C′,H).

6. Relation to the spectrum Q(`)

6.1. The spectrum Q(`). In [2], using the sheaf Oell of Section 5.3, we introduced
a spectrum Q(`) built out of TMF and TMF 0(`). We give an independent K(2)-
local construction here. Nevertheless, the reader might find it useful to refer to [2],
where the motivation for the construction is given.

The spectrum Q(`)K(2) is the totalization of a semi-cosimplicial E∞-ring spec-
trum of the following form:

(6.1.1) TMFK(2) ⇒
TMF 0(`)K(2)

×
TMFK(2)

V TMF 0(`)K(2).

The coface maps are given in terms of certain maps of E∞-ring spectra:

φ∗f :TMFK(2) → TMF 0(`)K(2),

φ∗q :TMFK(2) → TMF 0(`)K(2),

ψ∗[`] :TMFK(2) → TMFK(2),

ψ∗d :TMF 0(`)K(2) → TMF 0(`)K(2).

The coface maps on 0-cosimplicies

di : TMFK(2) → TMF 0(`)K(2) × TMFK(2)

are defined by

d0 = φ∗q × ψ∗[`],
d1 = φ∗f × Id.

The coface maps

di : TMF 0(`)K(2) × TMFK(2) → TMF 0(`)K(2)

are defined by

d0 = ψ∗d ◦ p1,

d1 = φ∗f ◦ p2,

d2 = p1

where p1, p2 are the projections onto the first and second factors of the product
TMF 0(`)K(2) × TMFK(2).

We produce the required maps using the Goerss-Hopkins-Miller functor (Sec-
tion 5.1).

The map ψ∗[`]: The `th power isogeny

[`] : C→ C



32 MARK BEHRENS

induces an automorphism

ψ[`] = (Id, [`]) : (k, Ĉ)→ (k, Ĉ).

Applying the Goerss-Hopkins-Miller functor, we get a map

ψ∗[`] : E(k, Ĉ)→ E(k, Ĉ).

Because the `-power isogeny commutes with all of the automorphisms of C, this
map descends to the homotopy fixed points

ψ∗[`] : TMFK(2) = E(k, Ĉ)hAut/Fp (C)

→ E(k, Ĉ)hAut/Fp (C)

= TMFK(2).

We remark that by replacing the pair (k,C) with the pair (k′,C0(`)), we get a map

ψ∗[`] : TMF 0(`)K(2) → TMF 0(`)K(2).

The map ψ∗d: In Section 3.5 we defined, for each pair (C ′,H) ∈ Xss
0 (`), a pair

(CH , d(H)) ∈ Xss
0 (`), and a degree ` isogeny

φH : C ′ → CH .

The isogeny φH has kernel H, and the dual isogeny φ̂H has kernel d(H). Observe
that the pair (CH , d(H)) actually determines (C ′,H): we have

Cd(H) = C ′,

d(d(H)) = H.

We may define an involution

ψd : k′ =
∏

(C′,H)∈Xss
0 (`)

Fp →
∏

(C′,H)∈Xss
0 (`)

Fp = k′

given by permuting the factors: we send the factor corresponding to (C ′,H) to
the factor corresponding to (CH , d(H)). The maps φH assemble to give a degree `
isogeny

ψ̃d : C0(`)→ C0(`)

which covers the map ψd. The kernel of ψ̃d is H.
Since φd(H) and the dual isogeny φ̂H have the same kernel d(H), there exists an

automorphism γH of C ′ over Fp so that the following diagram commutes.

(6.1.2) CH
φ̂H //

φd(H) !!CC
CC

CC
CC

C ′

γH

��
C ′

By applying the dual isogeny functor to the above diagram, we see that γH preserves
H, so γH actually lies in the automorphism group Aut(C ′,H). Diagram (6.1.2)
gives us the relation

(6.1.3) φd(H) ◦ φH = [`] ◦ γH .
The automorphisms γH assemble to give an automorphism

γ : C0(`)→ C0(`)



BUILDINGS, ELLIPTIC CURVES, AND THE K(2)-LOCAL SPHERE 33

defined over k′ which preserves the subgroup H. Equation (6.1.3) gives us the
relation

(6.1.4) ψ̃d ◦ ψ̃d = [`] ◦ γ.

We assemble these automorphisms to get an automorphism of pairs

ψd = (ψd, (ψ̃d)∗) : (k′, Ĉ0(`))→ (k′, Ĉ0(`))

which induces a map

ψ∗d : E(k′, Ĉ0(`))→ E(k′, Ĉ0(`)).

