THE STRUCTURE OF THE v_2-LOCAL ALGEBRAIC tmf RESOLUTION

M. BEHRENS, P. BHATTACHARYA, AND D. CULVER

Abstract. We give a complete description of the E_1-term of the v_2-local as well as g-local algebraic tmf resolution.

Contents

1. Introduction 1
2. bo-Brown-Gitler comodules 6
3. The groups $\pi_{*,*}^{A(2)^e}(bo_1^k)$ 8
4. An algebraic model of $TMF_0(3)$ 9
5. Splitting $bo_1^{\wedge k}$ 19
6. Generating functions 22
7. g-local computations 23
8. The attaching maps ∂_j and ∂'_j 25
9. Applications to the g-local algebraic tmf-resolution 29
Appendix A. A splitting of $bo_1^{\wedge 3}$ 31
References 34

1. Introduction

Let bo denote the connective real K-theory spectrum. Mahowald and his collaborators used the bo resolution (aka the bo-based Adams spectral sequence) to study stable homotopy groups to great effect. Specifically, they computed the image of the J-homomorphism [DM89], proved the 2-primary height 1 telescope conjecture [Mah81], [LM87], computed the unstable v_1-periodic homotopy groups of spheres [Mah82], and applied homotopy theoretic methods to a variety of geometric problems [DGM81].
The spectrum bo has two distinct advantages that lend itself to these applications at the prime 2. Firstly, $\pi_0 bo$ is torsion free and $\pi_1 bo$ is Bott periodic (i.e. v_1-torsion free), so it is equipped to detect the zeroth and first layers of the chromatic filtration. Secondly, v_1-periodic homotopy at the prime 2 is more complicated than at odd primes, and this is witnessed by the elements η and η^2 generating additional anomalous torsion [Ada66]. These elements and their v_1-multiples are detected by the bo-Hurewicz homomorphism

$$\pi_* \to \pi_* bo.$$

At chromatic height 2, the 2-primary stable stems have a vast collection of anomalous torsion, and a significant portion of this v_2-periodic torsion is detected by the spectrum tmf of topological modular forms (see [BMQ21]). As such the tmf resolution represents a significant upgrade to the bo resolution. Indeed, partial analysis of the tmf resolution has resulted in numerous powerful results [BHMM08], [BHMM20], [BBB+21], [BMQ21].

For a spectrum X, the tmf resolution of X is the tower of cofiber sequences

\begin{equation}
X \leftarrow \Sigma^{-1} tmf \wedge X \leftarrow \Sigma^{-2} tmf^{\wedge 2} \wedge X \leftarrow \cdots
\end{equation}

Here tmf is the cofiber of the unit

$$S \to tmf \to tmf.$$

Applying π_* to the tower above results in the tmf-based Adams spectral sequence

$$tmf E_{n,t}^2(X) = \pi_t(tmf \wedge tmf^{\wedge n} \wedge X) \Rightarrow \pi_{t-n} X.$$

Ultimately, the successful applications of the tmf-resolution so far have been limited by our ability to compute the E_2-page of the tmf-based Adams spectral sequence — computations to date have relied on computations of the E_1-page in certain regions. Unlike the bo case, we are not able to completely compute this E_1 page for $X = S$. The goal of this paper is to make a significant step towards rectifying this deficiency.

The computations of the E_1-page that have been successfully performed used the classical Adams spectral sequence. We focus our attention at the prime 2. Recall that for a connective spectrum Y, the mod 2 Adams spectral sequence (ASS) takes the form

$$ass E_2^{s,t}(Y) = \Ext^{s,t}_{A_2}(\mathbb{F}_2, H_* Y) \Rightarrow \pi_{t-s} Y_*$$

where H_* denotes mod 2 homology and A_* is the dual Steenrod algebra. The E_1-term of the tmf-resolution than can then itself be approached by computing the ASS’s

$$ass E_2^{s,t}(tmf \wedge tmf^{\wedge n} \wedge X) \Rightarrow \pi_{t-n}(tmf \wedge tmf^{\wedge n} \wedge X) = tmf E_1^{s,t-n}(X).$$

In practice, given the computation of the E_2-pages, these Adams spectral sequences can be completely computed, as the majority of the differentials can be deduced
from the Adams spectral sequence for tmf (as computed in [BR22]). The tmf-resolution can then be studied through the Miller square [Mil81]

\[\text{ass}\ E_{s,t}^2(\text{tmf} \wedge \text{tmf}^n \wedge X) \rightarrow \text{ASS} \text{tmf} E_1^{n,t-s} (X) \]

Here, the left side of the square is the algebraic tmf-resolution, the analog of the tmf-resolution obtained by applying Ext to (1.1). The starting point is therefore the computation of the \(E_1 \)-page of the algebraic tmf-resolution of the sphere

\[\text{ass}\ E_{s,t}^2(\text{tmf} \wedge \text{tmf}^n). \]

Analogous to the case of the bo-resolution and the \(BP(2) \)-resolution [Mah81] [Cul19], we propose the following conjecture.

Conjecture 1.2. The map

\[\text{ass} E_{s,t}^2(\text{tmf} \wedge \text{tmf}^n) \rightarrow v_2^{-1} \text{ass} E_{s,t}^2(\text{tmf} \wedge \text{tmf}^n) \]

is injective for \(s > 0 \).

This conjecture is consistent with computations in low degrees (see, for instance, [BOSS19]). It implies a good-evil decomposition of the tmf-resolution of the sphere, analogous to that of [BBB+20], [BBB+21].

In this paper we give a complete computation of

\[v_2^{-1} \text{ass} E_{s,t}^2(\text{tmf} \wedge \text{tmf}^n). \]

We now summarize the main results.

For a graded Hopf algebra \(\Gamma \) over \(k \), let \(\mathcal{D}_\Gamma \) denote Hovey’s stable homotopy category of \(\Gamma \)-comodules. Briefly, \(\mathcal{D}_\Gamma \) is similar to the derived category, with the chief difference that weak equivalences are defined to be the \(\pi_{*,*}^\Gamma \)-isomorphisms, where for a \(\Gamma \)-comodule \(M \), the homotopy groups \(\pi_{*,*}^\Gamma \) are defined to be

\[\pi_{k,l}^\Gamma (M) := \text{Ext}_{k}^{k,s+n}(k, M). \]

For \(M \in \mathcal{D}_\Gamma \), we let \(\Sigma^{n,s} M \) denote a shift in internal degree by \(s + n \) and in cohomological degree by \(s \), so we have

\[\pi_{k,l}^\Gamma (\Sigma^{n,s} M) = \pi_{k-n,t-s}^\Gamma (M) \]

and

\[[\Sigma^{n,s} k, M]_{\Gamma} = \pi_{n,s}^\Gamma (M). \]

For a spectrum \(X \), we shall let

\[\mathcal{X} \in \mathcal{D}_A \]

denote the object associated to the mod 2 homology \(H_*X \). In this notation the ASS takes the form

\[\text{ass} E_{s,t}^2(X) = \pi_{t-s,s}^A(\mathcal{X}) \Rightarrow \pi_{t-s} \mathcal{X}^\wedge. \]
Since \(\text{tmf} = (A/\mathbb{A}(2)) \) \([\text{Mat16}]\), where \(A(2) \) is the subalgebra of the mod 2 Steenrod algebra generated by \(Sq^1, Sq^2, \) and \(Sq^4 \), we have a change of rings isomorphism

\[
\pi^*_{A,*}(\text{tmf} \otimes M) \cong \pi^*_{A(2),*}(M)
\]

for any \(M \in D_{A,*} \). Therefore the \(E_1 \)-term of the algebraic tmf-resolution takes the form

\[
\pi^*_{A,*}(\text{tmf} \otimes M) \cong \pi^*_{A(2),*}(\text{tmf}^{\otimes n})
\]

There is a decomposition \([BHHM08]\)

\[
tmf^{\otimes n} \cong \bigoplus_{i_1, \ldots, i_n > 0} \Sigma^{8(i_1 + \cdots + i_n)} \text{bo}_{i_1} \otimes \cdots \otimes \text{bo}_{i_n}
\]

in \(D_{A(2),*} \), where \(\text{bo}_i \) denotes the homology of the \(i \)th bo-Brown-Gitler spectrum (see Section 2).

For an object \(M \in D_{A(2),*} \), the localization \(v_2^{-1}M \) denotes the localization of \(M \) with respect to the element

\[
v_2^8 \in \pi^{A(2)}_{48,8}(\mathbb{F}_2),
\]

so we have

\[
v_2^{-1} \pi^*_{A,*}(\text{tmf} \otimes M) \cong \pi^*_{A(2),*}(v_2^{-1} \text{tmf}^{\otimes n})
\]

We will prove

Theorem 1.5 (see Corollary 8.6 and 2.9). There are equivalences in \(D_{A(2)} \).

\[
v_2^{-1} \text{bo}_{2j} \cong \Sigma^{8j} v_2^{-1} \text{bo}_j \oplus \Sigma^{8j+8,1} v_2^{-1} \text{bo}_{j-1},
v_2^{-1} \text{bo}_{2j+1} \cong v_2^{-1} \Sigma^{8j} \text{bo}_j \otimes \text{bo}_1.
\]

The splittings of (1.4) and Theorem 1.5 inductively imply that in \(D_{A(2)} \), the objects \(v_2^{-1} \text{tmf}^{\otimes n} \) split as a wedge of bigraded suspensions of \(v_2^{-1} \text{bo}_1^{\otimes k} \). We are left with identifying these explicitly.

