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Abstract. Given a maximal finite subgroup G of the nth Morava stabilizer
group at a prime p, we address the question: is the associated higher real K-

theory EOn a summand of the K(n)-localization of a TAF-spectrum associated

to a unitary similitude group of type U(1, n− 1)? We answer this question in
the affirmative for p ∈ {2, 3, 5, 7} and n = (p − 1)pr−1 for a maximal finite

subgroup containing an element of order pr. We answer the question in the

negative for all other odd primary cases. In all odd primary cases, we to give
an explicit presentation of a global division algebra with involution in which

the group G embeds unitarily.
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1. Introduction

For a prime p, let En denote the Morava E-theory spectrum associated with the
Honda formal group Hn of height n over F̄p, so that

π∗En = W (F̄p)[[u1, . . . , un−1]].

The second author, with P. Goerss and H. Miller, showed that En is an E∞ ring
spectrum, and that the nth Morava stabilizer group

Sn = Aut(Hn)

acts on En by E∞ ring maps [Rez98], [GH04].

One of the original motivations for producing this action was that, given a maximal
finite subgroup G of Sn, the spectrum

EOn := EhGn

would more effectively detect vn-periodic homotopy groups of spheres, generalizing
the phenomenon that the spectrum KO detects the 2-primary image of J more
effectively than the spectrum KU . In fact, for p = 2, there is an equivalence

(1.1) KOK(1) ' EO
hGal(F̄p/Fp)
1 .

It is for this reason that the spectra EOn are regarded as “higher real K-theories.”

For the primes 2 and 3, there are equivalences

(1.2) TMFK(2) ' EO
hGal(F̄p/Fp)
2

where TMF denotes the spectrum of topological modular forms. Using a theorem of
J. Lurie, the first author and T. Lawson constructed p-complete spectra TAFGU (K)
of topological automorphic forms associated to unitary similitude groups over Q of
signature (1, n − 1) and compact open subgroups K ⊂ GU(Ap,∞) [BLa]. The
spectrum TAFGU (K) arises from a Shimura stack Sh(K), in the same manner that
the spectrum TMF arises from the moduli stack of elliptic curves. The spectra
TAFGU (K) detect E(n)-local phenomena in the same sense that the spectrum
TMF∧p detects E(2)-local phenomena. This is made precise as follows: there is an
equivalence

TAFGU (K)K(n) '

 ∏
x∈Sh[n](K)(F̄p)

EhAut(x)
n

hGal(F̄p/Fp)

where Sh[n](K) is the (non-empty) finite 0-dimensional substack of Sh(K) where
the associated formal group has height n, and the automorphism groups Aut(x)
are finite subgroups of Sn [BLa, Cor. 14.5.6]. Given equivalences (1.1) and (1.2) it
is natural to ask:

For a given prime p and chromatic level n, does there exist a pair

(GU,K) so that there exists an x ∈ Sh[n](K) for which Aut(x) is a
maximal finite subgroup of Sn?
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The purpose of this paper is to provide answers to this question.

For large n, the notation EOn is ambiguous, because there exist multiple non-
isomorphic choices of maximal finite subgroups G. Hewett [Hew95] determined
precisely the collection of maximal finite subgroups of Sn. In particular, he showed
that if r is the largest exponent so that G contains an element of order pr, then
the isomorphism class of G is determined by the pair (n, r). If p is odd and G is
non-abelian, then as a subgroup of the group of units of the associated division
algebra, it is unique up to conjugation [Hew95, Prop. 6.11]. In this paper, we will
denote such a subgroup Gr. We summarize our results in the following theorem.

Theorem 1.3. Suppose that p is odd and n = (p− 1)pα−1m for a positive integer
m. Then there exists a pair (GU,K) whose associated Shimura stack has a height
n mod p point with automorphism group Gα if and only if p ∈ {3, 5, 7} and m = 1.
If p = 2, and n = 2r−1 for r > 2, we can also realize Gr−1 as an automorphism
group.

Remark 1.4. In the above theorem, the case of p = 2 and n = 1 is handled by
KO, and the case of p = 2 and n = 2 is the TMF case. However, both of these
cases may also be viewed as instances of TAF: see [BLa, Ch. 15] for the n = 1 case,
and [BLb] for the n = 2 case.

We also prove the following algebraic theorem, which could be regarded as a kind
of global analog of Hewett’s results.

Theorem 1.5. Suppose that p is odd, and that n = (p − 1)pα−1m. Then there
exists a global division algebra D with positive involution † of the second kind, so
that:

(1) we have [D : F ] = n2, where F is the center of D,
(2) there is a prime x of the fixed field F †=1 which splits as yy† in F , so that

InvyD = 1/n,
(3) there is a †-unitary embedding of the maximal finite subgroup Gα ⊂ Sn in

D×.

Since Gα is a maximal finite subgroup in the completion D×y , it is necessarily a

maximal finite subgroup in D×.

As we point out in Section 9.2, using the theorem above, one can adapt our methods
to argue that for every odd prime p and chromatic height n = (p− 1)pα−1m, there
exists a unitary Shimura stack with a mod p point with Gα as its automorphism
group. The associated unitary group is defined over a totally real field F+. However,
unless p ≤ 7, this totally real field is not Q. As [BLa] only associates TAF-spectra
to Shimura stacks of certain unitary groups over Q, such global manifestations of
Hewett subgroups have no obvious topological realization.

Organization of the paper.

In Section 2, we give an overview of unitary Shimura varieties of type (1, n − 1),
and the associated spectra of topological automorphic forms. We explain how the
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automorphism groups of height n mod p points can be computed using division
algebras with involution.

In Section 3, we give an overview of presentations of division algebras in terms of
cohomological data. In the case of a division algebra over a local number field, we
explain how to make these presentations explicit using local class field theory. The
material in this section is essentially well known.

In Section 4, we use the explicit presentations of Section 3 to simultaneously review
and give a new perspective on Hewett’s maximal finite subgroups Gα in Sn.

In Section 5, we give one direction of Theorem 1.3, by showing that Gα cannot be
an automorphism group of a height n mod p point for p odd and n = (p−1)pα−1m
unless p ≤ 7 and m = 1.

In Section 6, we use global class field theory to give global analogs of the explicit
presentations of division algebras given in Section 3. We use these explicit presen-
tations to embed the Hewett subgroups Gα into global division algebras.

In Section 7, we produce involutions on the division algebras of Section 6 which
act on the finite subgroup Gα by inversion. The existence of these involutions
completes the proof of Theorem 1.5.

In Section 8, we assume that p ∈ {3, 5, 7} and n = (p − 1)pr−1, and show that
there is a simple choice of hermitian form of signature (1, n− 1) whose associated
Shimura stack has a height n mod p point with automorphism group Gr. This
completes the odd primary cases of Theorem 1.3.

In Section 9, we give some concluding remarks.

• We explain how the results of this paper relate the Hopkins-Gorbounov-
Mahowald approach to EOp−1 to the theory of topological automorphic
forms.
• We explain that for odd primes, our results also allow one to realize all of

the groups Gα as automorphism groups of some unitary Shimura stack —
but these Shimura stacks do not have known topological applications (i.e.,
they are not of type (1, n− 1)).
• We suggest that our explicit global division algebras could shed light on
EOn-resolutions of the K(n)-local sphere.
• We explain the applicability of our results to the problem of producing

connective analogs of EOn.
• We explain that our results combine with a theorem of Mark Hovey to prove

that, at least in some cases, the TAF-spectra do not admit an orientation
for any connective cover of O.
• We show that for any prime p, and n = (p − 1)pr−1, there exists a uni-

tary Shimura stack of type (1, n − 1) with a height n mod p point whose
automorphism group contains an element of order pr.
• Specializing the previous observation to the prime 2, we explain how this

gives an automorphism group isomorphic to Gr, in the case where p = 2
and n = 2r−1. This completes the proof of Theorem 1.3.
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Conventions.

In this paper, we shall use the following notation.

• ζn = primitive nth root of unity.
• K[pn] = cyclotomic Z/pn-extension of K (i.e. the fixed field of K(ζpn+1)

by the subgroup of (Z/pn+1)× = Gal(K(ζpn+1)/K) of order p − 1). Here,
we are assuming K satisfies [K(ζpn+1) : K] = (p− 1)pn.
• Art denotes the local/global Artin map.
• H∗(L/K) = the Galois cohomology group H∗(Gal(L/K), L×).
• A = the rational adeles. If S is a set of places, AS denotes the adeles away

from S, whereas AS denotes the adeles at S. For a global number field K,
AK denotes the K-adeles.
• IK = the K-ideles A×K .

Acknowledgments.

The first author completed a portion of this work while visiting Harvard university,
and is thankful for their hospitality. The authors would also like to thank Tyler
Lawson and Niko Naumann, for their constructive comments on an earlier version
of this paper. The authors also thank the referee for suggesting valuable expository
improvements.

2. Overview of topological automorphic forms

We review the theory of topological automorphic forms presented in [BLa]. (The
p-integral models of the Shimura varieties discussed here are special cases of those
constructed and studied in [Kot92].)

Fix a prime p and consider the following initial data:

F = quadratic imaginary extension of Q in which p splits as uū,

B = central simple F -algebra of dimension n2 which splits at u and ū,

∗ = positive involution of the second kind on B,

OB,(p) = ∗-invariant maximal OF,(p)-order of B,

V =B module of rank 1,

〈−,−〉 = Q-valued ∗-hermitian alternating form of signature (1, n− 1),

ε =rank 1 idempotent of OB,u ∼= Mn(Zp).

Let ι denote the involution on EndB(V ), defined by

〈αv,w〉 = 〈v, αιw〉.