We claim that ψ∗d descends to an automorphism of TMF 0(`)K(2). Suppose that β
is an element of Aut/Fp

(C0(`),H). Then we have the following diagram.

(6.1.5) C0(`)
ψ̃d //

β

��

C0(`)

β

��
C0(`)

ψ̃d

// C0(`)

Since β preserves H = ker ψ̃d, it descends uniquely to give β. Applying the dual
isogeny functor to Diagram (6.1.5), we see that the map β preserves the kernel of
the dual isogeny of ψ̃d, But we have argued that this kernel is also given by H.
Thus β also lies in Aut/Fp

(C0(`),H). We conclude that the map ψ∗d descends to
the Aut/Fp

(C0(`),H)-fixed points TMF 0(`)K(2) = E(k′, Ĉ0(`))hAut/Fp (C0(`),H) to
give a map

ψ∗d : TMF 0(`)K(2) → TMF 0(`)K(2).

Because γ is contained in Aut/Fp
(C0(`),H), it acts trivially on TMF 0(`)K(2), and

we have the following relation on TMF 0(`)K(2).

(6.1.6) ψ∗d ◦ ψ∗d = ψ∗[`].

Remark 6.1.7. The equality in Equation (6.1.6) is a strict equality that occurs
on the point-set level. This is because the homotopy fixed point spectrum is the
actual fixed points of an appropriate fibrant replacement.

The map φ∗f : Let χ denote the diagonal map

χ : k →
∏

Γ0(`)(C)

k = k′.

Over this map we have C0(`) = C⊗k k′. We therefore get a map of pairs

χ : (k′, Ĉ0(`))→ (k, Ĉ).

The diagonal embedding

Aut/Fp
(C) ↪→ Aut/Fp

(C0(`))

is compatible with the map χ. The natural inclusion

ι : Aut/Fp
(C0(`),H) ↪→ Aut/Fp

(C0(`))
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gives φ∗f as the composite

φ∗f : TMFK(2) = E(k, Ĉ)hAut/Fp (C)

χ∗−→ E(k′, Ĉ0(`))hAut/Fp (C0(`))

ι∗−→ E(k′, Ĉ0(`))hAut/Fp (C0(`),H)

= TMF 0(`)K(2).

The commutativity of the diagram

(k′, Ĉ0(`))
χ //

ψ[`]

��

(k, Ĉ)

ψ[`]

��
(k′, Ĉ0(`)) χ

// (k, Ĉ)

implies the relation

(6.1.8) φ∗fψ
∗
[`] = ψ∗[`]φ

∗
f .

The map φ∗q: The map φ∗q is defined to be the composite

φ∗q : TMFK(2)

φ∗f−−→ TMF 0(`)K(2)
ψ∗d−−→ TMF 0(`)K(2).

The construction of the spectrum Q(`)K(2) is completed by the following lemma.

Lemma 6.1.9. The coface maps in (6.1.1) satisfy the cosimplicial identities.

Proof. We translate the cosimplicial identities into the maps that define the di’s.

d0d0 = d1d0 ψ∗dφ
∗
q = φ∗fψ

∗
[`],(6.1.10)

d2d0 = d0d1 φ∗q = ψ∗dφ
∗
f ,(6.1.11)

d1d1 = d2d1 φ∗f = φ∗f .(6.1.12)

Relation (6.1.12) is tautologous, and Relation (6.1.11) is immediate from our defini-
tion of φ∗q . Relation (6.1.10) then follows from Relation (6.1.11), Equation (6.1.6),
and Equation (6.1.8). �

6.2. Q(`)K(2) as the homotopy fixed point spectrum E(Γ). In this section we
shall prove the following theorem.

Theorem 6.2.1. There is an equivalence Q(`) ' E(Γ) = (EhΓGal
2 ).

Before we prove these theorems we address some finer points concerning our
use of Morava E-theory. We have fixed a supersingular elliptic curve C defined
over Fp, and have fixed an isomorphism between it and the Honda height 2 formal
group H2 over Fp. This gives rise, by the Goerss-Hopkins-Miller theorem, to a fixed
isomorphism

E(Fp, Ĉ) ∼= E(Fp,H2) = E2.

Our fixed isomorphism Ĉ ∼= H2 also gives an isomorphism

Aut(Fp, Ĉ) ∼= Aut(Fp,H2) = G2.