To this end we will introduce an object

\[
\text{TMF}_0(3) \in D_{A(2)}
\]

which serves as an algebraic version of the tmf-module \(\text{TMF}_0(3) \) (the theory of topological modular forms associated to the congruence subgroup \(\Gamma_0(3) < SL_2(\mathbb{Z}) \)), and prove

Theorem 1.6 (Proposition 5.1 and 5.2). There are splittings in \(D_{A(2)} \).

\[
v_2^{-1} \text{bo}_1^{\otimes 3} \cong 2 \Sigma^{16,1} v_2^{-1} \text{bo}_1 \oplus \Sigma^{24,2} \text{TMF}_0(3),\n\text{TMF}_0(3) \otimes \text{bo}_1 \cong \Sigma^{24,3} \text{TMF}_0(3) \oplus \Sigma^{40,6} \text{TMF}_0(3).
\]

The splittings of Theorem 1.6 imply that the objects \(v_2^{-1} \text{bo}_1^{\otimes k} \) split in \(D_{A(2)} \), as a direct sum of bigraded suspensions of copies of \(v_2^{-1} \text{bo}_1, v_2^{-1} \text{bo}_1, v_2^{-1} \text{bo}_1^{\otimes 2} \), and \(\text{TMF}_0(3) \).

Putting this all together, we have the following theorem (see Corollary 8.7 for a more precise formulation).

\[\text{TMF}_0(3)\]
Theorem. There is a splitting of
\[v_2^{-1\text{tmf}} \otimes n \in \mathcal{D}_{A(2)}^v. \]
into a well-described sum of various bigraded suspensions of
\[\bullet \ v_2^{-1}F_2, \]
\[\bullet \ v_2^{-1}bo_1, \]
\[\bullet \ v_2^{-1}bo_1^\otimes 2, \]
\[\bullet \ \text{TMF}_0(3). \]

The most subtle step to all of this is the first equivalence of Theorem 1.5. Indeed an explicit exact sequence (see (2.5)) of [BHHM08] implies that \(v_2^{-1bo_2} \) is built from \(v_2^{-1}\Sigma^8bo \) and \(v_2^{-1}\Sigma^8+81bo_1 \) in \(\mathcal{D}_{A(2)}^v \). The hard part is showing that the attaching map between these two components is trivial. This is accomplished by showing that if this attaching map is non-trivial, then it is non-trivial after \(g \)-localization where \(g \) is the generator of \(\pi_{20,4}(F_2) \). We then prove the \(g \)-local attaching map is trivial (see Corollary 8.5 and Theorem 9.3), strengthening the results of [BBT21].

Theorem. There is a splitting of
\[g^{-1\text{tmf}} \otimes n \in \mathcal{D}_{A(2)}^v. \]
into a well-described sum of various bigraded suspensions of
\[\bullet \ g^{-1}F_2, \]
\[\bullet \ g^{-1}bo_1, \]
\[\bullet \ g^{-1}bo_1^\otimes 2. \]

The \(v_2 \)-local results of this paper may be applied to understand the TMF-resolution, where
\[\text{TMF} = \text{tmf}[\Delta^{-1}]. \]

Namely, there are localized ASS’s
\[\pi_{*,*}^{A(2)}, (v_2^{-1\text{tmf}} \otimes X) \Rightarrow \pi_*(\text{TMF} \wedge \text{TMF}^{\wedge 8} \wedge X)_2^v. \]

Our \(v_2 \)-local results also may be used to understand the \(v_2 \)-localized algebraic tmf resolution
\[v_2^{-1}A^{A(2)}, (\text{tmf} \otimes M) \Rightarrow v_2^{-1}\pi^{A*}(M). \]

Here, the \(v_2 \)-localized Ext groups \(v_2^{-1}\pi^{A*} \) are as defined in [MS87].

The \(g \)-local results of this paper may be applied to understand \(g \)-local Ext over the Steenrod algebra, using the \(g \)-local algebraic tmf-resolution
\[\pi_{*,*}^{A(2)}, (g^{-1\text{tmf}} \otimes M) \Rightarrow g^{-1}\pi^{A*}(M). \]
Organization of the paper. In Section 2 we reduce the study of tmf to the bo-Brown-Gitler comodules bo. We review exact sequences which relate these comodules to bo⊗k. Upon v_2-localization, we show that these exact sequences give complete decompositions of v_2^{-1}bo in terms of bigraded suspensions of v_2^{-1}bo⊗k for various k, provided certain obstructions ∂_j vanish for j' ≤ j/2.

In Section 3 we review the structure of π^{A(2)}_*(bo⊗k) for 0 ≤ k ≤ 4. These will form the computational input for the rest of the paper.

In Section 4 we construct TMF_0(3) ∈ D_A(2), our algebraic analog of TMF_0(3), and establish some basic properties.

In Section 5 we prove a few key splitting theorems that inductively give complete decompositions of bo⊗k ∈ D_A(2), into indecomposable summands. Provided the obstructions ∂_j vanish, we therefore get complete decompositions of v_2^{-1}bo.

In Section 6 we define certain generating functions which conveniently allow for algebraic computation of the putative decompositions of v_2^{-1}bo.

In Section 7 we explain the analogs of the v_2-local decompositions of bo and bo⊗k in the g-local category. The decompositions of g^{-1}bo depend on the vanishing of certain obstructions ∂_j.

Section 8 we prove our main result: the obstructions ∂_j and ∂'_j vanish for all j. This results in a complete decomposition of v_2^{-1}tmf⊗n and g^{-1}tmf⊗n.

In Section 9 we relate our g-local results to the computations of Bhattacharya, Bobkova, and Thomas [BBT21], providing a strengthening of their results.

In Appendix A we discuss a stable splitting of bo∧3 and its relationship with Theorem 1.6.

Acknowledgments. The results of this paper were made possible with the assistance of the computational Ext software of R. Bruner and A. Perry, and the computer algebra systems Fermat and Sage. The first author was supported by NSF grants DMS-1547292 and DMS-2005476.

2. bo-Brown-Gitler comodules

In this section we reduce the analysis of v_2^{-1}tmf⊗n to the analysis of v_2-local bo-Brown-Gitler comodules. These are A_1-comodules which are the homology of the bo-Brown-Gitler spectra constructed by [GJM86]. Mahowald used integral Brown-Gitler spectra to analyze the bo resolution [Mah81]. The bo-Brown-Gitler comodules play a similar role in the algebraic tmf resolution [BHHM08], [MR09], [DM10], [BOSS19], [BHHM20], [BMQ21].

Endow the mod 2 homology of bo

\[\text{bo} \cong A//A(1)_* = \mathbb{F}_2[\zeta_4, \zeta_2, \zeta_3, \ldots] \]
THE STRUCTURE OF THE v_2-LOCAL ALGEBRAIC tmf RESOLUTION

(2.1) $\text{wt}(\zeta_i) = 2^{i-1}$.

The ith bo-$Brown$-$Gitler$ comodule is the submodule $bo_i \subset A/A(1)_*$ spanned by monomials of weight less than or equal to $4i$.

For an object $M \in D_{A(2)*}$, let $DM = \text{Hom}_{F_2}(M, F_2)$ be its F_2-linear dual. We record the following useful result.

Proposition 2.2. There is an equivalence $v_2^{-1}Dbo_1 \cong \Sigma^{-16,-1}v_2^{-1}bo_1$.

Proof. This follows from the short exact sequence

$0 \to bo_1 \to A(2)//A(1)_* \to \Sigma^{17}Dbo_1 \to 0$.

□

Our interest in the bo-$Brown$-$Gitler$ comodules stems from the fact that there is a splitting of $A(2)_*$-comodules [BHHM08, Cor. 5.5]:

(2.3) $\text{tmf} \cong \bigoplus_{i \geq 0} \Sigma^{8i}bo_i$

where $\Sigma^{8j}bo_j$ is spanned by the monomials of

$\text{tmf} = A//A(2)_* = F_2[\zeta_1^8, \zeta_2^4, \zeta_3^2, \zeta_4, \ldots]$ of weight $8j$. We therefore have a splitting of $A(2)_*$-comodules

(2.4) $\text{tmf}^\otimes n \cong \bigoplus_{i_1, \ldots, i_n > 0} \Sigma^{8(i_1 + \cdots + i_n)}bo_{i_1} \otimes \cdots \otimes bo_{i_n}$.

The object

$\Sigma^{8(i_1 + \cdots + i_n)}bo_{i_1} \otimes \cdots \otimes bo_{i_n} \in D_{A(2)*}$

can be inductively built from $bo_i^{\otimes k}$ by means of a set of exact sequences of $A(2)_*$-comodules which relate the bo_i’s [BHHM08, Sec. 7]:

(2.5) $0 \to \Sigma^{8j}bo_j \to bo_{2j} \to A(2)//A(1)_* \otimes \text{tmf}_{j-1} \to \Sigma^{8j+9}bo_{j-1} \to 0$,

(2.6) $0 \to \Sigma^{8j}bo_j \otimes bo_1 \to bo_{2j+1} \to A(2)//A(1)_* \otimes \text{tmf}_{j-1} \to 0$.