Let GU = GUV be the associated unitary similitude group over Q, with R-points

GU(R) ={g ∈ EndB(V )⊗Q R : 〈gv, gw〉 = ν(g)〈v, w〉, ν(g) ∈ R×}
={g ∈ EndB(V )⊗Q R : gιg ∈ R×}

(so that ν(g) = gιg ∈ R×).
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We let V p,∞ denote V ⊗ Ap,∞. For every compact open subgroup

K ⊂ GU(Ap,∞)

there is a Deligne-Mumford stack Sh(K)/ Spec(Zp). For a locally noetherian con-
nected Zp-scheme S, and a geometric point s of S, the S-points of Sh(K) are the
groupoid whose objects are tuples (A, i, λ, [η]K), with:

A, an abelian scheme over S of dimension n2,
λ : A→ A∨, a Z(p)-polarization,
i : OB,(p) ↪→ End(A)(p), an inclusion of rings, such that the λ-Rosati involu-

tion is compatible with conjugation,
[η]K , a π1(S, s)-invariant K-orbit of B-linear similitudes:

η : (V p,∞, 〈−,−〉)
∼=−→ (V p(As), 〈−,−〉λ),

subject to the following condition:

(2.1) the coherent sheaf LieA⊗OF,p OF,u is locally free of rank n.

Here, since S is a Zp-scheme, the action of OF,(p) on LieA factors through the
p-completion OF,p.

The morphisms
(A, i, λ, η)→ (A′, i′, λ′, η′)

of the groupoid of S-points of Sh(K) are the prime-to-p quasi-isogenies of abelian
schemes

α : A
'−→ A′

such that

λ = rα∨λ′α, r ∈ Z×(p),

i′(z)α = αi(z), z ∈ OF,(p),
[η′]K = [η ◦ α∗]K .

Remark 2.2. If the algebra B is split, then the moduli interpretation of the points
of Sh(K) may be simplified. Namely, the idempotent ε may be extended to a rank
1 idempotent on B, and the moduli of B-linear abelian schemes of dimension n2

becomes Morita equivalent to the moduli of F -linear abelian schemes of dimension
n. Thus, in this case, the S-points of Sh(K) could instead be taken to be a groupoid
of tuples (A, i, λ, [η]K), with (A, i) an abelian scheme of dimension n with complex
multiplication by F .

The p-completion Sh(K)∧p /Spf(Zp) is determined by the S-points of Sh(K) on

which p is locally nilpotent. On such schemes, the abelian scheme A has an n2-
dimensional p-divisible group A(p) of height 2n2. The composite

OB,(p)
i−→ End(A)(p) → End(A(p))

factors through the p-completion

OB,p ∼= OB,u ×OB,ū ∼= Mn(Zp)×Mn(Zp).
Therefore, the action of OB naturally splits A(p) into two summands, A(u) and
A(ū), both of height n2. For such schemes S, Condition (2.1) is equivalent to the
condition that A(u) is n-dimensional. This forces the formal group of A to split
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into n-dimensional and n(n−1)-dimensional formal summands. The action of OB,u
on A(u) provides a splitting

A(u) = εA(u)n

where εA(u) is a 1-dimensional p-divisible group of height n.

A theorem of Jacob Lurie [BLa, Thm. 8.1.4] associates to a 1-dimensional p-divisible
group G over a locally noetherian separated Deligne-Mumford stack X/Spec(Zp)
which is locally a universal deformation of all of its mod p points, a (Jardine fibrant)
presheaf of E∞-ring spectra EG on the site (X∧p )et. The presheaf EG is functorial in
(X,G) (the precise statement of this functoriality is given in [BLa, Thm. 8.1.4]).

If (A, i,λλλ, [ηηη]) is the universal tuple over Sh(K), then the p-divisible group εA(u)
satisfies the hypotheses of Lurie’s theorem [BLa, Sec. 8.3]. The associated sheaf
will be denoted

EGU := EεA(u).

The E∞-ring spectrum of topological automorphic forms is obtained by taking the
homotopy global sections:

TAFGU (K) := EGU (Sh(K)∧p ).

Let εA(u)0 denote the formal subgroup of the p-divisible group εA(u). Let Sh(K)Fp
denote the reduction mod p of Sh(K), and let

Sh(K)[n] ⊆ Sh(K)Fp

denote the 0-dimensional substack where the height of the formal group εA(u)0 is
equal to n.

Picking a point A0 = (A0, i0, λ0, [η0]K) ∈ Sh(K)[n](F̄p), the ring of prime-to-p OB-
linear quasi-endomorphisms of A0 is the unique maximal OF,(p)-order in a division
algebra D with center F :

EndOB,(p)(A0)(p) = OD,(p) ⊂ D.

We have, for x a finite place of F ,

InvxD =


InvxB, x 6 |p,
1
n , x = u,
n−1
n , x = ū.

The prime-to-p polarization λ0 of A0 gives rise to an associated Rosati involution
† on D. The Rosati involution is a positive involution of the second kind. Define
the associated unitary similitude group GUA0

/Z(p) by

GUA0
(R) = {g ∈ OD,(p) ⊗Z(p)

R : g†g ∈ R×}.

Fixing a representative η0 of [η0] gives a B-linear isomorphism

η0 : V p,∞ → V p(A0).

The induced B-linear action of OD,(p) on V p,∞ is an action by similitudes, and
induces an isomorphism

ξη0 : GUA0
(Ap,∞)

∼=−→ GU(Ap,∞).
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Under this isomorphism, the subgroup K ⊂ GU(Ap,∞) may be regarded as a sub-
group of GUA0(Ap,∞). We define

Γ(K) = GUA0
(Z(p)) ∩K ⊂ D×.

Since K is open, the group Γ(K) is finite. Since GUA0(Zp) = O×D,u = Sn, each of

the finite groups Γ(K) are finite subgroups of the Morava stabilizer group.

Lemma 2.3 ([BLa, Prop. 14.1.2]). The automorphism group of the point A0 is
given by

Aut(A0) = Γ(K).

Let En be the Morava E-theory associated to a height n formal group over F̄p.

Theorem 2.4 ([BLa, Cor. 14.5.6]). There is an equivalence

TAFGU (K)K(n) '

 ∏
[g]∈GUA0

(Z(p))\GU(Ap,∞)/K

EhΓ(gKg−1)
n

hGal(F̄p/Fp)

.

Therefore, the problem of realizing EOn’s in the K(n)-localization of a TAF-
spectrum amounts to determining which maximal finite subgroups of Sn arise as a
Γ(K) for some choice of F , form of GU , and subgroup K.

3. Explicit division algebras

Let K be a local or global number field. Following Serre [Ser], we make explicit the
isomorphism

Br(K) ∼= H2(Gal(K̄/K); K̄×).

We will regard elements of H2(G,A) as corresponding to extensions

1→ A→ E → G→ 1.

Since we have

H2(Gal(K̄/K); K̄×) = colim
M/K

[M :K]<∞

H2(Gal(M/K);M×),

every element of H2(Gal(K̄/K); K̄×) originates in H2(Gal(M/K),M×) for some
finite extension M of K.

Given a central simple algebra B/K with [B : K] = n2, we choose a maximal
subfield M ⊆ B containing K, so that [M : K] = n. Define a group E by

E = {x ∈ B× : xMx−1 = M}.
Then the short exact sequence

1→M× → E → Gal(M/K)→ 1

gives the desired class in H2(Gal(M/K);M×).

Conversely, suppose that we are given an element of H2(Gal(M/K),M×) corre-
sponding to an extension

1→M× → E → Gal(M/K)→ 1,
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we may express the corresponding central simple algebra as

B = Z[E]⊗Z[M×] M.

We explain how to make this construction explicit in the case where K is a finite
extension of Qp and M is a cyclic extension of K. Let

ArtM/K : K×/N(M×)
∼=−→ Gal(M/K)

be the local Artin map.

Proposition 3.1. Let K be a finite extension of Qp, and suppose that M is a
degree n cyclic extension of K. Fix an injection

χ : Gal(M/K) ↪→ Q/Z,

and let σ ∈ Gal(M/K) be the unique element satisfying

χ(σ) = 1/n.

Then for each element a ∈ K× there is an extension

1→M×
i−→ Ea

j−→ Gal(M/K)→ 1

such that

(1) there is a lift of σ to σ̃ ∈ Ea such that σ̃n = i(a), and
(2) the corresponding central simple algebra B[a] has invariant

InvB[a] = χ(ArtM/K(a)).

Proof. Let G = Gal(M/K). Consider the cup product pairing

H0(G,M×)×H2(G,Z)
∪−→ H2(G,M×)

Inv−−→∼= Q/Z,

and let δ denote the connecting homomorphism in the long exact sequence

Hom(G,Q/Z) = H1(G,Q/Z)
δ−→ H2(G,Z).

Then we have the following formula [Mil97, Prop. 4.1]:

(3.2) χ(Art(a)) = Inv(a ∪ δ(χ)).

We may explicitly compute a cochain representative for δ(χ). Let

χ̃ : G→ Q

be the unique lift of χ such that the values of χ̃ lie in the interval [0, 1). Then the
cohomology element δ(χ) is represented by the normalized Z-valued 2-cochain

φ(g1, g2) = χ̃(g2)− χ̃(g1g2) + χ̃(g1).

In particular, we have

φ(σi, σj) = 0 if i+ j < n,

φ(σn−1, σ) = 1.

