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Abstract

A. Elmendorf has found an error in the approach to Lemmas 2.2 and 2.3 of “A new proof of the
Bott periodicity theorem” (Topology and its Applications, 2002, 167-183). There are also errors
in the definitions of the maps in Sections 4.2 and 4.5. In this paper we supply corrections to these
errors. We also sketch a major simplification of the argument proving real Bott periodicity, unifying
the eight quasifibrations appearing in the real case, using Clifford algebras.
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In Section 1 we make a correction to the definition of a mapping used in Lemias 2
and 23 of [2]. The original error was pointed out to the author by Tony Elmendorf. We
also correct some flaws in the definition of the mapsof Sections 4.2 and 4.5 of [2].

We also take this opportunity to explain h@ach of the eight quasifibrations arising in
the approach to real Bott periodicity given in [2] may be unified, in the context of Clifford
algebras. This has the added benefit of explaining real Bott periodicity in terms of the
periodicity of Clifford modules, and directly links our approach to work of Atiyah et al.
[1]. Each of the quasifibrations of [2] is the instance of a general quasifibration relating
certain spaces of Clifford structures. So while are providing cogctions to Sections.2
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and 45, we are also inviting the reader to skip Section 4 of [2] altogether in favor of the
Clifford algebra approach given in this note.

In Section 2, we introduce the spaces of Clifford extensi¥s, /), and explain how
they may be identified with the various hogeneous spaces which appear in the real Bott
periodicity theorem. In Section 3, we tline a proof following the methods of [2] that
there is a quasifibration

X(n+1U) — Em,U) L X, U).

These space& (n,U) will be contractible, thus proving Bott periodicity. Each of the
separate arguments of [2] are special cagkghis general argument. Section 2 is
independent of [2]. Section 3 may be read as a terse proof of the real and complex Bott
periodicity theorems, with & exception of occasional erences to specific arguments
givenin [2].

1. Correctionsto[2]
1.1. The definition of w vy in Section 2

Tony Elmendorf has pointed out to thethor that the definition of the map
Tw,v :Z(W, V) — Map(G(W), G(V))

preceding Lemma.2 is not sound. HerdV and V are countably infinite dimensional
inner product spaces ovRr, C, or H. The spac& (W, V) is the space of linear isometries
from W to V. The space& (W) and G (V) are the groups of finite type isometric linear
automorphisms of# andV, respectively. These groups are isomorphicxpU, or Sp
depending on the ground ring.

The problem is that iV is infinite dimensional, then given an infinite subsp&g®f V,
the containment

Vo® Vg CV (1.1)

is not necessarily an equality. EImendorf points out that if one tdkesR> with ortho-
normal baside;}, then for the subspadé spanned bye; + ¢; 1}, the containment (1.1)
is not an equality. Of course, (1.1) is an equalityifis finite dimensional. The definition
of I'y,y givenin [2] incorrectly relied on (1.1) always being an equality.

We give a correct definition of . y. The finite type assumption implies that given
an elementX of G(W), there exists a finite dimensional subspdée C W and a
transformationXg € G(Wp), so that

X =Xwo ® Iyt

under the orthogomadecompositionW = Wo & WOL. Then, given a linear isometry
¢: W — V, the induced elemei, (X) is given by

D(X) = dwo X byt & Ly iy
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under the orthogonaecompositionV = ¢(Wo) ® ¢(Wo)*. The definition ofg, (X) is
easily seen to be independent of the choic®&gf With this definition of¢,, Lemmas 22
and 23 hold.

1.2. The definition of the magpy of Section 4.2

The definition of the mappw: E(W) — O/U(W) preceding Proposition .8 is
incorrect, as it is not compatible with the proof of Lemma8@.4HereE (W) was defined by

E(W)={A| Ais conjugate linear and(A) S [—i,i]} S o(W).

We recall the statement of Lemma4or the reader’s convenience.

Lemma 4.9 of [2]. Suppose thaWW C U/ is a finite dimensional quaternionic space.
Let X be a special representative of the clags] € SO/U(W). Then pv‘vl([X]) =
U/Spker(X? —I)).

In the proof of Lemma 4, it is used thapw (A) is a special representative [0f], but
the factor ofi in the definition ofpy makes this assertion false.
The mappw : E(W) — O/U (W) should be defined by

T
pw(A) = [j eXP(gAﬂ

which we are regarding as an element ofttiglat coset spac® /U (W).
The following lemma is proved by the same algebraic manipulations that prove
Lemma 46 of [2].

Lemma 1.1. Suppose that andZ in O(W) satisfy—iYi =Y tand—iZi = Z~1. Then
there is anX € U (W) such thatjY = X Z if and only if—Y? = Z2.