Here, tmf_j is the jth tmf-$Brown$-$Gitler$ comodule — it is the subcomodule of tmf spanned by monomials of weight less than or equal to $8j$.

Remark 2.7. Technically speaking, as is addressed in [BHHM08, Sec. 7], the comodules $A(2)//A(1)_* \otimes \text{tmf}_{j-1}$ in the above exact sequences have to be given a slightly different $A(2)_*$-comodule structure from the standard one arising from the tensor product. However, this
different comodule structure ends up being Ext-isomorphic to the standard one. As the analysis of this paper only requires
\[v_2^{-1} A(2) / A(1) \otimes \text{tmf}_{j-1} \simeq 0, \]
\[g^{-1} A(2) / A(1) \otimes \text{tmf}_{j-1} \simeq 0, \]
and these equivalences hold for the non-standard comodule structures, the reader can safely ignore this subtlety.

Since
\[v_2^{-1} A(2) / A(1) \otimes \text{tmf}_{j-1} \simeq 0, \]
The exact sequences (2.5) and (2.6) give rise to a cofiber sequence in \(D_{A(2)} \).
\begin{equation}
\Sigma^{8j} v_2^{-1} \text{bo}_j \to v_2^{-1} \text{bo}_{2j} \to \Sigma^{8j+8,1} v_2^{-1} \text{bo}_{j-1}
\end{equation}
and an equivalence
\begin{equation}
\Sigma^{8j} v_2^{-1} \text{bo}_j \otimes \text{bo}_1 \simeq v_2^{-1} \text{bo}_{2j+1}.
\end{equation}
Thus, (2.8) and (2.9) inductively build \(v_2^{-1} \text{bo}_k \in D_{A(2)} \).

The connecting homomorphism of the cofiber sequence (2.8)
\begin{equation}
\partial_j : v_2^{-1} \Sigma^{8j+8,1} \text{bo}_{j-1} \to v_2^{-1} \Sigma^{8j+1,-1} \text{bo}_j
\end{equation}
is the obstruction to the cofiber sequence being split. We will prove in Section 8 that the connecting homomorphism \(\partial_j = 0 \) for all \(j \), so we have
\begin{equation}
v_2^{-1} \text{bo}_{2j} \simeq v_2^{-1} \Sigma^{8j} \text{bo}_j \oplus v_2^{-1} \Sigma^{8j+8,1} \text{bo}_{j-1}.
\end{equation}

3. THE GROUPS \(\pi_{*,*}^{A(2)}(\text{bo}^k) \)

In the previous section we related the comodules \(\text{bo}_j \) to the comodules \(\text{bo}_1^k \). We now review the structure of \(\pi_{*,*}^{A(2)}(\text{bo}^k) \) for \(0 \leq k \leq 4 \).

In order to give names to the \(v_0 \)-torsion-free generators of \(\pi_{*,*}^{A(2)}(\text{bo}^k) \), we review the corresponding \(v_0 \)-local computations. The entire structure of the \(v_0 \)-local algebraic tmf resolution is given in [BMQ21] (see also [BOSS19]).

Observe that we have
\begin{equation}
v_0^{-1} \pi_{*,*}^{A(2)}(F_2) = \mathbb{F}_2[c_1, c_2].
\end{equation}
Note that \(c_4, c_6 \in (\text{tmf}_*)_\mathbb{Q} \) are detected in the \(v_0 \)-localized ASS by \(v_1^4 \) and \(v_0^3 v_2^2 \), respectively.

We have (regarding \(\text{bo}_1 \) as a subcomodule of \(A \otimes A(2)_* \))
\[v_0^{-1} \pi_{*,*}^{A(2)}(\text{bo}_1) = \mathbb{F}_2[v_0^\pm, v_1^4, v_2^2, \xi_1, \xi_2] \]
We therefore have an isomorphism
\[(3.2) \quad \nu_1^{-1} \pi_*^{(2)}(\mathbb{H}^k) \cong \mathbb{F}_2[v_0^+, v_1^4, v_2^2] \otimes \mathbb{F}_2 \{\bar{\xi}_1, \bar{\xi}_2\}^k.\]

To make for more compact notation, we will use bars to denote elements of tensor powers:
\[(3.3) \quad x_1 \cdots x_n := x_1 \otimes \cdots \otimes x_n.\]

\[\pi_*^{(2)}(\mathbb{F}_2) : (\text{Figure 3.1})\]

All of the elements are \(c_4 = v_1^4\)-periodic, and \(v_2^8\)-periodic. Exactly one \(v_1^4\) multiple of each element is displayed with the \(\bullet\) replaced by a \(\circ\). Observe the wedge pattern beginning in \(t-s = 35\). This pattern is infinite, propagated horizontally by \(h_{2,1}\)-multiplication and vertically by \(v_1\)-multiplication. Here, \(h_{2,1}\) is the name of the generator in the May spectral sequence of bidegree \((t-s, s) = (5, 1)\), and \(h_{2,1}^2 = g.\)

\[\pi_*^{(2)}(\mathbb{F}_2) \otimes k, \quad k = 1, 2, 3, 4 : (\text{Figures 3.2, 3.3, 3.4, 3.5})\]

Every element is \(v_2^8\)-periodic. However, unlike \(\pi_*^{(2)}(\mathbb{F}_2)\), not every element of these Ext groups is \(v_1^4\)-periodic. Rather, it is the case that either an element \(x \in \text{Ext}_2^{(2), (\mathbb{H}^k)}\) satisfies \(v_1^4x = 0\), or it is \(v_1^4\)-periodic. Each of the \(v_1^4\)-periodic elements fit into families which look like shifted and truncated copies of \(\pi_*^{(1)}(\mathbb{F}_2)\), and are labeled with a \(\circ\). We have only included the beginning of these \(v_1^4\)-periodic patterns in the chart. The other generators are labeled with a \(\bullet\). A \(\square\) indicates a polynomial algebra \(\mathbb{F}_2[h_{2,1}]\). Elements which are \(v_0\)-torsion-free are named in these charts using \((3.2)\), in the bar notation of \((3.3)\).

4. AN ALGEBRAIC MODEL OF TMF\(_0(3)\)

The spectrum \(\text{TMF}_0(3)\) is an analog of TMF associated to the moduli of elliptic curves with with \(\Gamma_0(3)\)-structures introduced and studied by Mahowald and Rezk [MR09]. In fact, Mahowald and Rezk proposed three different connective spectra whose \(E(2)\)-localizations are \(\text{TMF}_0(3)\) (also see [DM10]).

We will emulate [MR09, DM10] in the category of \(\text{D}_{A(2)}\) to construct the \(\text{TMF}_0(3)\).

Lemma 4.1. The composite
\[\Sigma^6.2 \mathbb{F}_2 \xrightarrow{h_2^2} \mathbb{F}_2 \hookrightarrow \Sigma^7 \text{D}_{\mathbb{H}_1}\]
extends to a map
\[\tilde{h}_2^2 : \Sigma^6.2 \mathbb{H}_1 \to \Sigma^7 \text{D}_{\mathbb{H}_1} .\]

Our algebraic model of \(\text{TMF}_0(3)\) is defined to be
\[\text{TMF}_0(3) := v_2^{-1}(\Sigma^{24.3} \text{D}_{\mathbb{H}_1} \cup_{h_2^2} \Sigma^{24.4} \text{D}_{\mathbb{H}_1}).\]

Figure 4.1 shows a computation of the homotopy of \(\text{D}_{\mathbb{H}_1} \cup_{h_2^2} \Sigma^{24.3} \text{D}_{\mathbb{H}_1}\). In this figure, the solid dots correspond to \(\text{D}_{\mathbb{H}_1}\) and the open dots correspond to \(\text{D}_{\mathbb{H}_1}\).

One convenient way of accessing the homotopy of \(\text{D}_{\mathbb{H}_1}\) is from the short exact
Figure 3.1. $\pi_{s_*}^{A(2)} (\mathbb{F}_2)$.
Figure 3.2. $\pi_{*,*}^{A(2), (\text{bo}_1)}$.
$\Ext_{A(2)}(\mathbf{b}_1 \otimes^2 \mathbf{b}_2)$
Figure 3.4. $\pi_{\ast \ast}^{A(2)} (\text{bo}_1 \otimes 3)$.
Figure 3.5. $\pi_{A^{(2)\ast}} (\mathcal{B}^{\otimes 4})$.
sequence in the proof of Proposition 2.2. A chart of $\pi^{A(2)*}_{*,*}(\text{TMF}_0(3))$ is displayed in Figure 4.2.

Lemma 4.2. Any map

$$f : \text{TMF}_0(3) \to \text{TMF}_0(3)$$

which is the identity on $\pi^{A(2)*}_{0,0}$ is an equivalence.