The cup product a ∪ δ(χ) is represented by the normalized M×-valued 2-cochain

φa(g1, g2) = aφ(g1,g2).
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Associated to the 2-cochain φa is the extension

Ea = M× ×G
with multiplication

(x1, g1) · (x2, g2) = (x1 · g1x2a
φg1,g2 , g1g2)

We define

σ̃ = (1, σ) ∈ Ea
and compute:

σ̃n = (1, σ)n−1(1, σ)

= (1, σn−1)(1, σ)

= (aφ(σn−1,σ), σn)

= (a, 1).

By (3.2), the associated central simple algebra has invariant

Inv(B[a]) = χ(Art(a)).

�

Remark 3.3. The algebra B[a] admits the presentation (as a non-commutative
K-algebra)

B[a] = M〈S〉/(Sn = a, Sx = xσS, x ∈M).

Remark 3.4. The analog of Proposition 3.1 holds in the archimedean case as well.
The only non-trivial case to discuss is the case where K = R, M = C, and n = 2.
The character χ and the element σ are uniquely determined. The algebra B[a] is
either H or M2(C), depending on whether a is negative or positive, that is to say,
depending on the image of a under the Artin map

ArtC/R : R×/N(C×)
∼=−→ Gal(C/R) ∼= C2.

Example 3.5. Let K = Qp and let M = Qpn denote the unique unramified
extension of Qp of degree n. We have.

Gal(Qpn/Qp) = Cn = 〈σ〉
where we fix a generator σ = Art(p). The Artin map is normalized so that σ is a
lift of the Frobenius on Fpn . Then the central simple algebra B[pi] has invariant
i/n, and presentation:

B[pi] = Qpn〈S〉/(Sn = pi, Sx = xσS, x ∈ Qpn).

This may be compared to [Rav86, A2.2.16].

We end this section by giving a canonical presentation of Mk(B[a]) given our pre-
sentation of B[a]. Let

(M×)k ∼= IndCnkCn
M×

be the induced Cnk-module. The isomorphism above is given so that for a generator
σ′ of Cnk, and σ = (σ′)k a corresponding generator of the subgroup Ck ≤ Cnk, we
have, for (mi) ∈ (M×)k,

σ′ · (m1, . . . ,mk) = (m2, . . . ,mk,m
σ
1 ).
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Then the algebra Mk(B[a]) admits a presentation

Mk(B[a]) ∼= M〈S〉/(Snk = (a, . . . , a), Sx = xσ
′
S, x ∈Mk).

The subring Mk is a maximal commutative subalgebra in B[a]. Letting E′ denote

the normalizer of (M×)k ⊆Mk(B[a])
×, we have a short exact sequence

1→ (M×)k → E′ → Cnk → 1.

The extension E′ is classified by the image of the cohomology class [Ea] under the
Shapiro isomorphism

H2(Cn,M
×) ∼= H2(Cnk, IndCnkCn

M×) ∼= H2(Cnk, (M
×)k).

4. Elementary presentation of Hewett subgroups

In this section we explain how the theory of the previous section may be used
to understand the finite subgroups of local division algebras studied by Hewett
[Hew95].

Let B be a central division algebra over K. Throughout this paper, our technique
for constructing finite subgroups of B× will be construct extensions G of finite
subgroups N of the group of units of a maximal subfield M containing K of the
following form.

1 // N� _

��

// G� _

��

// G/N� _

��

// 1

1 // M× // E // Gal(M/K) // 1

Here E ≤ B× is the normalizer of M×, as in Section 3.

Let p be an odd prime, fix r > 0, and let

n = (p− 1)pr−1k

with k coprime to p. Let D be the central division algebra over Qp of invariant
1/n. Let OD be the unique maximal order of D, and let

Sn = O×D
denote the nth Morava stabilizer group.

Hewett [Hew95] showed that the isomorphism classes of finite subgroups of Sn are
given by

{Gα : 0 ≤ α ≤ r}
such that Gα contains an element of maximal p-power order pα. We give an ele-
mentary construction of these subgroups.

For α = 0, the group G0 is cyclic of order pn − 1. Explicitly it can be taken to be
the embedding

G0
∼= F×pn ↪→ Z×pn ↪→ O×D.

Here Zpn = W (Fpn) is the ring of integers of Qpn .
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For 0 < α ≤ r, the group Gα is metacyclic, with presentation

Gα = 〈a, b : ap
α(pm−1) = 1, bab−1 = at, bp−1 = ap

α

〉,
where

(1) t is an integer whose image in (Z/pα)× has order p− 1, and
(2) m = kpr−α.

The group Gα fits into a short exact sequence

1→ Cpα(pm−1) → Gα → Cp−1 → 1

where the group Cpα(pm−1) is generated by a, and the group Cp−1 is generated by
the image of b.

We now give an explicit, elementary embedding of Gα into O×D. Consider the
following tower of abelian Galois extensions.

M = Qpm(ζpα)

Cp−1

L = Qpm [pα−1]

Cm×Z/pα−1

Qp

Note that n = [M : Qp], so M embeds in D as a maximal subfield. Fix such an
embedding. As in Section 3, there is an associated short exact sequence

(4.1) 1→M×
i−→ E

j−→ Gal(M/Qp)→ 1

where E is the normalizer of M in D×. The cohomology class [E] of the extension
(4.1) corresponds to the Brauer group class of D under the map

H2(M/Qp)→ Br(Qp)
and hence we have

Inv([E]) =
1

(p− 1)pα−1m
∈ Q/Z.

Since we have [L : Qp] = pα−1m, we deduce that the image [E′] of [E] under the
map

H2(M/Qp)→ H2(M/L)

has invariant

Inv([E′]) =
1

p− 1
.

The cohomology class [E′] classifies the extension E′ given by the pullback:

1 // M×
i′ // E′

j′ //

��

Gal(M/L) //
� _

��

1

1 // M×
i // E

j // Gal(M/Qp) // 1

Let ω ∈ Qpm ⊂ L be a primitive (pm − 1)st root of unity.
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Lemma 4.2. The image of ω under the local Artin map

ArtL : L× → Gal(M/L) = Cp−1

is a generator.

Proof. The following diagram summarizes the relationship of ArtL to ArtQp .

µpm−1
� � //

∼=(−)p
α−1

��

L×
ArtL //

NL/Qpm

��

Gal(M/L)

��

Cp−1� _

��
µpm−1

� � //

(−)
pm−1
p−1

����

Q×pm
ArtQpm //

NQpm/Qp

��

Gal(M/Qpm)

��

(Z/pα)×� _

��
µp−1

� � // Q×p
ArtQp // Gal(M/Qp) Cm × (Z/pα)×

The lemma follows from the fact that

ArtQp(µp−1) = Gal(M/L) ⊂ Gal(M/Qp).

�

Using Proposition 3.1, we deduce the following.

Corollary 4.3. The group E′ contains an element b such that j′(b) generates
Gal(M/L), and bp−1 = i′(ω).

We deduce that there is a map of short exact sequences

1 // Cpα(pm−1) //

��

Gα //

��

Cp−1 //

∼=
��

1

1 // M×
i′

// E′
j′

// Gal(M/L) // 1

Since E′ is a subgroup of E, which in turn is a subgroup of D×, we have given an
embedding of Gα into D×.

5. Negative results

Let p be odd, and n = (p − 1)pα−1m. In this section we will make the following
observation, which shows that there are only a limited number of cases where all
of Gα can be realized as an automorphism group of a height n mod p point of a
unitary Shimura stack of type (1, n− 1).

Proposition 5.1. Suppose that there is a choice of F , GU , and K such that Γ(K)
is isomorphic to Gα. Then p ≤ 7 and m = 1.
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Proof. Suppose that Gα = Γ(K) for some F , GU , and K. Then in particular Gα
is a subgroup of the units of the algebra D of Section 2 of dimension n2 over F .
There is an element a ∈ Gα which has order pα(pm − 1). Therefore there is an
embedding

M = F (ζpα(pm−1)) ↪→ D×.

Depending on F , we have

[M : F ] ∈ {(p− 1)pα−1ϕ(pm − 1), (p− 1)pα−1ϕ(pm − 1)/2}.

Here, ϕ is Euler’s phi function. Since [D : F ] = n2, this is only possible if

ϕ(pm − 1) ∈ {m, 2m}.

It is easily checked, using the inequality φ(n) ≥
√
n/2 and checking a few cases,

that this can only happen if p ∈ {3, 5, 7} and m = 1. �

6. Constructions of global division algebras

Having established our negative results, we now begin the work necessary to prove
our positive results. We wish to construct explicit global division algebras which
contain Hewett’s subgroups in their groups of units. The tool we will use is the
following global analog of Proposition 3.1.

Proposition 6.1. Let K be a finite extension of Q, and suppose that M is a degree
n cyclic extension of K. Fix an injection

χ : Gal(M/K) ↪→ Q/Z,

and let σ ∈ Gal(M/K) be the unique element satisfying

χ(σ) = 1/n.

Then for each element a ∈ K× there is an extension

1→M×
i−→ Ea

j−→ Gal(M/K)→ 1

such that

(1) there is a lift of σ to σ̃ ∈ E such that σ̃n = i(a), and
(2) the corresponding central simple algebra B[a] has invariant

Invv B[a] = χ(ArtM/K(av))

at every place v of K.

Proof. The extension Ea may simply be defined by the presentation

Ea = M×〈σ̃〉/〈σ̃n = a, σ̃x = xσσ̃, x ∈M×〉.

We just need to compute the local invariants of the associated global division alge-
bra. For a place v of K, we have

(B[a])v = B[av],
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thus we have Invv B[av] = InvB[av]. Let v′ be a place of M dividing v. We make
use of the compatibility of the local and global Artin maps, given by the following
diagram.