In what follows, when we refer to E2 and G2, we shall actually be implicitly iden-
tifying these with E(Fp, Ĉ) and Aut(Fp, Ĉ) using our fixed isomorphisms.
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We recall how the Goerss-Hopkins-Miller theorem gives rise to an action of G2

on E2 by E∞-ring maps. Let g be an element of G2. It is an automorphism

g = (g0, g1) : (Fp, Ĉ)→ (Fp, Ĉ).

Because the Goerss-Hopkins-Miller theorem gives a contravariant functor E(−,−),
the left action Lg of g on E2 is given by the image of g−1 under the functor E(−,−)

(6.2.2) Lg = (g−1)∗ : E2 → E2.

For C ′ ∈ Xss, let EC′ denote the spectrum E(Fp, Ĉ ′). We defined TMFK(2) and
TMF 0(`)K(2) as homotopy fixed points of the spectra

E(k, Ĉ) ∼=
∏

C′∈Xss

EC′ ,

E(k′, Ĉ0(`)) ∼=
∏

(C′,H)∈Xss
0 (`)

EC′ .

The spectra EC′ are isomorphic to E2 = EC using the fixed isomorphisms (over
Fp) of formal groups

(φC′)∗ : Ĉ → Ĉ ′

induced by the isogenies φC′ of Section 3.4. We get an induced isomorphism

φ∗C′ : EC′
∼=−→ E2.

Under this isomorphism, the induced action of the group Aut(C ′) on E2 corresponds
to the action given by the embedding ιC′ of Aut(C ′) in Γ defined in Section 3.4.

Let Q(`)K(2),Fp
be the spectrum obtained by the totalization of the Galois equi-

variant semi-cosimplicial spectrum

TMFK(2),Fp
⇒ TMFK(2),Fp

× TMF 0(`)K(2),Fp
V TMF 0(`)K(2),Fp

where we have not taken Galois fixed points.
Let σZ ⊂ Gal be the discrete group given by powers of the Frobenius σ. The

following lemma is a consequence of Theorem 5.2.5.

Lemma 6.2.3. The natural maps

TMFK(2) = (TMFK(2),Fp
)hGal → (TMFK(2),Fp

)hσ
Z
,

TMF 0(`)K(2) = (TMF 0(`)K(2),Fp
)hGal → (TMF 0(`)K(2),Fp

)hσ
Z

are equivalences.

Corollary 6.2.4. There is an equivalence

Q(`)K(2) → (Q(`)K(2),Fp
)hσ

Z
.

The remainder of this section is devoted to proving Theorem 6.2.1. We shall first
prove that there is an equivalence

(6.2.5) Q(`)K(2),Fp

'−→ EhΓ2 .

We will then prove that this equivalence commutes with the action of the Frobenius
σ. Theorem 6.2.1 is then recovered by applying the functor (−)hσ

Z
to (6.2.5).
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Proposition 6.2.6. The homotopy fixed point spectrum EhΓ2 is the totalization
of a semi-cosimplicial spectrum of the form
(6.2.7)∏
C′∈Xss

E
hAut(C′)
2 ⇒

∏
(C′,H)∈Xss

0 (`)E
hAut(C′,H)
2

×∏
C′∈Xss E

hAut(C′)
2

V
∏

(C′,H)∈Xss
0 (`)

E
hAut(C′,H)
2 .

The coface maps

di :
∏

C′∈Xss

E
hAut(C′)
2 →

∏
(C′,H)∈Xss

0 (`)

E
hAut(C′,H)
2 ×

∏
C′∈Xss

E
hAut(C′)
2

are defined on components by

(d0)(C′,H) = Lg(C′,H)
◦ ResAut(CH)

Aut(CH ,d(H)): E
hAut(CH)
2 → E

hAut(C′,H)
2 ,

(d1)(C′,H) = ResAut(C′)
Aut(C′,H) : E

hAut(C′)
2 → E

hAut(C′,H)
2 ,

(d0)C′ = L`−1 : E
hAut(C′)
2 → E

hAut(C′)
2 ,

(d1)C′ = Id : E
hAut(C′)
2 → E

hAut(C′)
2 .

The coface maps

di :
∏

(C′,H)∈Xss
0 (`)

E
hAut(C′,H)
2 ×

∏
C′∈Xss

E
hAut(C′)
2 →

∏
(C′,H)∈Xss

0 (`)

E
hAut(C′,H)
2

are defined on components by

(d0)(C′,H) = Lg(C′,H)
: E

hAut(CH ,d(H))
2 → E

hAut(C′,H)
2 ,

(d1)(C′,H) = ResAut(C′)
Aut(C′,H): E

hAut(C′)
2 → E

hAut(C′,H)
2 ,

(d2)(C′,H) = Id : E
hAut(C′,H)
2 → E

hAut(C′,H)
2 .