Proof. Let $1_{\text{TMF}_0(3)} \in \pi^{A(2)*}_{0,0}(\text{TMF}_0(3))$ denote the generator. The $\pi^{A(2)*}_{*,*}(\mathbb{F}_2)$-module structure implies f is the identity on $g \cdot 1_{\text{TMF}_0(3)}$ and $v_2^4 h_1$. It follows from h_2 linearity that f is the identity on x_{17} (see Figure 4.2). Therefore f is the identity on $v_2^4 h_1 x_{17}$. It follows from $h_0, h_1, h_2, v_0 v_2, v_0 v_2^2, v_0^2 h_1$, and g multiplications. It then follows that f is a $\pi^{A(2)*}_{*,*}$-isomorphism. □

We have the following algebraic version of the Recognition Principle of Davis-Mahowald-Rezk (see [MR09, Prop. 7.2]).

Theorem 4.3 (Recognition Principle). Suppose that $X \in \mathcal{D}_{A(2)*}$ satisfies

$$\pi^{A(2)*}_{*,*}(X) \cong \pi^{A(2)*}_{*,*}(\text{TMF}_0(3))$$

where the above isomorphism preserves $v_0, h_1, h_2, v_4^2, v_0 v_2, v_0^2 v_2, v_0^2 h_1, v_2^4 h_1,$ and g multiplications. Then there is an equivalence

$$X \cong \text{TMF}_0(3).$$

Proof. Let

$$x_{17} : \Sigma^{17,3} \mathbb{F}_2 \to X$$
represent the generator of $\pi^{A(2)*}_{17,3}(X)$. Since

$$\pi^{A(2)*}_{17,4}(X) = \pi^{A(2)*}_{19,4}(X) = \pi^{A(2)*}_{23,4}(X) = 0,$$

there exists an extension of x_{17} to a map

$$\Sigma^{24,3} D_{b0} \to X.$$

Since

$$\pi^{A(2)*}_{23,5}(X) = \pi^{A(2)*}_{27,5}(X) = \pi^{A(2)*}_{29,5}(X) = \pi^{A(2)*}_{30,5}(X) = 0,$$

there exists a further extension of this map to a map

$$\Sigma^{24,3} D_{b0} \cup \Sigma^{24,4} b_{10} \to X.$$

The conditions on the isomorphism (4.4) imply that $X \cong v_2^{-1} X$. Thus the map above localizes to a map

$$v_2^{-1}(\Sigma^{24,3} D_{b0} \cup \Sigma^{24,4} b_{10}) \to X.$$

The conditions on the isomorphism (4.4) then force the map above to be a $\pi^{A(2)*}_{*,*}$-isomorphism. □
Figure 4.1. Computing the homotopy of $D_{\Sigma^0_1} \cup_{\Sigma^0_2} \Sigma^0_1$.
Figure 4.2. $\pi_{\ast, \ast}^{A(2)}(\text{TMF}_0(3))$.
For us, a weak ring object in \(D_{A(2)_*} \) is an object \(R \in D_{A(2)_*} \) with a unit
\[u : F_2 \to R \]
and a multiplication
\[m : R \otimes R \to R \]
such that the two composites
\[
\begin{align*}
R \otimes F_2 & \xrightarrow{1 \otimes u} R \otimes R \xrightarrow{m} R, \\
F_2 \otimes R & \xrightarrow{u \otimes 1} R \otimes R \xrightarrow{m} R
\end{align*}
\]
are equivalences.

Proposition 4.5. \(\text{TMF}_0(3) \) is a weak ring object in \(D_{A(2)_*} \).

Proof. We shall need to imitate the “first model” of [MR09], [DM10]. Start with the \(A_* \)-comodule \(\mathcal{Y} \) described in [DM10, Thm. 2.1(a)]. Then the method of proof for [DM10, Thm. 2.1(b)] shows that there exists a map
\[h_0 h_2 : \Sigma^{3,2} \mathcal{Y} \to F_2 \]
in \(D_{A_*} \), extending \(h_0 h_2 \), so we can take the cofiber
\[X := F_2 \cup_{h_0 h_2} \Sigma^{4,1} \mathcal{Y}. \]
Regarding this cofiber as an object of \(D_{A(2)_*} \), define
\[R := v_2^{-1} X \in D_{A(2)_*}. \]
We will show (a) \(R \simeq \text{TMF}_0(3) \) and (b) \(R \) is a ring object of \(D_{A(2)_*} \).

For (a), we will compute \(\pi^{A(2)_*}_* (R) \). To this end, we observe that the methods of the proof of [DM10, Thm. 2.1(c)] show that there is a map
\[f : X \to A(2) \amalg A(1)_* \]
which extends the inclusion \(F_2 \hookrightarrow A(2) \amalg A(1)_* \). Let \(C \) be the cofiber of \(f \):
\[(4.6) \]
\[X \xrightarrow{f} A(2) \amalg A(1)_* \to C. \]
Then the proof of [DM10, Thm. 2.1(d)] shows that
\[
\pi^{A(2)_*}_* (A(2)_* \otimes C) \cong \begin{cases}
\Sigma^4 A(2)/A(2)(\text{Sq}^4, \text{Sq}^5 \text{Sq}^1)_*, & s = 0, \\
0, & s > 0.
\end{cases}
\]
as an \(A(2)_* \)-comodule. The \(A(2)_* \)-based Adams spectral sequence for \(C \) then collapses to give an isomorphism
\[
\pi^{A(2)_*}_* (C) \cong \text{Ext}^{s+s}_* (F_2, \Sigma^4 A(2)/A(2)(\text{Sq}^4, \text{Sq}^5 \text{Sq}^1)_*).
\]
These Ext groups were computed in [DM10, Thm. 2.9]. The cofiber sequence (4.6) gives an equivalence
\[R \simeq \Sigma^{-1,1} v_2^{-1} C. \]
We see by inspection of Davis-Mahowald’s Ext computation alluded to above that there is an isomorphism
\[
\pi^{A(2)_*}_* (\Sigma^{-1,1} v_2^{-1} C) \cong \pi^{A(2)_*}_* (\text{TMF}_0(3)).
\]
satisfying the hypotheses of the Recognition Principle (Theorem 4.3). We deduce that there is an equivalence

$$\text{TMF}_0(3) \simeq R.$$

We now just need to prove R is a ring object in $DA_{(3)}$. For this we imitate the proof of [DM10, Thm. 2.1(e)]. Namely, consider the composite

$$m : X \otimes X \xrightarrow{f \otimes f} A(2) \otimes A(1)_* \xrightarrow{\mu} A(2) \otimes A(1)_*.$$

By the cofiber sequence (4.6), the map m lifts to a map

$$m : X \otimes X \to X$$

if the composite

$$X \otimes X \xrightarrow{m} A(2) \otimes A(1)_* \to C$$

is null. In the proof of [DM10, Thm. 2.1(e)], it is established using Bruner’s Ext software that

$$[X \otimes X, C]_{A(2)} = 0.$$

Therefore, the lift m exists. Since it is a lift of m, it is the identity on the bottom cell. It follows that the composites

$$R \otimes F_2 \to R \otimes R \xrightarrow{m} R,$$

$$F_2 \otimes R \to F_2 \otimes R \xrightarrow{m} R$$

are equivalences. Thus m gives R the structure of a weak ring object. (In fact, the analog of Lemma 4.2 holds for X, and so X is also a weak ring object.)

5. SPLITTING $\text{bo}_1 \otimes k$

In this section we prove our main v_2-local splitting theorems, which will be the basis of all of our subsequent v_2-local decomposition results.

Proposition 5.1. There is a splitting

$$v_2^{-1} \text{bo}_1 \otimes 3 \simeq 2\Sigma^{16,1} v_2^{-1} \text{bo}_1 \otimes \Sigma^{24,2} \text{TMF}_0(3).$$

Proof. Since we are working in characteristic 2, there is a decomposition

$$\text{bo}_1 \otimes 3 \simeq (\text{bo}_1 \otimes 3)^{\text{h}C_3} \oplus B$$

where C_3 acts by cyclically permuting the terms, and we have

$$\pi_*^{A(2)}((\text{bo}_1 \otimes 3)^{\text{h}C_3}) = \pi_*^{A(2)}((\text{bo}_1 \otimes 3)^{\text{h}C_3}).$$

It is easily checked, using the names of the generators in Figure 3.4, that there is an isomorphism

$$v_2^{-1} \pi_*^{A(2)}((\text{bo}_1 \otimes 3)^{\text{h}C_3}) \cong \pi_*^{A(2)}(\text{TMF}_0(3)).$$
A direct application of the Recognition Principle (Theorem 4.3) shows that
\[v_2^{-1}(bo_1^\otimes 3)hC_3 \simeq \Sigma^{24,2}TMF_0(3). \]

Let
\[x_{16} : \Sigma^{16,1}_+ F_2 \to bo_1^\otimes 2 \]
correspond to the generator of \(\pi_{16,1}^{A(2)}(bo_1^\otimes 2) \). Then the composite
\[\Sigma^{16,1}_+ v_2^{-1}bo_1 \oplus \Sigma^{16,1}_+ v_2^{-1}bo_1 \xrightarrow{x_{16} \otimes 1 \otimes x_{16}} v_2^{-1}bo_1^\otimes 3 \to v_2^{-1}B \]
is seen to be a \(\pi_{*,*}^{A(2)} \)-isomorphism, hence an equivalence. \(\square \)

Proposition 5.2. There is a splitting
\[TMF_0(3) \wedge bo_1 \simeq \Sigma^{24,3}TMF_0(3) \oplus \Sigma^{40,6}TMF_0(3). \]