K×v
ArtM

v′/Kv//
� _

��

Gal(Mv′/Kv)� _

��
IK

ArtM/K

// Gal(M/K)

Let k be the number of places of M dividing v. Then

[Gal(M/K) : Gal(Mv′/Kv)] = k.

The element σk generates Gal(Mv′/Kv) ∼= Cm, where m = n/k. We have χ(σk) =
1/m. Since we have

Mv
∼= IndCnCmMv′

∼= Mk
v′ ,

we may apply Proposition 3.1 (Remark 3.4 if v is archimedean) together with the
discussion following Example 3.5 to deduce that

InvB[av ] = χ(ArtMv′/Kv
(av)) = χ(ArtM/K(a)).

�

Fix an odd prime p. Let n = (p − 1)pα−1m. If p = 3 we will assume that m > 1.
The case of p = 3 and m = 1 will be treated separately. In this section we show
that there exist some natural choices of global division algebras D with center F , a
global CM field, in which Gα embeds, such that there exists a place y|p of F with
InvyD = 1/n.

Let ω be a primitive (pm−1)st root of unity. Consider the tower of field extensions

Q(ω)

Cm

(Z/(pm−1))×F

Q

Here the Galois group Gal(Q(ω),Q) is identified by the isomorphism

(Z/(pm − 1))× ∼= Gal(Q(ω)/Q),

s 7→ ([s] : ω 7→ ωs),

the subgroup Cm ≤ (Z/(pm−1))× is the subgroup generated by the element p mod
pm− 1, and the field F is the subfield of Q(ω) fixed by Cm. The key property of F
is that p splits completely in it. The field F is a CM field. This is because Q(ω) is
a CM field, with conjugation given by the element [−1] ∈ (Z/(pm − 1))×, and for
p > 3, or p = 3 and m > 1, the conjugation element [−1] is not contained in the
subgroup Cm generated by p. We will write

[−1](x) = x̄

for x ∈ Q(ω).
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Let F+ be the totally real subfield of F given by taking [−1]-fixed points. Let {xi}
be the set of primes of F+ dividing p. Each prime xi splits as yiȳi in F . The
extension Q(ω)/F is totally unramified at the primes yi and ȳi. Let (ti) be a finite
sequence of integers coprime to pm − 1, with t1 = 1, such that the images [ti] in
(Z/(pm − 1))× ∼= Gal(Q(ω)/Q) satisfy

[ti](y1) = yi.

Theorem 6.2. Let D be a central division algebra over F whose non-trivial local
invariants satisfy:

pα−1m Invyi D
∼= ti/(p− 1) ∈ Q/Z,

pα−1m Invȳi D
∼= −ti/(p− 1) ∈ Q/Z.

Then the group Gα embeds in D× as a maximal finite subgroup.

In order to prove Theorem 6.2, we will need to introduce some additional field
extensions. Let ζ be a primitive (pα)th root of unity, and consider the following
field diagram.

M = Q(ω, ζ)
Cp−1

RRRRRRRR

(Z/pα)× Q(ω)[pα−1] = L

Z/pα−1lllllllll

Q(ω)

Cm

F

2

F+

Q

The extension M/Q(ω) is totally ramified over each of the primes yi and ȳi. Let
ωyi denote the image of ω under the inclusion

L× ↪→ L×yi ↪→ IL.

Define

σ = ArtM/L(ωy1) ∈ Gal(M/L) ∼= Cp−1.

We shall need the following lemma.

Lemma 6.3. We have

ArtM/L(ωyi) = σti .

The element σ (and hence each of the elements σti) is a generator of Gal(M/L).
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Proof. Consider the following diagram.

IL
ArtM/L //

NL/Q(ω)

��

Gal(M/L)

��

Cp−1� _

��
IQ(ω)

ArtM/Q(ω)//

NQ(ω)/F

��

Gal(M/Q(ω))

��

(Z/pα)×� _

��
IF

NF/Q

��

ArtM/F // Gal(M/F )

��

(Z/pα)× × Cm� _

��
IQ

ArtM/Q

// Gal(M/Q) (Z/pα)× × (Z/pm − 1)×

Viewing σ = ArtM/L(ωy1) as an element of Gal(M/Q) under the inclusion

Gal(M/L) ↪→ Gal(M/Q),

it suffices to show that

ArtM/Q(NL/Q(ωyi)) = σti .

Note that by the definition of σ, we have

ArtM/Q(NL/Q(ωy1)) = σ.

We compute:

NL/Q(ωyi) = NF/QNQ(ω)/FNL/Q(ω)(ωyi)

= NF/QNQ(ω)/F (ωp
α−1

yi )

= NF/Q

(
ω
pm−1−1
p−1 pα−1

yi

)
= NF/Q(ωy1)

pm−1−1
p−1 pα−1ti .

Here, the last norm computation comes from the fact that under the composite

Gal(Q(ω)/Q) � Gal(F/Q)
∼=−→ Emb(F,Qp)

the element [ti] maps ω to ωti . We have shown that

NL/Q(ωyi) = NL/Q(ωy1)ti .

Now apply ArtM/Q to the equation above. �

Proof of Theorem 6.2. Since Gα is maximal in D×y1 , if it embeds in D×, it must be

maximal in D×. We therefore just must show it embeds.

Since each prime yi does not split in M , we have [Lyi : Fyi ] = pα−1m, and [Myi :
Fyi ] = (p− 1)pα−1m, which implies that we have

Invyi L⊗F D = ti/(p− 1),

Invȳi L⊗F D = −ti/(p− 1),

Invyi L⊗F D = 0,

Invȳi L⊗F D = 0.
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In particular, M splits D, and therefore M embeds into D as a maximal commuta-
tive subfield [Swa70, Thm. 9.18]. Since M embeds into D, the element [D] ∈ Br(F )
is in the image of the map

H2(M/F ) ↪→ Br(F ),

and is therefore corresponds to an extension

1→M× → E → (Z/pα)× × Cpm−1 → 1.

We let [E] denote the corresponding cohomology class in H2(M/F ). Using the
diagram

H2(M/F )
� � //

Res

��

Br(F )

��
H2(M/L)

� � // Br(L)

together with with the local invariants of L⊗F D computed above, we deduce that
the cohomology class

Res[E] ∈ H2(M/L)

has

Invyi [E] = ti/(p− 1),

Invȳi [E] = −ti/(p− 1).

The class Res[E] is represented by the pullback E′ in the following diagram.

1 // M×
i′ // E′

j′ //

��

Cp−1 //
� _

��

1

1 // M×
i

// E
j

// (Z/pα)× × Cpm−1
// 1

Let

σ = ArtM/L(ωy1) ∈ Gal(M/L) ∼= Cp−1

be the generator considered earlier. Choose

χ : Gal(M/L) ↪→ Q/Z

so that χ(σ) = 1/(p− 1). We compute (using Lemma 6.3)

χ(ArtL(ωyi)) = ti/(p− 1).

By Proposition 6.1, the extension E′ contains an element T so that j′(T ) = σ and
T p−1 = i′(ω). We deduce that there is a map of short exact sequences

1 // Cpα(pm−1) //

��

Gα //

��

Cp−1 // 1

1 // M× // E′ // Cp−1 // 1

which maps a to ωζ and b to T . Since E′ is contained in E, which in turn is a
subgroup of D×, we have embedded Gα in D×. �
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Remark 6.4. If p = 3 and m = 1, then the proof of Theorem 6.2 goes through
verbatim with the following modifications. Take F to be any quadratic imaginary
extension in which the prime 3 splits. Replace all occurrences of Q(ω) with F , and
replace the element ω with −1. In this case, L = F [3α−1], and M = F (ζ3α).

7. Involutions

Let n = (p−1)pαm, and let F , L, M , ω, ζ, σ, and D be as in Section 6. Let m 7→ m̄
denote the conjugation on the CM field M . This conjugation automorphism is
characterized by

ω̄ = ω−1,

ζ̄ = ζ−1.

Let D′ be the division algebra associated to the extension

1→M× → E′ → Cp−1 → 1

where E′ = Eω, in the notation of Proposition 6.1. The algebra D′ is the subalgebra
of D which centralizes the subfield L under the fixed embedding M ⊆ D. Explicitly,
D′ admits the presentation

(7.1) D′ = M〈T 〉/(T p−1 = ω, Tx = xσT, x ∈M).

We will express elements of D′ as

p−2∑
i=0

xiT
i

for xi ∈M .

In this section we will show that D′ admits a positive involution of the second
kind so that the subgroup Gα is contained in the unitary group associated to the
involution. The involution we are interested in is given by the following lemma.

Lemma 7.2. There is a unique involution †′ on D′ satisfying:

(1) x†
′

= x̄, x ∈M ,

(2) T †
′

= T−1 = ω−1T p−2.

Proof. We just need to check that the relations in the presentation (7.1) are com-
patible with †′. We check

(Tx)†
′

= (xσT )†
′

= T †
′
(xσ)†

′
= ω−1T p−2x̄σ = x̄ω−1T p−2 = x†

′
T †
′

and

(T p−1)†
′

= (ω−1T p−2)p−1 = ωp−2 = ω̄ = ω†
′
.

�

By definition, the involution †′ is an involution of the second kind.

Lemma 7.3. The involution †′ is positive.
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Proof. Let x =
∑p−2
i=0 xiT

i be a non-zero element of D′. We must show that

TrD/L(xx†
′
) is a positive real number under all of the complex embeddings of L.

For a general y =
∑
yiT

i in D′, we consider the M -linear transformation:

Ry : D′ → D′,

z 7→ z · y.

Giving D′ the M -basis {T i}p−2
i=1 , we may represent Ry by the following matrix.