Here the element g(C′,H) is the element of Γ defined by Equation (3.5.1).

Proof. Since the complex J ′ is non-equivariantly contractible, the natural map

EhΓ2 → Map(J ′, E2)hΓ

is an equivalence. Using the semi-simplicial structure of J ′, we see that EhΓ is
equivalent to the totalization of the semi-cosimplicial spectrum

(6.2.8) Map(J ′0, E2)hΓ ⇒ Map(J ′1, E2)hΓ V Map(J ′2, E2)hΓ.

By “Shapiro’s lemma”, for a subgroup F of Γ, there is an equivalence

(6.2.9) EhF2 ' Map(Γ/F,E2)hΓ.

The semi-cosimplicial spectrum given in the proposition is obtained by substitut-
ing the descriptions of J ′i given in Equation (3.4.5) into Equation (6.2.8), and then
applying Equation (6.2.9). The descriptions of the coface maps given in the propo-
sition follow immediately from the descriptions of the face maps of J ′• given by
Proposition 3.5.2. �
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Construction of the equivalence (6.2.5). We first describe the maps ψ∗[`], ψ
∗
d, φ

∗
f ,

and φ∗q of Section 6.1 under the isomorphisms

TMFK(2),Fp

∼=
∏

C′∈Xss

E
hAut(C′)
C′ ,

TMF 0(`)K(2),Fp

∼=
∏

(C′,H)∈Xss
0 (`)

E
hAut(C′,H)
C′ .

We describe the components of our maps below, which are read off from their
definitions in Section 6.1:

(ψ∗[`])C′ = [`]∗ : E
hAut(C′)
C′ → E

hAut(C′)
C′ ,

(ψ∗d)(C′,H) = φ∗H : E
hAut(CH ,d(H))
CH

→ E
hAut(C′,H)
C′ ,

(φ∗f )(C′,H) = ResAut(C′)
Aut(C′,H) : E

hAut(C′)
C′ → E

hAut(C′,H)
C′ ,

(φ∗q)(C′,H) = φ∗H ◦ ResAut(CH)
Aut(CH ,d(H)): E

hAut(CH)
CH

→ E
hAut(C′,H)
C′ .

The left S2 action on E2 given by Equation (6.2.2) gives the following commutative
diagrams.

(6.2.10) EC′
[`]∗ //

φ∗
C′

��

EC′

φ∗
C′

��

ECH

φ∗H //

φ∗CH

��

EC′

φ∗
C′

��
E2

L`−1

// E2 E2
Lg(C′,H)

// E2

These diagrams, using Proposition 6.2.6, give rise the following equivalence of semi-
cosimplicial spectra.
(6.2.11)

∏
Xss E

hAut(C′)
C′

// //

(φ∗
C′ )

��

∏
Xss

0 (`)E
hAut(C′,H)
C′

×∏
Xss E

hAut(C′)
C′

//////

(φ∗
C′ )×(φ∗

C′ )

��

∏
Xss

0 (`)E
hAut(C′,H)
C′

(φ∗
C′ )

��∏
Xss E

hAut(C′)
2

// //

∏
Xss

0 (`)E
hAut(C′,H)
2

×∏
Xss E

hAut(C′)
2

// ////
∏
Xss

0 (`)E
hAut(C′,H)
2

The totalization of the top row gives Q(`)K(2),Fp
, while Proposition 6.2.6 implies

that the totalization of the bottom row gives EhΓ2 .
We will finish this section by proving the following lemma.

Lemma 6.2.12. The maps (φ∗C′) of Diagram 6.2.11 are Galois equivariant.

We pause to explain how Lemma 6.2.12 completes the proof of Theorem 6.2.1.
The coface maps of the top row of Diagram 6.2.11 are Galois equivariant by con-
struction. Up to this point, we have not addressed the Galois equivariance of the
coface maps of the bottom row of Diagram 6.2.11. By functoriality, the vertical
maps (φ∗C′) are isomorphisms of spectra, so the Galois equivariance of the coface
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maps of the bottom row will follow from Lemma 6.2.12. The proof of Theorem 6.2.1
is then completed by applying Galois fixed points to the equivalence (6.2.5).