Proof. Tensoring the splitting of Proposition 5.1 with \(bo_1 \), we have
\[v_2^{-1}bo_1^\otimes 4 \simeq 2\Sigma^{16,1}_+ v_2^{-1}bo_1^\otimes 2 \oplus \Sigma^{24,2}TMF_0(3) \wedge bo_1. \]

Examination of \(\pi_{*,*}^{A(2)}(bo_1^\otimes 4) \) (Figure 3.5) reveals that
\[\pi_{*,*}^{A(2)}(v_2^{-1}bo_1^\otimes 4) \simeq 2\pi_{*,*}^{A(2)}(\Sigma^{16,1}_+ v_2^{-1}bo_1^\otimes 2) \oplus \pi_{*,*}^{A(2)}(\Sigma^{18,5}_+ TMF_0(3)) \oplus \pi_{*,*}^{A(2)}(\Sigma^{64,8}_+ TMF_0(3)). \]

It follows that there is an isomorphism
\[\pi_{*,*}^{A(2)}(TMF_0(3) \wedge bo_1) \cong \pi_{*,*}^{A(2)}(\Sigma^{24,3}TMF_0(3)) \oplus \pi_{*,*}^{A(2)}(\Sigma^{40,6}TMF_0(3)). \]

Moreover, one can check form the \(\pi_{*,*}^{A(2)}(F_2) \)-module structure of \(\pi_{*,*}^{A(2)}(bo_1^\otimes 4) \) that the isomorphism preserves multiplication by
\[v_0, v_1^4, v_0v_2, v_2^8, h_1, h_2, g, v_2^2h_1. \]

The map
\[\Sigma^{24,3}_+ F_2 \oplus \Sigma^{40,6}_+ F_2 \to TMF_0(3) \wedge bo_1 \]
which maps the two generators in gives rise to a map of \(TMF_0(3) \)-modules
\[\Sigma^{24,3}TMF_0(3) \oplus \Sigma^{40,6}TMF_0(3) \to TMF_0(3) \wedge bo_1. \]

One can then use \(\pi_{*,*}^{A(2)}(F_2) \)-module structures to determine that this map is an isomorphism on \(\pi_{*,*}^{A(2)} \). \(\square \)

Remark 5.3. Propositions 5.1 and 5.2 allow one to inductively compute a splitting of \(v_2^{-1}bo_1^\otimes k \) in \(D_{A(2)} \), as a sum of suspensions of \(v_2^{-1}bo_1 \), \(v_2^{-1}bo_1^\otimes 2 \), and \(TMF_0(3) \). For example, we have
\[v_2^{-1}bo_1^\otimes 4 \simeq (2\Sigma^{16,1}_+ v_2^{-1}bo_1 \oplus \Sigma^{24,2}TMF_0(3)) \otimes bo_1 \]
\[2\Sigma^{16,1}_+ v_2^{-1}bo_1^\otimes 2 \oplus \Sigma^{24,2}TMF_0(3) \otimes bo_1 \]
\[2\Sigma^{16,1}_+ v_2^{-1}bo_1^\otimes 2 \oplus \Sigma^{48,5}_+ TMF_0(3) \oplus \Sigma^{64,8}_+ TMF_0(3). \]
In the next case, we can further simplify the answer using v_2^5 periodicity.

$$v_2^{-1}b_2^6 \simeq (2\Sigma^{16,1} v_2^{-1}b_0^2 + \Sigma^{48,5} \text{TMF}_0(3)) \oplus b_0^1,$$

$$\simeq 2\Sigma^{16,1} v_2^{-1}b_2^3 \oplus \Sigma^{48,5} \text{TMF}_0(3) \oplus b_0^1 \oplus \Sigma^{64,8} \text{TMF}_0(3) \oplus b_0^1,$$

$$\simeq 4\Sigma^{32,2} v_2^{-1}b_0^2 \oplus 2\Sigma^{40,3} \text{TMF}_0(3) \oplus \Sigma^{72,8} \text{TMF}_0(3) \oplus 2\Sigma^{88,11} \text{TMF}_0(3) \oplus \Sigma^{104,14} \text{TMF}_0(3),$$

$$\simeq 4\Sigma^{32,2} v_2^{-1}b_0^1 \oplus 2\Sigma^{24} \text{TMF}_0(3) \oplus 4\Sigma^{40,3} \text{TMF}_0(3) \oplus 4\Sigma^{56,6} \text{TMF}_0(3).$$

We similarly may compute

(5.4) $$v_2^{-1}b_0^6 \simeq 4\Sigma^{32,2} v_2^{-1}b_0^2 \oplus 4\Sigma^{16,2} \text{TMF}_0(3) \oplus 5\Sigma^{64,6} \text{TMF}_0(3) \oplus 5\Sigma^{32,1} \text{TMF}_0(3) \oplus 4\Sigma^{48,4} \text{TMF}_0(3).$$

Finally, we will find the following splitting to be useful.

Proposition 5.5. There is a splitting

$$\text{TMF}_0(3)^{\otimes 2} \simeq \text{TMF}_0(3) \oplus \Sigma^{0,-1} \text{TMF}_0(3) \oplus \Sigma^{16,2} \text{TMF}_0(3) \oplus \Sigma^{32,5} \text{TMF}_0(3).$$

Proof. Smashing the splitting of Proposition 5.1 with itself, and applying Proposition 5.2 and periodicity, we have

$$v_2^{-1}b_0^6 \simeq 4\Sigma^{32,2} b_0^2 \oplus 4\Sigma^{40,3} b_0 \oplus \text{TMF}_0(3) \oplus \Sigma^{48,4} \text{TMF}_0(3)^{\otimes 2},$$

$$\simeq 4\Sigma^{32,2} b_0^2 \oplus 4\Sigma^{64,6} \text{TMF}_0(3) \oplus 4\Sigma^{80,9} \text{TMF}_0(3) \oplus \Sigma^{48,4} \text{TMF}_0(3)^{\otimes 2},$$

$$\simeq 4\Sigma^{32,2} b_0^2 \oplus 4\Sigma^{64,6} \text{TMF}_0(3) \oplus 4\Sigma^{32,1} \text{TMF}_0(3) \oplus \Sigma^{48,4} \text{TMF}_0(3)^{\otimes 2}.$$
6. Generating functions

In this section we will describe a useful combinatorial way of computing decompositions of \(v_2^{-1} \text{bo}_1 \otimes k \) and \(v_2^{-1} \text{bo}_1 \).

We will represent the objects of \(D_{A(2)} \) of the form

\[
\sum_{i} s^i t^i x^i y^i = \sum_{i} s^i t^i x^i y^i + \sum_{i} t^i s^i x^i y^i + \sum_{i} s^i t^i x^i y^i.
\]

Propositions 5.1, 5.2, and \(v_2 \)-periodicity impose some relations on this polynomial ring — we therefore work in the quotient ring

\[
R := \mathbb{Z}[s, t, x, y] / (x^3 = 2t^2 s x + t^3 s^2 y, xy = t^3 s^3 y + t^5 s^6 y, t^6 s^8 = 1).
\]

Note that these relations imply

\[
y^2 = y + s^{-1} y + t^2 s^2 y + t^4 s^5 y.
\]

This relation reflects the splitting of Prop 7.3.

We may use the relations of \(R \) to reduce \(x^k \) to a sum of monomials whose terms are of the form \(t^i s^j x^i y^j \). These reduced forms of \(x^k \) correspond to splittings of \(v_2^{-1} \text{bo}_1 \). For example, the splitting (5.4) corresponds to the expression

\[
x^6 = 5s^6 t^8 y + s^4 t^6 y + s^3 t^4 y + 5st^2 y + 4s^2 t^4 x^2
\]

in \(R \). Table 1 shows the reduced forms of \(x^k \) in \(R \) for \(k \leq 16 \).

In light of Propositions 2.2 we can also compute the duals of objects of the form (6.1) represented as an element of \(R \) via the ring map:

\[
D : R \to R
\]

\[
t \mapsto t^{-1}
\]

\[
s \mapsto s^{-1}
\]

\[
x \mapsto t^{-2} s \cdot x
\]

\[
y \mapsto s \cdot y
\]

Note the formula \(D(y) = sy \) is forced by the relations of \(R \). We note however that Proposition 5.1 and Proposition 2.2 can be used to deduce that \(v_2^{-1} D \text{TMF}_0(3) \simeq \Sigma^0.1 \text{TMF}_0(3) \).