Ry =



y0 ω−1yσp−2 ω−1yσ
2

p−3 . . . ω−1yσ
p−2

1

y1 yσ0 ω−1yσ
2

p−2

...

y2 yσ1 yσ
2

0

...
...

...
. . .

...

yp−2 yσp−3 . . . . . . yσ
p−2

0


In particular, we find that

TrD′/L(y) = TrM/L(y0).

We compute

xx†
′

= (x0 + x1T + · · ·+ xp−2T
p−2)(x̄0 + ω−1T p−2x̄1 + · · ·+ ω−1T x̄p−2)

= (x0x̄0 + x1x̄1 + · · ·+ xp−2x̄p−2) + terms involving T .

We deduce that

TrD′/L(xx†
′
) = TrM/L(x0x̄0 + x1x̄1 + · · ·+ xp−2x̄p−2),

under each complex embedding of L, is a sum of positive real numbers, hence
positive. �

For a central simple algebra B over a CM field K with involution ∗ of the second
kind, we shall denote the associated unitary and unitary similitude groups U(B,∗)
and GU(B,∗). These algebraic groups (over Q) are given explicitly by

U(B,∗)(Q) = {(B ×Q R)× : x∗x = 1},
GU(B,∗)(Q) = {(B ×Q R)× : x∗x = R×},

for every Q-algebra R.

Lemma 7.4. For each element g ∈ Gα ⊂ (D′)×, we have

g ∈ U(D′,†′)(Q).

Proof. We just need to check on generators. The subgroup Gα, as constructed in
Theorem 6.2, is generated by T and ω. We have

T †T = ω−1T p−2T = ω−1ω = 1

and

ω†ω = ω̄ω = ω−1ω = 1.

�
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Proposition 7.5. There exists a positive involution of the second kind † on D
which extends the involution †′ on D′. For any such extension †, we have

Gα ⊆ U(D,†)(Q).

Proof. It suffices to show that the involution †′ on D′ extends as a positive involu-
tion of the second kind to D. This is established by duplicating the argument of
[Kot92, Lem. 9.2]. The second statement is immediate from Lemma 7.4. �

8. Positive results

Let p be an odd prime. Proposition 5.1 indicates that if Gα is going to be the
automorphism group of a mod p point of the height n locus of one of the unitary
Shimura stacks of type (1, n−1) under consideration, with n = (p−1)pα−1m, then
p ≤ 7 and m = 1.

In this section we will assume p ∈ {3, 5, 7}, and that n = (p − 1)pr−1, and show
that the finite group Gr is the automorphism group of such a mod p point of a
Shimura stack.

For p ∈ {5, 7}, let F = Q(ω), where, as in Section 6, ω is a (p− 1)st root of unity.
For p = 3, we can choose F more freely: for concreteness choose F = Q(

√
−2) in

this case. Note that for these primes, F is a quadratic imaginary extension of Q
which splits at p. In each of these cases, F = Q(δ) where, for p = 3, 5, 7 we have
δ =
√
−2,
√
−1,
√
−3, respectively.

We fix the rest of our defining Shimura data as follows:

B = Mn(F ),

∗ = conjugate transpose involution on B,

OB,(p) = Mn(OF,(p)),
V = B,

〈x, y〉 = TrF/Q TrB/F (xβy∗), for β =


2δ
−2δ

. . .

−2δ

 ∈ B.
Thus, the pairing 〈−,−〉 is the alternating hermitian form associated (see [BLa,
Lem. 5.1.2]) to the symmetric hermitian form on Fn given by the matrix

ξ =


1
−1

. . .

−1

 .
We denote

C = Bop = EndB(V )
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and let ι be the involution on C induced from 〈−,−〉. Let GU be the associated
unitary similitude group over Q, with R-points

GU(R) ={g ∈ C ⊗Q R : gιg ∈ R×}.

The goal of this section is to prove the following theorem.

Theorem 8.1. For p ∈ {3, 5, 7}, and the group GU described above, there exists
a maximal compact open subgroup

K ⊂ GU(Ap,∞)

such that in the associated Shimura stack Sh(K), there exists a point

A0 = (A0, i0, λ0, [η0]K) ∈ Sh(K)[n](F̄p)

with

Aut(A0) ∼= Gr.

Under the map

Aut(A0)→ Aut(εA0(u)) ∼= Sn
the group Gr embeds as a maximal finite subgroup with maximal p-order.

Remark 8.2. Theorem 8.1 merely asserts that there exists a point with the desired
automorphism group. It is not, in general, the case that every mod p point of the
height n locus has isomorphic automorphism group. The desired mod p point is
globally determined by the (rather arbitrary) local choices of the maximal compact
subgroups K` of (8.9).

In order to prove Theorem 8.1, we will need several lemmas. Let K0 be any compact
open subgroup of GU(Ap,∞), and choose an F̄p-point

A0 = (A0, i0, λ0, [η0]K0
) ∈ Sh(K0)[n](F̄p).

(By [BLa, Prop. 14.3.2], the set Sh(K0)[n](F̄p) is non-empty.) Let (D, †) be the
corresponding quasi-endomorphism ring with Rosati involution, as in Section 2.

Let ζ, M , and L be as in Section 6. Let L+ be the fixed field under the CM-
involution of L. Note that in the notation of Section 6, F = Q(ω) (F = Q(

√
−2)

if p = 3), m = 1, and α = r. Furthermore, L = F [pr−1] and L+ = Q[pr−1]. Note
that the division algebra D satisfies the hypotheses of Theorem 6.2, and therefore
there exists an embedding of Gr in D. We need to show that an embedding exists
so that there is a containment

Gr ⊂ GUA0
(Z(p)),

and that there exists a compact open subgroup K ⊂ GU(Ap,∞), so that there is a
containment

Gr ⊂ Γ(K) = GUA0(Z(p)) ∩K = Aut(A0, i0, λ0, [η0]K).

We pause to recollect the essential facts concerning the classification of involutions
of the second kind on a central simple algebra E over K, a quadratic extension of
K0, a local or global number field (see, for instance, [Sch85], or [BLa, Ch. 5], though
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the latter only treats the case where K0 = Q or Qv). Suppose that dimK E = d2.
Fix a positive involution ∗ on E of the second kind. There are bijections

H1(K0, GU(E,∗)) ∼=

 Similitude classes of non-degenerate
∗-hermitian ∗-symmetric forms:
E ⊗ E → K


∼=
{

Equivalence classes of involutions
of the second kind on E

}
.

In the case where K is a global field, if d is even, the group GU(E,∗) satisfies the
Hasse principle [Kot92, Sec. 7]: the map

H1(K0, GU(E,∗))→
∏
v

H1((K0)v, GU(E,∗))

is an injection, and an involution (−)# of the second kind on E is determined by
the involution it induces on Ev for each place v. Using the Noether-Skolem theorem
and Hilbert Theorem 90 to express an involution (−)# on E by

x# = ξ−1x∗ξ

for ξ ∈ E with ξ∗ = ξ, the associated hermitian form is given by

(x, y) = TrE/K(xξy∗).

More precisely, the involution is determined by the discriminant of the associated
hermitian form

disc(−,−) := NE/F (ξ) ∈ K×0 /N(K×)

and the (unordered) signature of the form (−,−) at each of the real places of K0

which do not split in K. The local Galois cohomology H1((K0)v, GU(E,∗)) is only
nontrivial for places v of K0 which do not split in K.

Assume now that K is a non-archimedean local number field, and that E ∼= Md(K).
If d > 2, the existence of the involution ∗ actually forces E to be split. Assume
that ∗ is the involution on Md(K) given by conjugate transpose. The associated
hermitian form (−,−) may be regarded as the hermitian form on Kd, associated
to the matrix ξ. The isometry class of (−,−) is classified by its discriminant

disc(−,−) := det ξ ∈ K×0 /N(K×) ∼= Z/2.

If d is odd, any two hermitian forms lie in the same similitude class (see [BLa,
Cor. 3.5.4]). If d is even, then if two forms are in the same similitude class, they are
isometric. Therefore, the invariant disc is an invariant of the involution associated
to the hermitian form. When d is even, the similitude class of the form is determined
by its Witt index, the dimension of a maximal totally isotropic subspace of Kd for
(−,−). We have [BLa, Sec. 12.3]

disc(−,−) = (−1)d/2 ∈ K×0 /N(K×)⇔Witt index = d/2,

disc(−,−) 6= (−1)d/2 ∈ K×0 /N(K×)⇔Witt index = d/2− 1.

If the form arises from the completion of a global form, the local discriminant is
simply the image of the global discriminant under the completion map, provided
the global involution ∗ is equivalent to conjugate transpose after completion.
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The following lemmas give some useful local presentations of the conjugate trans-
pose involution on a local matrix algebra. We will use these lemmas later in this sec-
tion to compute the local invariants of the involution †′ constructed in Lemma 7.2.

Lemma 8.3. Let K/K0 be an unramified quadratic extension of local nonar-
chimedean number fields. Suppose that K ′/K is the unramified extension of de-

gree n, so that Gal(K ′/K) = Cn = 〈σ〉. Let (−) denote the unique element of
Gal(K ′/K0) ∼= C2n of order 2. Let E be the (split) central simple algebra over K
associated to the split exact sequence

1→ (K ′)× → (K ′)× o Cn → Cn → 1.

Let # be the unique involution on E such that

x# = x̄ for x ∈ K ′,

σ# = σ−1.

Then the pair (E,#) is isomorphic to Mn(K) with the conjugate-transpose invo-
lution.

Proof. Observe that there is a natural way to identify E with EndK(K ′): em-
bed K ′ in EndK(K ′) via its action by multiplication, and regard σ as a K-linear
endomorphism of K ′. Consider the hermitian form

(−,−) : K ′ ×K ′ → K,

(x, y) 7→ TrK′/K(xȳ).