Remark 6.2.13. One could have also deduced the Galois equivariance of the coface
maps of the bottom row from the fact that the Galois action on the Tate module
V`(C) induces a Galois action on the building J ′.

Proof of Lemma 6.2.12. We will only prove that the map

(6.2.14) (φ∗C′) :
∏

C′∈Xss

E
hAut(C′)
C′ →

∏
C′∈Xss

E
hAut(C′)
2

of the first column is Galois equivariant. The other case, with level structure,
proceeds in the same manner.

We first recall the Galois action on the source and target in Equation (6.2.14).
By Equation (6.2.2), the Frobenius σ acts on the source by the map induced by
(Frob−1

p )∗ (Section 2.7).

σ : EhAut(C′)
C′

(Frob−1
p )∗

−−−−−−→ E
hAut(σ∗C

′)
σ∗C′

.

The Frobenius action on the target in Equation (6.2.14) is induced from the Frobe-
nius action on the Γ-set

∐
Xss Γ/φ−1

C′ Aut(C ′)φC′ (as described by Equation (3.4.6))
through our application of Shapiro’s lemma (Equation (6.2.9)). The resulting
Frobenius action is given by

σ : EhAut(C′)
2

y∗
C′◦(Frob−1

p )∗

−−−−−−−−−→ E
hAut(σ∗C

′)
2

where the quasi-isogeny yC′ is defined in the proof of Theorem 3.4.4. The lemma
now follows from the commutativity of the following diagram, which is immediate
given the definition of yC′ .

E
hAut(C′)
C′

(Frob−1
p )∗

//

φ∗
C′

��

E
hAut(σ∗C

′)
σ∗C′

φ∗
σ∗C′

��

E
hAut(C′)
2 y∗

C′◦(Frob−1
p )∗

// EhAut(σ∗C
′)

2

�

6.3. A resolution of EhΓ
1
Gal

2 . In this section we explain how the statement of
Theorem 6.2.1 changes when we replace the spectrum EhΓGal

2 with the spectrum

E
hΓ1

Gal
2 , where Γ1

Gal is the norm 1 subgroup defined in Section 2.7.

Theorem 6.3.1. The spectrum E
hΓ1

Gal
2 is equivalent to the homotopy fiber of the

map

TMFK(2) × TMFK(2)

p2◦φ∗q−p1◦φ
∗
f−−−−−−−−−→ TMF 0(`)K(2)

where the maps pi are projections and the maps φ∗q and φ∗f are the maps defined
in Section 6.1.

The proof of Theorem 6.3.1 follows the same lines as the proof of Theorem 6.2.1.
Namely, one uses Equation 4.4.1 to deduce the analog of Proposition 6.2.6: the
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spectrum EhΓ
1

2 is equivalent to the totalization of a semi-cosimplicial spectrum of
the form ∏

C′∈Xss

E
hAut(C′)
2 × EhAut(C′)

2 ⇒
∏

(C′,H)∈Xss
0 (`)

E
hAut(C′,H)
2 .

One then forms the analog of Diagram 6.2.11

(6.3.2) ∏
C′ E

hAut(C′)
C′ × EhAut(C′)

C′

(φ∗
C′ )×((`−rφC′φ)∗)

��

////
∏

(C′,H)E
hAut(C′,H)
C′

(φ∗
C′ )

��∏
C′ E

hAut(C′)
2 × EhAut(C′)

2

////
∏

(C′,H)E
hAut(C′,H)
2

where the coface maps of the top row correspond to p2 ◦ φ∗q and p1 ◦ φ∗f , and the
coface maps of the bottom row are determined by Proposition 4.4.2. Here φ is the
endomorphism of C of degree `2r+1 that we chose in Section 4.3. The essential
point to the commutativity of Diagram 6.3.2 is the analog of Diagram 6.2.10: for
each (C ′,H), the following diagram commutes.

ECH

φ∗H //

(`−rφCH
φ)∗

��

EC′

φ∗
C′

��
E2

L
g1
(C′,H)

// E2

We deduce that there is an equivalence between EhΓ
1

2 and the homotopy fiber of
the map

TMFK(2),Fp
× TMFK(2),Fp

p2◦φ∗q−p1◦φ
∗
f−−−−−−−−−→ TMF 0(`)K(2),Fp

.

The Galois equivariance of this equivalence follows the same line of verification that
appears in the proof of Lemma 6.2.12, and thus Theorem 6.3.1 is obtained by taking
Galois homotopy fixed points.
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