Now assume that the connecting morphisms \(\partial_j \) (2.10) are trivial for for \(1 \leq j \leq j_0 \). (We will eventually prove \(\partial_j \) is always zero in Theorem 8.1) Then we can inductively define elements of \(R \) which encode the splitting of \(v_2^{-1} \text{bo}_1 \) for \(j \leq 2j_0 + 1 \). These are the \(\text{bo}-\text{Brown-Gitler} \) polynomials, introduced in [BHHM20, Sec. 8]. Their
The structure of the v_2-local algebraic tmf resolution

x^3	$s^2t^3y + 2st^2x$
x^4	$s^5t^6y + t^2y + 2st^2x^2$
x^5	$s^6t^7y + 4s^3t^5y + t^3y + 4st^4x$
x^6	$5s^6t^8y + s^4t^6y + s^3t^6y + 5st^4y + 4st^4x^2$
x^7	$6s^7t^9y + s^6t^9y + 14s^4t^7y + s^2t^5y + 6st^5y + 8s^3t^6x$
x^8	$20st^{10}y + 7s^5t^6y + 7st^6y + 20s^2t^6y + st^6y + t^5y + 8s^3t^6x^2$
x^9	$8s^7t^{11}y + s^6t^9y + 48s^5t^9y + s^4t^7y + 8s^3t^7y + 27s^2t^7y + 27t^5y$

$+ 16s^4t^8x^2$

| x^{10} | $s^7t^{12}y + 35s^6t^{10}y + 35s^5t^{10}y + s^4t^8y + 75s^3t^8y + 9s^2t^8y$ |

$+ 9st^6y + 75t^6y + 16s^4t^8x^2$

| x^{11} | $10s^7t^{11}y + 166s^6t^{11}y + 10s^5t^{11}y + 44s^4t^9y + 110s^3t^9y + s^2t^9y$ |

$+ s^2t^7y + 110st^7y + 44t^7y + 32st^8x^2$

| x^{12} | $154s^7t^{12}y + 154s^6t^{12}y + s^5t^{12}y + 11s^5t^{10}y + 276s^4t^{10}y$ |

$+ 54s^3t^{10}y + 54s^2t^8y + 276st^8y + 11t^8y + t^6y + 32s^3t^{10}x^2$

| x^{13} | $584s^7t^{13}y + 65s^6t^{13}y + s^5t^{11}y + 20s^5t^{11}y + 430s^4t^{11}y$ |

$+ 12s^3t^{11}y + 12s^3t^9y + 430s^2t^9y + 208st^9y + t^8y + 65t^7y + 64s^3t^{12}x$ |

| x^{14} | $638s^7t^{14}y + 13s^6t^{14}y + 77st^6y + 1014s^5t^{12}y + 273s^4t^{12}y$ |

$+ s^3t^{12}y + s^4t^{10}y + 273s^3t^{10}y + 1014s^2t^{10}y + 77st^{10}y + 13st^8y + 63s^3y$ |

$+ 64s^2t^{12}x^2$

| x^{15} | $350s^7t^{15}y + s^6t^{15}y + 14s^5t^{13}y + 911s^6t^{13}y + 1652s^5t^{13}y$ |

$+ 90st^{13}y + 90s^4t^{11}y + 1652s^3t^{11}y + 911s^2t^{11}y + 14st^9y + s^2t^9y$ |

$+ 350st^9y + 2092t^9y + 128s^7t^{14}x$ |

| x^{16} | $104s^7t^{16}y + 440s^6t^{14}y + 3744s^5t^{14}y + 1261s^5t^{14}y + 15s^4t^{14}y$ |

$+ 15s^3t^{14}y + 1261s^4t^{12}y + 3744s^3t^{12}y + 440s^2t^{12}y + st^{12}y + 104s^2t^{10}y$ |

$+ 256st^{10}y + 256st^{10}y + t^8y + 128s^7t^{14}x^2$

Table 1. Reduced expressions for x^k in R corresponding to decompositions of $v_2^{-1}bo^{2k}$.

definition comes from (2.9) and (2.11).

\[
\begin{align*}
 f_0 & := 1, \\
 f_1 & := x, \\
 f_{2j+1} & := t^j \cdot f_j, \\
 f_{2j} & := t^j f_j + t^{j+1} s \cdot f_{j-1}.
\end{align*}
\]

(6.3)

Table 2 shows reduced expressions for f_j in R for $j \leq 16$.

7. g-local computations

We will now consider the g-local bo-Brown-Gitler comodules, for

\[g = h_{2,1}^4 \in \mathcal{A}^{(2)}\mathcal{F}_2. \]

The g-local results of this section will be crucial for the main result of Section 8.
Because the terms $A(2) \otimes \mathcal{mf}_{j-1}$ in (2.5) and (2.6) are g-locally acyclic in $\mathcal{D}_{A(2)}$, we have cofiber sequences

$$(7.1) \Sigma^8 j g^{-1} b_0 j \to g^{-1} b_0 2j \to \Sigma^{8j+8} g^{-1} b_0 j-1 \to \Sigma^{8j+1} g^{-1} b_0 j$$

and equivalences

$$(7.2) g^{-1} b_0 2j+1 \simeq \Sigma^{8j} g^{-1} b_0 j \otimes b_0 1.$$
ring R, we work in the ring

$$R' := \mathbb{Z}[s^\pm, t^\pm, x]/(x^3 = 2t^2sx).$$

By Proposition 7.4, we may encode g-local Spanier-Whitehead duality by the function

$$D : R' \rightarrow R'$$

$$s \mapsto s^{-1}$$

$$t \mapsto t^{-1}$$

$$x \mapsto t^{-2}s^{-1}x$$

Define elements $f'_j \in R'$ by the same inductive definition used to define the elements $f_j \in R$. A simple induction reveals the following.

Lemma 7.5. The elements $f'_j \in R'$ take the form

$$f'_j = \begin{cases}
\sum_i (a_{i,j} s^{i}t^j + b_{i,j} s^{i}t^j x + c_{i,j} s^{i}t^j x^2), & j \text{ even,} \\
\sum_i (b_{i,j} s^{i}t^j x + c_{i,j} s^{i}t^j x^2), & j \text{ odd,}
\end{cases}$$

for $a_{i,j}, b_{i,j}, c_{i,j} \in \mathbb{N}$.

8. The attaching maps ∂_j and ∂'_j

Theorem 8.1. The attaching maps ∂_j (2.10) and ∂'_j (7.1) are zero for all j.

Proof. Write the exact sequence (2.5) as a splice of two short exact sequences

$$0 \rightarrow \Sigma^{8j}b_{o,j} \rightarrow b_{o,j} \rightarrow A(2)//A(1)_* \otimes \text{tmf}_{j-1} \rightarrow \Sigma^{8j+9}b_{o,j-1} \rightarrow 0$$

and let

$$\Sigma^{8j}b_{o,j} \rightarrow b_{o,j} \rightarrow K \overset{\alpha}{\rightarrow} \Sigma^{8j+1,-1}b_{o,j}$$

$$\Sigma^{8j+8,1}b_{o,j-1} \overset{\beta}{\rightarrow} K \rightarrow A(2)//A(1)_* \otimes \text{tmf}_{j-1} \rightarrow \Sigma^{8j+9}b_{o,j-1}$$
be the cofiber sequences in $D_{A(2)}$, induced from these short exact sequences. Then we have the following commutative diagram in $D_{A(2)}$.

![Diagram]

We therefore have

(8.2) \[g^{-1} \partial_j = v_2^{-1} \partial'_j. \]

Now, Assume inductively that ∂_k and ∂'_k are zero for $k < j$. Then for $k < 2j + 1$, $v_2^{-1} \text{bo}_k$ and $g^{-1} \text{bo}_k$ decomposes in $D_{A(2)}$, as a sum of terms corresponding to the terms of f_k and f'_k, respectively. Note that we have

\[\partial_j \in \pi_{7,2}^{A(2)}(v_2^{-1} D(\text{bo}_{j-1}) \otimes \text{bo}_j), \]
\[\partial'_j \in \pi_{7,2}^{A(2)}(g^{-1} D(\text{bo}_{j-1}) \otimes \text{bo}_j). \]

It follows from Lemma 7.5 that

\[D(f'_{j-1}) \cdot f'_j = \sum_i (\alpha_i s^i x + \beta_i s^j t^{-1} x^2) \]

for $\alpha_i, \beta_i \in \mathbb{N}$, and therefore

(8.3) \[g^{-1} D(\text{bo}_{j-1}) \otimes \text{bo}_j \simeq \bigoplus_i (\alpha_i \Sigma^{0,i} g^{-1} \text{bo}_1 + \beta_i \Sigma^{-8,i} g^{-1} \text{bo}_1 \otimes^2). \]

Note that there is a map of rings

$\phi : R' \to R$

sending s to t, t to t, and x to x. We have

\[f_k \equiv \phi(f'_k) \mod y. \]

We therefore have

\[D(f_{j-1}) \cdot f_j = \sum_i (\alpha_i s^i x + \beta_i s^j t^{-1} x^2) + \sum_{k,l} \gamma_{k,l} s^k t^l y. \]

It follows that we have

(8.4) \[v_2^{-1} D(\text{bo}_{j-1}) \otimes \text{bo}_j \simeq \bigoplus_i (\alpha_i \Sigma^{0,i} v_2^{-1} \text{bo}_1 + \beta_i \Sigma^{-8,i} v_2^{-1} \text{bo}_1 \otimes^2) \otimes \bigoplus_{k,l} \Sigma^{8l,k} \text{TMF}_0(3). \]

Note that

\[\pi_{8m+7, n}^{A(2)}(\text{TMF}_0(3)) = 0 \]
for all n, m, so the the only potential non-zero components of ∂_j under the decomposition (8.4) are the components

$$\begin{align*}
(\partial_j)_{i}^{(1)} & \in \pi_{7,2-i}(\alpha_i v_2^{-1} b_{01}), \\
(\partial_j)_{i}^{(2)} & \in \pi_{15,2-i}(\beta_i v_2^{-1} b_{01}^{\otimes 2}).
\end{align*}$$

Similarly, let

$$\begin{align*}
(\partial_j')_{i}^{(1)} & \in \pi_{7,2-i}(\alpha_i g^{-1} b_{01}), \\
(\partial_j')_{i}^{(2)} & \in \pi_{15,2-i}(\beta_i g^{-1} b_{01}^{\otimes 2})
\end{align*}$$

denote the components of ∂'_j under the splitting (8.3).