Observe that for a, x, y ∈ K ′, we have

(ax, y) = (x, āy)

(σ(x), y) = (x, σ−1(y))

which implies that the involution # on E is precisely the involution associated to
the form (−,−). We need to show that disc(−,−) ≡ 1 ∈ K×0 /N(K×).

Choose a basis (e1, . . . , en) of K ′/K so that the hermitian form (−,−) is represented
by a matrix of the form

ξ =

a1

. . .

an


for ai ∈ K×0 . Consider the symmetric bilinear form

TrK/K0
(−,−) : K ′ ×K ′ → K0.

Write K = K0(δ) for δ2 = −d ∈ K0. With respect to the basis

(e1, δe1, e2, δe2, . . . , en, δen)

the symmetric bilinear form TrK/K0
(−,−) is represented by the following matrix.

ξ0 =


2a1

2da1

. . .

2an
2dan
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We deduce that

det ξ0 = (4d)n det ξ.

Since K/K0 is unramified, d ≡ 1 in K×0 /N(K×). Since 4 ∈ N(K×) ⊂ K×0 , we
deduce that

disc(−,−) = det ξ ≡ det ξ0 ∈ K×0 /N(K×).

Now, the trace pairing

(−,−)K′/K0
: K ′ ×K ′ → K0,

(x, y) 7→ TrK′/K0
(xy)

is represented by the matrix ξ0 · c where c is the K0-linear endomorphism of K ′

corresponding to (−). Note that since c2 = Id, we have det c ∈ {±1}. Since K/K0

is unramified, Corollary 1 of Section III.5 of [Ser79] implies that

det(ξ0 · c) 6≡ π ∈ K×0 /(K
×
0 )2,

where π is a uniformizer of K0. Since K/K0 is unramified, π generates the group
K×0 /N(K×) and we deduce that

disc(−,−) ≡ det(ξ · c) ≡ 1 ∈ K×0 /N(K×),

as desired. �

Lemma 8.4. Let K0, K, K ′, n, (−), and σ be as in Lemma 8.3. Let Em be the
(split) central simple algebra over K associated to the split exact sequence

1→ ((K ′)×)m → ((K ′)×)m o Cnm → Cnm → 1,

where Cnm acts on ((K ′)×)m through the isomorphism

((K ′)×)m ∼= IndCmnCn
(K ′)×,

as in the discussion following Example 3.5. Let S be an element of Em corresponding
to a generator of Cnm. Let #m be the unique involution on Em such that

(x1, . . . , xm)#m = (x̄1, . . . , x̄m) for (xi) ∈ (K ′)m,

S#m = S−1.

Then the pair (Em,#m) is isomorphic to Mnm(K) with the conjugate-transpose
involution.

Proof. Note that the case of m = 1 is precisely the content of Lemma 8.3. Using
Lemma 8.3, fix an isomorphism

(E1,#1) ∼= (Mn(K), (−)∗),

where (−)∗ denotes conjugate-transpose. Under this isomorphism, we may repre-
sent elements of K ′, as well as σ, as giving n× n matrices. Consider the diagonal
embedding

((K ′)×)m ↪→Mnm(K)×,

(x1, . . . , xm) 7→

x1

. . .

xm
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where here, and elsewhere in this proof, nm×nm matrices are represented by m×m
matrices of blocks, with each block corresponding to an n × n matrix. Under this
embedding, the conjugate transpose involution (−)∗ on Mnm(K) restricts to

(x1, . . . , xm) 7→ (x̄1, . . . , x̄m).

We may extend this embedding to an embedding

((K ′)×)m o Cnm ↪→ (Mnm(K))×

by sending S to the matrix 
0 1

0 1
. . .

. . .

1
σ 0

 .
It is easily checked that the transpose of this matrix is the matrix corresponding
to Snm−1. �

We now determine the invariants of our involution ι on C ∼= Mn(F ) which defines
the group GU .

Lemma 8.5. For each prime ` which does not split in F , the Witt index of GU(Q`)
is n/2, except in the case of p = 5 and ` = 2, for which the Witt index is n/2− 1.

Proof. The discriminant of ι is (−1)n−1. Since

n = (p− 1)pr−1,

and p is odd, n − 1 is odd, and disc = −1. If ` is unramified, then disc is zero in
Q`/N(F×` ). If p = 3, 7, the quantity (p − 1)/2 is odd, and hence disc = (−1)n/2.

However, if p = 5, n/2 is even, and disc 6= (−1)n/2. �

Lemma 8.6. There exists an embedding M ↪→ D so that † restricts to the conju-
gation on M .

Proof. By [PR, Thm. 3.2], it suffices to prove that there are local embeddings

(Mv, (−)) ↪→ (Dv, †)

for each place v of Q. Since M is a CM field, the case where v is the infinite place
is easily verified. If v is a finite place which splits in F , the local embedding follows
from [PR96, Prop. A.3]. If v is finite and unramified in F , then the isomorphism

(Cv, ι) ∼= (Dv, †)

induced from the level structure η0 implies that, using Lemma 8.5, except in the
case of p = 5 and ` = 2, the Witt index of † is n/2. The local embeddability of

(Mv, (−)) then follows from [PR94, p. 340].

We are left with the case of p = 5 and ` = 2. In this case, F = Q(i) and the Witt

index of † is n/2− 1. It suffices to prove that (M, (−)) embeds in (Mn(F2), τ) for
any involution τ of Witt index n/2−1, since Witt index determines the equivalence
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class of an involution. Let τ0 be an involution of Mn(F2) with Witt index n/2, and
use [PR94, p. 340] to produce an embedding

(M2, (−)) ↪→ (Mn(F2), τ0).

Since n ≡ 0 mod 4, we deduce that

discτ0 = 1 ∈ Q×2 /N(F×2 ) = (Z/4)×.

Define, for x ∈Mn(F2)

xτ = ξ−1xτ0ξ

for

ξ = (1 + i)ζ + (1− i)ζ−1 ∈M2 ⊂Mn(F2).

Note that since we have

ξτ0 = ξ = ξ,

the transformation (−)τ defines an involution of the second kind on Mn(F2). Since
ξ ∈M , we easily see that xτ = x for x ∈M . In particular, we have an embedding

(M2, (−)) ↪→ (Mn(F2), τ).

Using the fact that n ≡ 4 mod 8, together with (i+ 1)2 = 2i, we compute

discτ = det(ξ)

= NM2/F2
((1 + i)ζ + (1− i)ζ−1)

= −2n/2.

Since 2 = NF2/Q2
(1 + i), we deduce that

−2n/2 ≡ −1 ∈ Q×2 /N(F×2 )

and therefore that the Witt index of τ is n/2− 1. We have therefore produced the
desired local embedding. �

Fix an embedding

(M, (−)) ↪→ (D, †)
as in Lemma 8.6. Let D′ ⊂ D be the subalgebra which centralizes the subfield
L ⊂ M . Since † restricts to an involution of M , we deduce that † restricts to D′.
Let †′ be the involution of D′ constructed in Lemma 7.2.

Lemma 8.7. The involution † restricted to D′ is equivalent to the involution †′.

In order to prove Lemma 8.7, we shall need the following.

Lemma 8.8. Let v be a finite place of L+ which is inert in L. Then we have

discv(†′) ≡ 1 ∈ (L+
v )×/N(L×v ).

Proof. Let (vi) be the collection of places of M which lie over v, so that Mv splits
into a product

Mv =
∏
i

Mvi
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of (isomorphic) field extensions of Lv. Since v is inert in L, v cannot lie over p, and
therefore each of the extensions Mvi/Lv is unramified. Let d = [Mvi : Lv]. The
division algebra D′v corresponds to the extension

1→
∏
i

M×vi → E′v → Cp−1 → 1

where there exists an element T ∈ E′v which maps to a generator σ of Cp−1, and
for which

T p−1 = (ωvi) ∈
∏

M×vi .

Note ωvi is contained in the subfield Lv ⊂ Mvi , so we will simply denote the
corresponding element ωv ∈ Lv. Since Mvi/Lv is inert, the element ωv must lie in
N(M×vi ). Let β1 ∈Mv1 be chosen such that

NMv1
/Lv (β1) = ωv1 .

We then have

NMσiv1
/Lv (βσ

i

1 ) = ωσiv1 .

Set β = (β1, 1, . . . , 1) ∈
∏
M×vi . Define

S = β−1T ∈ D′.

We compute

Sp−1 = β−1Tβ−1T · · ·β−1T

= β−1β−σ · · ·β−σ
p−2

T p−1

= ω−1
v ωv

= 1.

The effect of the involution †′ on S is given by

S†
′

= (β−1T )†
′

= ω−1
v T p−2β̄−1

= Sp−2β−1β̄−1.

By Lemma 8.4, to finish the proof, we must show that the element β1 ∈ Mv1 may
be chosen such that β̄1 = β−1

1 . Let t and ` be such that Lv = Q`t . The extension
Mv1 must be isomorphic to Q`dt . Since ωv is a root of unity, it must be contained
in

µ`t−1 ⊂ L×v .
Under the norm map

NMv1
/Lv : M×v1 → L×v

the subgroup µ`dt−1 ⊂ M×v1 surjects onto the subgroup µ`t−1 ⊂ L×v . Therefore,
we may take β1 to be a root of unity in Mv1 . For such a choice of β1, we have
β̄1 = β−1

1 , as desired. �

Proof of Lemma 8.7. Since n is even, the group GU(D′,†′) satisfies the Hasse prin-

ciple [Kot92, Sec. 7], and therefore it suffices to show that the involution †′ has the
same local invariants as the involution †. Since both involutions are positive, we
just need to show that the local invariants agree at the finite places of L+.
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Expressing †′ as

x†
′

= ξ−1x†ξ

for x ∈ D′, where ξ = ξ†, define

∆ = ND/L(ξ) ∈ (L+)×/N(L×).