The proof of Lemma 4 of [2] then proceeds as written, since our new definitioppf
combined with Lemma 1.1 implies thaiy (A) = X if and only if —exp(r A) = X2.

1.3. The definition of the magpy of Section 4.5

In the sentence immediately following the proof of Propositidtidf [2], “U/ O (W)”
should be replaced withSfy U (W)”.

The definition of the mapw : E(W) — S U (W) of Section 45 suffers the same
deficiency as in Section.2, and this deficiency is fixed in exactly the same manner.
Namely, the mappw is not defined correctly to make the proof of Lemma&Qtwork
correctly. We recall the statement of this lemma.

Lemma 4.20 of [2]. Let W C U be a finite dimensional right quaternionic subspace. For
a special representativE of [X] e Sy U(W), we havqp@l([X]) ~U/0ker( X2 —1I)).
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The definition of the mapw immediately preceding Propositionl# of [2] should
altered to read

pw(A) = [j exp(%A)}

which we are regarding as an element of ight coset spac&py U (W).

One has the following lemma, analogous to Lemma 1.1. (Recall that in SecBon 4
of [2], the groupSpW) was defined to be the collection of alfght quaternion linear
isometries of W, and U (W) was the subgroup of right quaternion linear, left complex
linear isometries.)

Lemma 1.2. Suppose that andZ in SgW) satisfy—iYi =Y 1and—iZi = Z~1. Then
there is anX € U (W) such thatjY = X Z if and only if—Y2 = ZZ.

Then, in the proof of Lemma.20, the new definition opy together with Lemma 1.2,
implies that pw (A) = [X] if and only if —exp(rA) = X2, and the rest of the proof
proceeds as written.

2. Spacesof Clifford structures

We now explain how the ad hoc methods of Section 4 of [2] may be united in the context
of Clifford algebras. Fix a real inner product spae Let C,, be the Clifford algebra
generated byR" with the standard metric. It is a real algebra on generatgrs. ., e,
subject to the relations

ejej =—eje;, l;ﬁ]
Define aC, -structureon W to be an (ungraded),,-module structure oveR such that the
generators; act by isometries. IW is given aC,-structure, letO¢, (W) € O (W) be the
collection of isometries o which preserve th€,-structure.
Suppose thaW is given aC,_1 structure. AC, extensionis a C,-structure which
restricts to the givelt,,_1-structure under the inclusiafj,—1 — C,. Observe that to give
aC,-extension is to give an isometey of W such that

2
en =—ly,
eie, =—epe;, 0<i<n.

Let X (n, W) be the space df,-extensions oW, thought of as a subspace @{W). The
group Oc,_, (W) acts onX (n, W) by means of conjugation. Giverie Oc, ,(W), and
en € X (n, W), the action is given by

Y.e,— YenY_l.
Clearly, the stabilizer oé, in Oc, ,(W) is Oc,(W), so thee, orbit is given by
X, W), = Oc,_,(W)/Oc,(W,,)
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whereW,, is given theC, -structure corresponding to tl -extensiore,, .
Given aC,-structure onWw, the moduleW breaks up into an orthogonal direct sum of
irreducibleC, -submodules

W=W1&---& W

We define ding,, (W) to be the numbet.
If e, and f, are two C,-extensions for which the&",-modulesW,, and Wy, are
isomorphic, then there exists an isomekrg Oc, , (W) so that

Ye, = f,,Y.

It follows that £, is in the orbit ofe,. If n = 3 (mod 4, thenC,, has only one isomorphism
class of irreducible modules. Thus, we have

Lemma 2.1. If n # 3 (mod 4, then given any’, -extensiore,,, we have
X(n, W), =X, W).

Suppose that we have= 3 (mod 4. Then the various, -orbits correspond to the path
components oK (n, W). Define a volume elemeant € C,, by

w=e1--€,.

Thenw? = 1, andW breaks up as the orthogonal direct sum offitsand—1 eigenspaces
undero-multiplication.

W=Wrew".

Let/ be a (countable infinite dimensional) real inner product space with-structure
which contains countably mg copies of each irreducibtg,-module as a direct summand.
We shall call such & acompleteC, -universe Define spaces

X(m,U)=1lim X (n, W)

where the colimit is taken over finite dimensioitgl-submoduledV of U/ by extending by
the givenC,-extensiore,,.

We introduce one last bit of notation. Suppose tKat eitherR, C, or H. Let K(n)
denote the algebra aof x n matrices with entries ifK. Let 71 € K(n) be the projection
onto the first component. Its matrix has a 1 in fiel)-position, and zeroes elsewhere.
We shall denote the imaga (W) by W/n.