Note that the splittings (8.3) and (8.4) are compatible under the maps

$$g^{-1} D(b_{0j-1}) \otimes b_{0j} \to v_2^{-1} g^{-1} D(b_{0j-1}) \otimes b_{0j}$$

since $g^{-1} \text{TMF}_0(3) \simeq 0$, and by (8.2) ∂_j' and ∂_j map to the same element of $
\pi_{7,2}^A(v_2^{-1} g^{-1} D(b_{0j-1}) \otimes b_{0j}).$

We therefore deduce that under the maps

$$\begin{align*}
\alpha_i g^{-1} b_{01} & \to \alpha_i v_2^{-1} g^{-1} b_{01} \leftarrow \alpha_i v_2^{-1} b_{01}, \\
\beta_i g^{-1} b_{01}^{\otimes 2} & \to \beta_i v_2^{-1} g^{-1} b_{01}^{\otimes 2} \leftarrow \beta_i v_2^{-1} b_{01}^{\otimes 2}
\end{align*}$$

we have

$$\begin{align*}
v_2^{-1}(\partial'_j)_{i}^{(1)} & = g^{-1}(\partial_j)_{i}^{(1)}, \\
v_2^{-1}(\partial'_j)_{i}^{(2)} & = g^{-1}(\partial_j)_{i}^{(2)}.
\end{align*}$$

However, direct inspection of $\pi_{s,s}^A(b_{01})$ and $\pi_{s,s}^A(b_{01}^{\otimes 2})$ reveals:

- The maps

$$\begin{align*}
\pi_{7,s}^A(g^{-1} b_{01}) & \to \pi_{7,s}^A(v_2^{-1} g^{-1} b_{01}) \leftarrow \pi_{7,s}^A(v_2^{-1} b_{01}), \\
\pi_{15,s}^A(g^{-1} b_{01}^{\otimes 2}) & \to \pi_{15,s}^A(v_2^{-1} g^{-1} b_{01}^{\otimes 2}) \leftarrow \pi_{15,s}^A(v_2^{-1} b_{01}^{\otimes 2})
\end{align*}$$

are injections for all s.

- We have

$$\begin{align*}
\pi_{7,s}^A(g^{-1} b_{01}) & = 0, \\
\pi_{15,s}^A(g^{-1} b_{01}^{\otimes 2}) & = 0
\end{align*}$$

for $s \geq 1$.

- We have

$$\begin{align*}
\pi_{7,s}^A(v_2^{-1} b_{01}) & = 0, \\
\pi_{15,s}^A(v_2^{-1} b_{01}^{\otimes 2}) & = 0
\end{align*}$$

for $s \leq 1$.
It follows that we must have
\[
(\partial_j)_{i}^{(1)} = 0, \\
(\partial'_j)_{i}^{(1)} = 0, \\
(\partial_j)_{i}^{(2)} = 0, \\
(\partial'_j)_{i}^{(2)} = 0.
\]

Corollary 8.5. We have
\[
g^{-1}b_{0j} \simeq \Sigma^8j g^{-1}b_{0j} \oplus \Sigma^{8j+8,1} g^{-1}b_{0j-1}.
\]
Therefore, if we write \(f'_j \) in the form
\[
f'_j = \sum_i (a_{i,j}s^i t^j + b_{i,j}s^i t^{j-1}x + c_{i,j}s^i t^{j-2}x^2)
\]
then we have
\[
g^{-1}b_{0j} \simeq \bigoplus_i (a_{i,j} \Sigma^8 j, i g^{-1} F_2 \oplus b_{i,j} \Sigma^{8(j-1), i} g^{-1} b_{01} \oplus c_{i,j} \Sigma^{8(j-2), i} g^{-1} b_{01}^2).
\]

Corollary 8.6. We have
\[
v^{-1}b_{0j} \simeq \Sigma^8j v^{-1}b_{0j} \oplus \Sigma^{8j+8,1} v^{-1}b_{0j-1}.
\]
Therefore, if we write \(f_j \) in the form
\[
f_j = \sum_i (a_{i,j}s^i t^j + b_{i,j}s^i t^{j-1}x + c_{i,j}s^i t^{j-2}x^2) + \sum_{k,l} d_{j,k,l} s^k t^l y
\]
then we have
\[
v^{-1}b_{0j} \simeq \bigoplus_i (a_{i,j} \Sigma^8 j, i v^{-1} F_2 \oplus b_{i,j} \Sigma^{8(j-1), i} v^{-1} b_{01} \oplus c_{i,j} \Sigma^{8(j-2), i} v^{-1} b_{01}^2)
\]
\[\oplus \bigoplus_{k,l} d_{j,k,l} \Sigma^{8j,k,} \text{TMF}_0(3).
\]

Corollary 8.7. Consider the element
\[
h := tf_1w + t^2 f_2w^2 + t^3 f_3 w^3 \cdots \in R[[w]].
\]
Write the coefficient of \(w^j \) in \(h^n \) as
\[
\sum_i (a_{i,j}^{(n)} s^i t^{2j} + b_{i,j}^{(n)} s^i t^{2j-1}x + c_{i,j}^{(n)} s^i t^{2j-2}x^2) + \sum_{j,k,l} d_{j,k,l}^{(n)} s^k t^l y
\]
then the weight \(8j \) summand of \(v^{-1} \text{tmf}^n \) decomposes as
\[\bigoplus (a_{i,j}^{(n)} \Sigma^{16j, i} v^{-1} F_2 \oplus b_{i,j}^{(n)} \Sigma^{16j-8, i} v^{-1} b_{01} \oplus c_{i,j}^{(n)} \Sigma^{16j-16, i} v^{-1} b_{01}^2)
\]
\[\oplus \bigoplus_{k,l} d_{j,k,l}^{(n)} \Sigma^{8j,k,} \text{TMF}_0(3).
\]
9. Applications to the g-local algebraic tmf resolution

Consider the quotient Hopf algebra $C_\ast := \mathbb{F}_2[\zeta]/(\zeta^4)$ of $A(2)_\ast$, with

$$\pi_{C_\ast}^*(\mathbb{F}_2) = \mathbb{F}_2[v_1, h_{2,1}].$$

The second author, Bobkova, and Thomas computed the P_2^1-Margolis homology of the tmf-resolution, and in the process computed the structure of $A / A(2)^{\otimes n}$ as C_\ast-comodules. From this one can read off the Ext groups

$$h_{-1}^2 C_\ast^*(\text{tmf}^{\otimes n})$$

(see [BMQ21 Thm. 3.12]).

The groups $h_{-1}^2 C_\ast^*$ are closely related to the groups $g_{-1}^1 A(2)^*_\ast$. In [BMQ21 Cor. 3.11], it is proven that for $M \in D_{A(2)_\ast}$, there is a v_8^2 Bockstein spectral sequence

$$h_{-1}^2 C_\ast^*(M) \otimes \mathbb{F}_2[v_8^2] \Rightarrow g_{-1}^1 A(2)^*_\ast(M).$$

In this section we would like to explain how Corollary 8.5 can be used to compute $g_{-1}^1 A(2)^*_\ast(\text{tmf}^{\otimes n})$. By relating this to [BBT21], we will show that in the case of $M = \text{tmf}^{\otimes n}$, the spectral sequence (9.1) collapses (Theorem 9.3).

We follow [BMQ21] in our summary of the results of [BBT21]. The coaction of C_\ast is encoded in the dual action of the algebra $E[Q_1, P_2^1]$ on $\text{tmf}^{\otimes n}$. Define elements

$$x_{i,j} = 1 \otimes \cdots \otimes 1 \otimes \zeta_{i+3} \otimes 1 \otimes \cdots \otimes 1,$$

$$t_{i,j} = 1 \otimes \cdots \otimes 1 \otimes \zeta_{i+1}^4 \otimes 1 \otimes \cdots \otimes 1$$

in $\text{tmf}^{\otimes n}$.

For an ordered set

$$J = ((i_1, j_1), \ldots, (i_k, j_k))$$

of multi-indices, let

$$|J| := k$$

denote the number of pairs of indices it contains. Define linearly independent sets of elements

$$\mathcal{T}_J \subset \text{tmf}^{\otimes n}$$

inductively as follows. Define

$$\mathcal{T}_{(i,j)} = \{x_{i,j}\}.$$

For J as above with $|J|$ odd, define

$$\mathcal{T}_{J, (i,j)} = \{z \cdot x_{i,j} \}_{z \in \mathcal{T}_J},$$

$$\mathcal{T}_{J, (i,j), (i', j')} = \{Q_1(z \cdot x_{i,j})x_{i', j'} \}_{z \in \mathcal{T}_J} \cup \{Q_1(z \cdot x_{i', j'})x_{i,j} \}_{z \in \mathcal{T}_J}.$$

Let

$$N_J \subset \text{tmf}^{\otimes n}$$

denote the \mathbb{F}_2-subspace with basis

$$Q_1 \mathcal{T}_J := \{Q_1(z) \}_{z \in \mathcal{T}_J}.$$
While the set T_J depends on the ordering of J, the subspace N_J does not.