It suffices to show that

∆v ≡ 1 ∈ (L+
v )×/N(L×v )

for every finite place v of L′. Note that F has the property that there is precisely
one prime ` of Q which ramifies in F (` = 2 if p ∈ {3, 5} and ` = 3 if p = 7). Since
in each of these cases, ` is a generator of Z×p , we deduce that the extension L+/Q
is inert at `, and therefore (`) is prime in L+, and is the unique prime of L+ which
ramifies in L. Since †′ is positive, ∆ is positive at every archimedean place of L+.
In light of the fundamental exact sequence

0→ (L+)×/N(L×)→
⊕
v

(L+
v )×/N(L×v )→ Z/2→ 0,

we see that it suffices for us to verify that δv ≡ 1 for only the places v of L+ which
are inert in L. Let v be such a place, and let `′ be the rational prime lying under
v. We have the following field diagram of unramified extensions

Lv
C2

||
||

||
|| Cd

BB
BB

BB
BB

C2dL+
v

Cd BB
BB

BB
BB

F`′

C2||
||

||
||

Q`′

where d = [L+
v : Q`] divides pr−1, and is therefore odd. Under the embedding

GU(D′,†) ↪→ GU(D,†), the local discriminants give the following commutative dia-
gram.

H1(L+
v , GU(D′,†)) //

discv ∼=
��

H1(Q`′ , GU(D,†))

disc`′∼=
��

(L+
v )×/N(L×v )

N
L
+
v /Q`′

// Q×`′/N(F×`′ )

Since all of the extensions are unramified, the compatibility of the local Artin maps
allows us to verify that the map

(L+
v )×/N(L×v )

N
L
+
v /Q`′−−−−−→ Q×`′/N(F×`′ )

is an isomorphism. The level structure η0 gives an isomorphism

GU(D,†)(Q`′) ∼= GU(Q`′).

Since `′ is unramified in F , Lemma 8.5 implies that we have

disc`′(ι) = −1 ≡ 1 ∈ Q×`′/N(F×`′ ).

We deduce that

discv(†) ≡ 1 ∈ (L+
v )×/N(L×v ).
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By Lemma 8.8, we have

discv(†′) ≡ discv(†).
We conclude that ∆v ≡ 1, as desired. �

Proof of Theorem 8.1. By Lemma 8.7, the involution † is equivalent to the invo-
lution †′. Thus we get an isomorphism GU(D′,†′) ∼= GU(D′,†). By Lemma 7.4, Gr
embeds in GU(D′,†′)(Q). We may therefore have an embedding

Gr ↪→ GU(D′,†′)(Q) ∼= GU(D′,†)(Q) ↪→ GU(D,†)(Q) = GUA0(Q).

Since we have

GUA0
(Qp) ∼= D×u ,

the group of units in a central division algebra of invariant 1/n over Qp, the group
GUA0

(Zp) is the unique maximal compact subgroup. Since Gr is compact, it must
be contained in GUA0

(Zp), and we deduce

Gr ⊂ GUA0(Zp) ∩GUA0(Q) = GUA0(Z(p)).

Using the level structure η0 to give an isomorphism

GUA0
(Ap,∞) ∼= GU(Ap,∞)

we may regard Gr as a subgroup of GU(Ap,∞). For each prime ` 6= p, choose a
maximal compact subgroup

(8.9) K` ⊂ GU(Q`)

which contains the image of Gr. Let

K =
∏
`

K` ⊂ GU(Ap,∞)

be the associated compact open subgroup. We have

Gr ⊆ GUA(Z(p)) ∩K = Γ(K).

Under the completion map

GUA0
(Z(p)) ↪→ GUA0

(Zp) ∼= Sn
the finite group Γ(K) embeds into Sn. Since Gr is a maximal finite subgroup of
Sn, we conclude that

Gr = Γ(K).

However, as discussed in Section 2, the group Γ(K) is the automorphism group of
the point

(A0, i0, λ0, [η0]K) ∈ Sh(K)[n](F̄p).
The theorem is therefore proven. �

9. Concluding remarks

In this final section we give a brief discussion of the relationship of the results in
this paper to some topics in homotopy theory, as well as sketch some potential
extensions.
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9.1. Relationship to Hopkins-Gorbounov-Mahowald theory. Let p ≥ 3. In
[GM00], the cohomology theory

EOp−1 = EhG1
2

is related to liftings to characteristic zero of certain curves in characteristic p.

To summarize their work, let C/Fp be the curve given by

C : yp−1 = xp − x.

The curve C has genus (p− 1)(p− 2)/2. Therefore the Jacobian J(C) is an abelian
variety of dimension (p − 1)(p − 2)/2, and is also acted upon by G1. The action

of the subgroup µp−1 < G1 induces a splitting of the formal completion Ĵ(C) into
p− 2 summands, according to the weights of the action:

Ĵ(C) = Ĵ(C)[1]⊕ Ĵ(C)[2]⊕ · · · ⊕ Ĵ(C)[p− 2].

The dimensions of the summand Ĵ(C) is i. Each summand has height p − 1. In

particular, Ĵ(C)[1] is 1 dimensional and of height p − 1, and there is an induced
embedding

G1 ↪→ Aut(Ĵ(C)[1]⊗Fp F̄p) ∼= Sp−1

as a maximal finite subgroup.

The second author, with Gorbounov and Mahowald, constructed a lift C̃ of the
curve C over the ring

E = Zp[[u1, . . . , up−2]]

such that the action of G1 lifts to an action on C̃. Here, the group G1 acts non-
trivially on the ring E, but the subgroup µp−1 acts trivially. The authors prove

that the deformation Ĵ(C̃)[1] of Ĵ(C)[1] is a universal deformation. This gives a
G1-equivariant isomorphism from E to the Lubin-Tate universal deformation ring

of Ĵ(C)[1]. This gives explicit formulas for the action of G1 on π0(Ep−1).

We explain how this set-up relates to the results of this paper. Assume that p ≥ 5.
Let F = Q(ω) where ω is a primitive (p− 1)st root of unity. The action of µp−1 on

C̃ gives the (p − 1)(p − 2)/2-dimensional abelian variety J(C) an action (through
quasi-endomorphisms) by the ring Q[z]/(zp−1 − 1). Factorize

zp−1 − 1 = f1(z) · · · fd(z)

as a product of irreducible polynomials, so that f1 is of degree φ(p−1). Then there
is a product decomposition

Q(z)/(zp−1 − 1) ∼= F1 × · · · × Fd

where F1
∼= F . The abelian variety J(C) is then quasi-isogenous to a product

J(C) ' J(C)1 × · · · × J(C)d

where the factor J(C)i has complex multiplication by the field Fi. In particular,
J1(C) has complex multiplication by F : we get

iC : F → DC := End0(J(C)1).
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Taking the formal completion, the summands of Ĵ(C) which show up in Ĵ(C)1

correspond to the weights i for i ∈ (Z/(p−1))×. We therefore have a decomposition

Ĵ(C)1 =
⊕

i∈(Z/(p−1))×

Ĵ(C)[i].

Let (t1, . . . , tk) be a sequence of integers with k = φ(p−1)/2 such that 0 < tj < p−1,
t1 = 1, and the sequence

(t1, . . . , tk, (p− 1)− t1, . . . , (p− 1)− tk)

gives a complete list of the elements of (Z/(p − 1))× when reduced mod (p − 1).
The prime p splits completely in F , and we write

(p) = y1 . . . ykȳ1 . . . ȳk

where, regarding (Z/(p− 1))× = Gal(F/Q), we have

[tj ](y1) = yj

[−tj ](y1) = ȳj .

The decomposition

Fp =
∏
j

Fyj × Fȳj

gives a splitting

Ĵ(C)1 =
⊕
j

[Ĵ(C)1]yj ⊕ [Ĵ(C)1]ȳj ,

and we fix our labeling of the prime y1 so that

[Ĵ(C)1]y1 = Ĵ(C)[1].

We then have

[Ĵ(C)1]yj = Ĵ(C)[tj ],

[Ĵ(C)1]ȳj = Ĵ(C)[(p− 1)− tj ].

By the Honda-Tate classification (see, for instance, [BLa, Ch.2]), we deduce from

the slopes of Ĵ(C) that J(C)1 is simple, and hence

DC = End0(J(C)1)

is a central division algebra over F whose only non-trivial invariants are given by

Invyj DC = tj/(p− 1),

Invȳj DC = −tj/(p− 1).

Thus we see that DC is isomorphic to the division algebra D constructed in Sec-
tion 6.

Moreover, in the notation of Section 7, the subalgebra D′ is equal to D. The
involution †′ is characterized by the property that G1 is contained in U(D,†′)(Q).
The abelian variety J(C) possesses a canonical polarization λC coming from the
Jacobian structure. Since the action of G1 on J(C) is induced from an action on C,
the action of G1 preserves the polarization. In particular, the polarization restricts
to a polarization

λC : J(C)1 → J(C)∨1 .
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Letting †C be the associated Rosati involution on DC , we conclude that G1 is
contained in U(DC ,†C)(Q). We therefore deduce that there is an isomorphism

(9.1) (D, †) ∼= (DC , †C).

Specializing to the case of p ∈ {5, 7}, the field F is a quadratic imaginary extension
of Q. We have k = 1, (p) = y1ȳ1, and

Ĵ(C)1 = Ĵ(C)[1]⊕ Ĵ(C)[p− 2].