Table 1 explains why the spacé&n, /) are important. They are the various loop
spaces ofBO x Z. Note that our use of the complete universe is necessary so that
X@B3,U)=BSpx Z andX (7,U/) =BO x Z.

We remark that this analysis carries over to the complex case to simultaneously prove
complex Bott periodicity. One just replaceadl real inner product spaces with complex
inner product spaces, and the Clifford algeb@swith their complex analog€®. The
corresponding spacest (n, ) are also given in Table 1.

Observe that there are Morita equivalence homeomorphisms

X(n, W)~ X(n+ 8,16W)
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Table 1

The space<X (n,U)

n Cp Oc, (W) X(n, W) X(n,U)
0 R ow) - -

1 C Uw) oWw)/UW) o/U

2 H SpW) U(W)/SpW) U/Sp

3 HoH SEWT) x SEW™) BSpW) BSpx Z
4 H(2) SpW/2) SpwW™) Sp

5 C4) Uwy/4 SpW/2)/U(W/4) Sp U

6 R(8) 0 (W/8) U(W/4)/0(W/8) U/o

7 R(8) & R(8) O(W/8%1) x O(W/87) BO(W/8) BOx Z
8 R(16) 0(W/16) o(W/87) o

n ct Upc (W) XCon,w) XCm, 1)
0 C U(w) - _

1 CeC UWT)x UW™) BUW) BU xZ
2 C22 Uw/2) Uw-) U

which will yield Bott periodicity. We also remark that we may extend the definition of
our spaces of Clifford extensions 0(—n, W) for n > 0. If C,, , is the Clifford algebra
generated bR?+4 with the standard inner product of typge, ¢), then for a spac#® with
a Co +1-Structure, we defin& (—n, W) to be the space af ,41-extensions orw.

One could also work witt?/2-graded modules instead of ungraded modules. Every-
thing we have done would go through with a degree shift. Note that gr@gledodules
are the same thing as ungradggd;-modules.

3. Thegeneral quasifibration
We will prove the following theorem, which is Bott periodicity.

Theorem 3.1. Let!/ be a complet&,,1-universe. Then there exists a quasifibration
X(n+1U) > Emn,U) 2> X(n,U)

whose total space is contractible. Therefore there is a weak equivalence
RX(n,U)~Xn+1,U).

The quasifibratiorp of Theorem 3.1 is the colimit of a collection of maps
pw Em,W)— Xn,W)
for each finite dimensional’,;.1-submoduleW of /. Define E(n, W) as space of skew-
symmetric transformations
Em,W)={Aco(W): 6(A) C[—i,i], exA=—Aey, ¢;A=Ae;, 1<i <n}.

Hereo (A) is the spectrum oAi, thinking of it as an element aff W ®r C). Note that the
commutation relations we have imposed on elements(@f W) force them to lie in the
orthogonal complement of the Lie algelwg, (W) in oc,_, (W).
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Define the mapw : E(n, W) — X(n, W) by

-1
T T
pw A —exp(EA)e,Z exp(§A> .

Observe that, +1e, may be regarded as an elementif, W), and that we have

T T
Pw (erz+lerz) = - ex%gen—i—len)en exp<5611+16n)

= —eXp(me,1€n)en

=€y.

The last equality follows from the fact théd,1¢,)2 = —1I, so the eigenvalues ef,,1e,
are contained if+i}.
For anyC,1-spaceV contained i, define inclusionsy vy : X (n, W) — X(n, W&
V)yandiy,y:Em, W) — E(n, W & V) which for f, € X(n, W) andA € E(n, W), are
given by
tw,v i far> fa®enlv,
ZW,V A AD en+len|V-

These inclusions are compatible wijthy,, so that we may define
pEm,U)— X(n,U)

to be the colimit of the mapgy .
We now endeavor to identify the fiber gfy,. Note that forA € E(n, W), the matrix
Y =exp(5 A) has the properties:

e,-Y:Ye,-, l<i<n,
enYzY_len.

The first property implies thagiy takes values itX (z, W). The second property allows us
to apply the following trivial lemmas.

Lemma3.2. Suppose that andZ in O (W) satisfye, ¥ = Y ~1e, ande,Z = Z~te,. Then
we have-Ye,Y 1= —Z¢,Z L ifand only if Y2 = Z2.

Lemma 3.3. Given f, in X(n, W), we havepw(A) = f, if and only if A satisfies
exprA) = fuen.