Finally, for a set of pairs of indices

$$J = \{(i_1, j_1), \ldots, (i_k, j_k)\}$$

as before, define

$$x_J t_J := x_{i_1, j_1} t_{i_1, j_1} \cdots x_{i_k, j_k} t_{i_k, j_k}.$$

The following is can be read off of the computations of [BBT21].

Theorem 9.2 (Bhattacharya-Bobkova-Thomas). As modules over $\mathbb{F}_2[h^{\pm}_{2,1}, v_1]$, we have

$$h^{-1} \pi^*_{+^*}(1m)^{\otimes n}) = \mathbb{F}_2[h^{\pm}_{2,1}] \otimes \mathbb{F}_2[v_1]\{x_{J'} t_{J'}\}_{J \cap J' = \emptyset}$$

$$\bigoplus_{|J| \text{ odd}} N_J \{x_{J'} t_{J'}\}_{J \cap J' = \emptyset}$$

$$\bigoplus_{|J| \text{ even}} \mathbb{F}_2[v_1]/v_1^2 \otimes N_J \{x_{J'} t_{J'}\}_{J \cap J' = \emptyset}$$

where J and J' range over the subsets of

$$\{(i, j) : 1 \leq i, 1 \leq j \leq n\}$$

and v_1 acts trivially on N_J for $|J|$ odd.

We now explain how the equivalences

$$g^{-1}b_{2j} \simeq \Sigma^{8j} g^{-1}b_{2j} \oplus \Sigma^{8j+8,1} g^{-1}b_{2j-1},$$

$$g^{-1}b_{2j+1} \simeq \Sigma^{8j} g^{-1}b_{2j} \otimes b_{1}$$

are related to Theorem 9.2. This analysis comes from the definitions of the maps of (2.5) and (2.6) in [BHHM08]. For a set J of indices of the form

$$J = \{(i_1, 1), \ldots, (i_k, 1)\},$$

define $J + \Delta$ to be the set

$$J + \Delta = \{(i_1 + 1, 1), \ldots, (i_k + 1, 1)\}.$$

Then the induced maps on homotopy are determined by:

$$\pi^{A(2),*}_* (\Sigma^{8j} g^{-1} b_{2j}) \rightarrow \pi^{A(2),*}_* (g^{-1} b_{2j})$$

$$N_J \{x_{J'} t_{J'}\} \mapsto N_{J+\Delta} \{x_{J'+\Delta} t_{J'+\Delta}\}$$

$$\pi^{A(2),*}_* (\Sigma^{8j+8,1} g^{-1} b_{2j-1} \rightarrow \pi^{A(2),*}_* (g^{-1} b_{2j})$$

$$N_J \{x_{J'} t_{J'}\} \mapsto h_{2,1} : N_{J+\Delta} \{x_{1,1} t_{1,1} t_{J'+\Delta} \}

$$\pi^{A(2),*}_* (\Sigma^{8j} g^{-1} b_{2j} \otimes b_{1}) = \pi^{A(2),*}_* (g^{-1} b_{2j+1})$$

$$N_J \cup \{(1,2)\} \{x_{J'} t_{J'}\} \mapsto N_{(J+\Delta) \cup (1,2)} \{x_{J'+\Delta} t_{J'+\Delta}\}.$$
We have (with $g = h_{2,1}^4$)
\[
\pi_{*,*}^{A(2)}(g^{-1}F_2) = F_2[h_{2,1}^\pm, v_1, v_2^8],
\]
\[
\pi_{*,*}^{A(2)}(g^{-1}bo_1) = F_2[h_{2,1}^\pm, v_1, v_2^8]/(v_1)^{(t_1,1)},
\]
\[
\pi_{*,*}^{A(2)}(g^{-1}bo_1^{\otimes 2}) = F_2[h_{2,1}^\pm, v_1, v_2^8]/(v_2^1)\{Q_1(x_1,1,x_1,2)\}.
\]

Corollary 8.5 therefore implies the following extension of Theorem 9.2.

Theorem 9.3. As modules over $F_2[h_{2,1}^\pm, v_1, v_2^8]$, we have
\[
g^{-1}\pi_{*,*}^{A(2)}(tmf^{\otimes n}) = F_2[h_{2,1}^\pm, v_2^8] \otimes \left(F_2[v_1]|\{x_j t_{j'}\}_J \right)_{|J|\text{ odd}} \oplus \left(F_2[v_1]|/v_1^2 \otimes N_J\{x_j t_{j'}\}_{|J'|=\emptyset} \right)
\]
where J and J' range over the subsets of
\[
\{(i,j) : 1 \leq i, 1 \leq j \leq n\}
\]
and v_1 acts trivially on N_J for $|J|$ odd.

Appendix A. A splitting of $bo_1^{\wedge 3}$

The v_2-local splitting of Proposition 5.1 comes from a stable splitting of $bo_1^{\wedge 3}$ induced by an idempotent decomposition of the identity element
\[
1 = f_1 + f_2 + e \in Z_{(2)}[\Sigma_3]
\]
as described in Remark A.2. More precisely, if we set
\[
F_i := \text{hocolim}\{bo_1^{\wedge 3} \xrightarrow{f_i} bo_1^{\wedge 3} \xrightarrow{f_i} \ldots\}
\]
for $i \in \{1, 2\}$ and
\[
E := \text{hocolim}\{bo_1^{\wedge 3} \xrightarrow{e} bo_1^{\wedge 3} \xrightarrow{e} \ldots\},
\]
using the evident permutation action of Σ_3 on $bo_1^{\wedge 3}$, then it is easy to see that
\[
bo_1^{\wedge 3} \simeq F_1 \vee F_2 \vee E.
\]
In fact, F_1, F_2 and E are finite spectra and their mod 2 cohomology as a Steenrod module can be easily computed using the cocommutativity of Steenrod operations and a Künneth isomorphism (see [Rav92 Appendix C]). For the purposes of this paper, we only need their underlying $A(2)$-module structure which we record in the format of a Bruner module definition file [BEM17 Apdx. A] (see Figure A.1 and Figure A.2).

Remark A.2. In the group ring $Z_{(2)}[\Sigma_3]$, the identity element 1 can be written as a sum of idempotent elements
\[
f_1 = \frac{1 + (1 2) - (1 3) - (1 2 3)}{3}, f_2 = \frac{1 + (1 3) - (1 2) - (1 3 2)}{3} \quad \text{and} \quad e = \frac{1 + (1 2 3) + (1 3 2)}{3}.
\]
Figure A.1. The $A(2)$-module structure of $H^*(F_1) \cong H^*(F_2)$ as an input file for Bruner's program

Remark A.3. Note that f_1 and f_2 are conjugates and therefore, $F_1 \simeq F_2$.

Bruner's program is capable of computing the action of $\pi_{*,*}^{A(2)}(\mathbb{F}_2)$ on $\pi_{*,*}^{A(2)}(M^\vee)$, where M^\vee is the \mathbb{F}_2-linear dual of a finite $A(2)$-module M. Therefore, it can be used for verifying the details necessary in the proof of Proposition 5.1 and Proposition 5.2.

Remark A.4. Using Bruner's program and Figure 4.2, one can easily verify

$$v_2^{-1} \pi_{*,*}^{A(2)}(H_*(E)) \cong \pi_{*,*}^{A(2)}(\Sigma^{24.2}\text{TMF}_0(3)).$$

Then by Theorem 4.3, we get $\Sigma^{24.2}\text{TMF}_0(3) \simeq v_2^{-1}H_*(E)$ in $D_{A(2)}$.

Remark A.5 (A different proof of Proposition 5.1). Let M_1 denote the first integral Brown-Gitler module. It consists of three \mathbb{F}_2-generators $\{x_0, x_2, x_3\}$ where $|x_i| = i$ such that

$$Sq^2(x_0) = x_2 \text{ and } Sq^1(x_2) = x_3.$$
It is tedious but straightforward to check that there is a short exact sequence
\[0 \to H^*(\Sigma^{17} \text{bo}_1) \to \Sigma^4 A(2) \otimes A(1) \otimes M_1 \to H^* E \to 0 \]
of $A(2)$-modules. This short exact sequence translates into an $D_{A(2)}$-equivalence
\[v_2^{-1} H_*(F_1) \cong H_*(F_2) \cong \Sigma^{16} v_2^{-1} \text{bo}_1 \]
which, along with Remark A.4 and (A.1), gives yet another proof of Proposition 5.1.

![Table](image)
References

[BBT21] Prasit Bhattacharya, Irina Bobkova, and Brian Thomas, The \(P_{1/2} \) Margolis homology of connective topological modular forms, Homology Homotopy Appl. 23 (2021), no. 2, 379–402. MR 4319993

[BHHM08] M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald, On the existence of a \(v_{32} \)-self map on \(M(1,4) \) at the prime 2, Homology Homotopy Appl. 10 (2008), no. 3, 45–84. MR 2475617

University of Notre Dame

Email address: mbehren1@nd.edu

New Mexico State University

Email address: prasit@nmsu.edu

Max Plank Institute for Mathematics

Email address: dculver@mpim-bonn.mpg.de