Fixing the Shimura data as in Section 8, it follows from Theorem 8.1 and (9.1) that
there exists a compact open subgroup K ⊂ GU(Ap,∞) and a level structure η0 so
that C gives rise to a point

(J(C)1, iC , λC , [η0]K) ∈ Sh[n](Fp)
in height n locus of the Shimura stack Sh(K).

9.2. More Shimura stacks. In Section 5, we showed that if p is odd, n = (p −
1)mpα−1 and Gα is an automorphism group of a height n point of a Shimura stack
Sh(K), then we must have m = 1 and p ≤ 7. However this analysis was restricted to
the class of Shimura stacks considered in [BLa] that give rise to cohomology theories
TAF. If one removes the restriction that the Shimura stack has an associated
cohomology theory, one can extend the analysis of Section 8 to show that there
do exist Shimura stacks with a mod p point whose associated quasi-endomorphism
ring with involution does correspond to the pair (D, †) of Proposition 7.5.

Specifically, using the notation of Section 6, for arbitrary p, m, and α, let B =
Mn(F ). Then there exists an involution ι on B whose signatures at the real places
of F+ are given by (ti, n− ti), and a compact open subgroup K ⊂ GU(B,ι)(Ap,∞)
such that the associated Shimura stack has Gα as the automorphism group of a
mod p point of the associated Shimura stack Sh(B,ι)(K) over OF+,x1

.

The reduction Sh(B,ι)(K) ⊗ k̄x1
(where kx1

is the residue field of F+ at x1) pos-
sesses a stratification governed by the Newton polygons of the associated p-divisible
groups. It is possible that if one chooses a suitable stratum, one could associate to
it a cohomology theory via Lurie’s theorem. If this is the case, setting α = 1, one
could use the deformation theory of points in this stratum to give deformations of
the Jacobians of the Artin-Schreier curves studied by Ravenel in [Rav08].

9.3. Potential Applications to EOn-resolutions. In [GHMR05], a resolution
of the K(2)-local sphere at the prime 3 is constructed

∗ → SK(2) → X0 → · · · → X4 → ∗

where the spectra Xi are wedges of spectra of the form EhG2 for various finite
subgroups of the extended Morava stabilizer group. In [Hen07, Thm. 26], Henn
extends this to show that for p odd and n = p − 1, there is a similar resolution of
SK(p−1) involving the spectra EOp−1.

In [Beh06], the first author gave a moduli theoretic description of half of the reso-
lution of [GHMR05]. In [Beh07], the resolution of [Beh06] is shown to K(2)-locally
arise strictly from the structure of the quaternion algebra of quasi-endomorphisms
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of a supersingular elliptic curve. These constructions are further generalized in
[BLa]. Even in the cases where there is no Shimura stack giving rise to the groups
Gα, the results of Section 6 and Section 7 still produce a very explicit presentation
of a global division algebra with involution (D, †) containing the groups Gα. The
buildings associated to the groups

GU(D,†)(F
+
λ ) ∼= GLn(F+

λ )

for primes λ of F+ not dividing p which split in F will therefore produce length
n resolutions involving EhGαn . Analogs of the density results of [BL06], [Nau08]
should help analyze to what degree these resolutions approximate SK(p−1).

9.4. Connective covers of EOn. One of the benefits to the equivalence

tmfK(2) ' EO
hGal(F̄p/Fp)
2

is that the connective spectrum tmfp serves as a well-behaved connective cover
for EO2 for p ∈ {2, 3}. The connective spectrum tmf in turn comes from the
compactification of the moduli stack of elliptic curves.

One of the original motivations of the authors to investigate the results of this
paper was to try to give similar connective covers for EOn. The Shimura stacks
associated to the group GU of Section 8 possess similar compactifications. In fact,
these compactifications involve adding only finitely many points in the locus where
the associated formal group has height 1. Therefore, like the case of TMF, the
construction of connective forms of the associated TAF spectra is basically a K(1)-
local problem. The main difficulty lies in the fact that in the equivalence

TAFGU (K)K(n) '

 ∏
[g]∈GUA0

(Z(p))\GU(Ap,∞)/K

EhΓ(gKg−1)
n

hGal(F̄p/Fp)

.

the number of terms in the product could be greater than 1. The computation of
the cardinality of

GUA0(Z(p))\GU(Ap,∞)/K

is a class number question for the group GU . Unfortunately, preliminary calcula-
tions of this cardinality by the first author, using the mass formulas of [GHY01],
seem to indicate that, even in the case of p = 5 and n = 4, this class number is
quite large.

9.5. Non-orientability of TAF -spectra. Atiyah, Bott, and Shapiro [ABS64]
showed that Spin-bundles are KO-orientable, thus giving an orientation

Â : MSpin → KO.

refining the Â-genus. The second author, with Ando and Rezk [AHR], showed that
the Witten genus refines to an orientation

MString → tmf.

One can ask the following question: is there a natural topological group G over O
for which there exists an orientation

MG→ TAFGU (K)?
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Näıvely, since

BSpin = BO〈4〉,
BString = BO〈8〉,

one might expect that one can take G so that BG = BO〈N〉 for N sufficiently large.
However, at least if p ∈ {5, 7}, n = p − 1, and GU and K are as in Theorem 8.1,
the existence of a hypothetical MO〈N〉-orientation of TAFGU (K) would result in
a composite of maps of ring spectra

MO〈N〉 → TAFGU (K)→ EOp−1.

Hovey showed that no such composite can exist, for any N and p ≥ 5 [Hov97,
Prop 2.3.2]. Thus, the results of this paper imply that, at least in some cases, the
spectrum TAFGU (K) is not orientable by a any connective cover of O.

Remark 9.2. Hovey’s non-orientability result relies only on the spectrum detecting
the p-primary α1 for p > 3 in its Hurewitz image. Thus, the comments in the
following section actually imply the non-orientability of a much larger class of TAF-
spectra by connective covers of O.

9.6. p-torsion in automorphism groups at other primes. Fix p odd and set
n = (p− 1)pα−1m. The results of Section 5 imply that in most cases, the maximal
finite group Gα cannot be realized as an automorphism group of a mod p point of
height n in one of the Shimura stacks under consideration. This does not preclude
the possibility that these automorphism groups could contain large p-torsion. The
main interest in the groups Gα in homotopy theory is not that they are maximal,
but rather that they contain an element of order pα.

Indeed, fix p to be any prime, and set n = (p − 1)pr−1. Let F be any quadratic
imaginary extension of Q in which p splits as uū, and let M = F (ζ), where ζ is a
primitive prth root of unity. We necessarily have [M : F ] = n. Let A0/F̄p be an
abelian variety of dimension n with complex multiplication

i0 : F → End0(A) := D

with associated p-divisible summand A(u) of slope 1/n (such an abelian variety
exists by Honda-Tate theory). Embed the extension M of F in D. This gives A0

complex multiplication by M . Pick a polarization λ0 compatible with this M -linear
structure: one exists by [Kot92, Lem. 9.2]. By the definition of compatibility, the
λ0-Rosati involution restricts to the CM involution on M . In particular there is an
inclusion

µpr ↪→ Aut(A0, i0, λ0).

Let (Ã0, ĩ0, λ̃0)/C be the base-change to the complex numbers of a lift of (A0, i0, λ0)

to characteristic 0. Following the argument of [BLa, 14.3.2], the tuple (Ã0, ĩ0, λ̃0)
arises as a point of a complex Shimura stack ShC associated to a groupGU(C,ι) where
C = Mn(F ) and ι is an involution associated to a hermitian form of signature (1, n−
1). Let Sh be the p-integral model of ShC: by construction the point (A0, i0, λ0)
is a mod p point, with an automorphism group containing an element of order pr.
We therefore have established the following proposition.



36 M. BEHRENS AND M.J. HOPKINS

Proposition 9.3. Suppose that p is any prime, and that n = (p − 1)pr−1. Then
for each quadratic imaginary extension F of Q in which p splits, there exists an n-
dimensional hermitian form of signature (1, n−1), with associated unitary similitude
group GU , and a compact open subgroup K ⊂ GU(Ap,∞), so that the associated
Shimura stack contains a point

(A0, i0, λ0, [η0]K) ∈ Sh[n](K)(F̄p)

whose automorphism group contains an element of order pr.

9.7. The prime 2. Suppose now that p = 2, and that n = 2r−1 with r > 2. By
[Hew95, Cor. 1.5], every maximal finite subgroup of Sn is cyclic. Let µ2r ⊂ Sn
be the cyclic subgroup of order 2r arising from embedding the field Q2(ζ2r ) in the
division algebra D1/n over Q2 of invariant 1/n. Let G be a maximal finite subgroup
in Sn containing µ2r . Since G is cyclic, there must be a corresponding cyclotomic
extension of Q2 containing Q2(µ2r ) which embeds in D1/n. Since Q2(ζ2r ) is a
maximal subfield, we conclude that G = µ2r , and that µ2r is a maximal finite
subgroup. Using Proposition 9.3, we therefore have the following 2-primary version
of Theorem 8.1.

Proposition 9.4. Suppose that p = 2 and that n = 2r−1 with r > 2. Then
for each quadratic imaginary extension F of Q in which 2 splits, there exists an n-
dimensional hermitian form of signature (1, n−1), with associated unitary similitude
group GU , and a compact open subgroup K ⊂ GU(A2,∞), so that the associated
Shimura stack contains a point

(A0, i0, λ0, [η0]K) ∈ Sh[n](K)(F̄2)

whose automorphism group is the maximal subgroup µ2r ⊂ Sn.
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