Proof. Given an elementf, of X (n, W), such thatf, = —Ye,Y~1 we may recover
Y2 = f,e,. Thus the lemma follows from Lemma 3.200

Lemma 3.4. For f, an element oX (n, W),,, the fiber ofpy over f, is given by

Pyt (f) = X(n+ 1 kere, — fn).
Hereker(e, — f,,) C W is a C,-submodule with respect to the giv€p-structure onw'.
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Proof. Regarding the matrixf,e, as an element ol/(W ®g C), it has a spectral
decomposition into a sum of projections

foen ==y + Y my,
!

whereV =ker( f,e, + I) = ker(e, — f,) andi; # —1. Let A be an element oﬁv‘vl(fn).
By Lemma 3.3, we have,e, = exp(mr A). RegardingA as an element af(W ®g C), it
has a spectral decomposition

A=imy —imyr+ Y
!

wherep; are the unique elements 6£i,i) for whiche™ =), andV' @ V' = V. It
follows that when restricted t&, A2 = —I. One easily checks that given this and the
commutation relations associated to being an element @f W), the transformation
fo+1 =en,Ais aCyi1-extension orV =ker(e, — f).

Conversely, givery, ;1 € X(n+1, V), then( f, 11e,)> = —Iy, so onV the transforma-
tion f,11e, has a spectral decomposition of the foirm, — imy» whereV =V’ @ V”.
We then define the correspondiAge p@l(fn) by

A=imy —imyr + Y my,
!
where theu,; are given as before.O

Observe that elements &f(n, U/) may be regarded &S,-extensionsf,, oni{ for which
there exists a finite dimensional subsp&ief,, e,) such that

W (fu,en)™ =Kker(e, — f).

We shall say that such @,-structuref, is virtually equivalentto ¢,. Note that virtual
equivalence is an equivalence relation. We have shown that them@, i) — X (n,U)
has fibers

p ) =X(n+ 1 ker(e, — fu)) = X (n+ 1, W(en, fu))
for £, virtually equivalent tce,,.

Remark. The mapp surjects onto the path component&f, using the fact that path
components oD¢, ,(W)/Oc, (W) are geodesically complete. Jf, € X (n, ) is in the
image of p, then kete, — f,,) will admit a C,41-extension which is the restriction of a
C,+1 extension ori/ which is virtually equivalent ta,1. In fact, if f, = —Ye, V1,
for Y having the property that;Y = Ye; for 1 <i <n ande,Y = Y 1e,, then f,11 =
—Ye,11Y 1is such aC,,1-extension ori/, for which kexe, — f,) and W(e,, f,) are
C,+1-submodules. The spacé(n + 1, ker(e, — f,,)) is the space o€, 1-extensions on
ker(e, — fn) which are virtually equivalent tg;, ;1.

We will apply the Dold—Thom theorem to prove thatis a quasifibration, thus
completing the proof of Theorem 3.1. Define a filtrationX, U),, by setting

Fir X (n,U)e, = { fu: dimc, ., W(fu. en) <k}
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The proof that the filtration annuliy X (n, ) — Fx—1X (n,U) are distinguished follows
the same line of argument as Lemma ®f [2]. The essential point is that for finite
dimensionalC,1-spacedV with a C,+1-subspacé’/, the projection

Oc,(W)/Oc, 1 (V) x Oc, (V') — Oc,(W)/Oc, (V) x Oc,(V?})
is a fibration.
We may define neighborhoodg of Fy_1 X (n,U) in Fy X (n,U) by
Ni={fnt dime, Eigexp(in[—l/Z,l/Z]) Jnen <k}
where the eigenspace is given g, 1-extensionf, 1 as in the preceding remark.
Letting f:[—i,i] — [—i,i] be the function given by
—i, Imx) <-1/2,
fx) = { 2x, —-1/2<Im(x) <1/2,
i, Imx) > 1/2.
Thenf is homotopicto Id re{—i, i}. Let H be such a homotopy and defines® x I — st
so that the following diagram commutes.

[—i,i]— [—i,i]

.10 O

st st

Then the functional calculus (see the discussion preceding Lendnaf32]) gives a
homotopyH; : E(n,U) — E(n,U) which coversgi, : X (n,U) — X (n,U) by

H;: A+ H,(A),

het fo> —hi(fuen)en.

The hypotheses of the Dold—Thom theorem require that the induced#map 1( f,) —
p~L(ho(f,)) induces a homotopy equivalence on fibers. This follows from the following
lemma.

Lemma 3.5. Suppose thav and V are orthogonal finite-dimensional, 1-subspaces
ofU. Then the map

X(n+1L(VeW))— X(n+1,Wwh)
given byf, 11— fut+1® ent+1lv is a weak equivalence.

Proof. Since the spaceX (n + 1,V) are given as homogeneous spaces involving the
groupsO, U, or Sp(see Table 1), this theorem follows directly from Lemma@f [2]. O
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