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MARK BEHRENS

We analyze the homological behavior of the attaching maps in the 2-local Good-
willie tower of the identity evaluated at S1 . We show that they exhibit the same
homological behavior as the James-Hopf maps used by N. Kuhn to prove the
2-primary Whitehead conjecture. We use this to prove a calculus form of the
Whitehead conjecture: the Whitehead sequence is a contracting homotopy for the
Goodwillie tower of S1 at the prime 2.

55P65; 55Q40, 55S12

1 Introduction and statement of results

The aim of this paper is to explain the relationship between the Goodwillie tower of the
identity evaluated on S1 and the Whitehead conjecture (proved by N. Kuhn [Kuh82]).
Such a relationship has been conjectured by Arone, Dwyer, Lesh, Kuhn, and Mahowald
(see [AL10], [ADL08], and [Beh]).

The author has learned that similar theorems to the main theorems of this paper
(Theorem 1–8 and Corollary 1–10) were proved recently by Arone-Dwyer-Lesh, by
very different methods. The two proofs were discovered independently and essentially
at the same time.

Throughout this paper we freely use the terminology of Goodwillie’s homotopy calculus
of functors [Goo03] and Weiss’s orthogonal calculus [Wei95]. We use the notation:

{Pi(F)} = Goodwillie tower of F,

Di(F) = ith layer of the Goodwillie tower,

Di(F) = infinite delooping of F (a spectrum valued functor),

∂i(F) = ith Goodwillie derivative of F (a Σi-spectrum),

PW
i ,D

W
i ,DW

i = the corresponding constructions in Weiss calculus.

When F = Id, we omit it from the notation. We use E∨ to denote the Spanier-
Whitehead dual of a spectrum E . We let conn(X) denote the connectivity of a space
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X . As usual, we let QX denote the space Ω∞Σ∞X . All homology and cohomology is
implicitly taken with F2 coefficients. Everything in this paper is implicitly localized
at the prime 2.

Let Spn(S) denote the nth symmetric power of the sphere spectrum. There are natural
inclusions Spn(S) ↪→ Spn+1(S), and, by the Dold-Thom theorem, the colimit is given
by

Sp∞(S) = lim−→ Spn(S) ' HZ.

Thus the symmetric products of the sphere spectrum may be regarded as giving an
increasing filtration of the integral Eilenberg-MacLane spectrum. Nakaoka [Nak58]
showed that (2-locally) the quotients Spn(S)/Spn−1(S) are non-trivial only when n =

2k . The non-trivial quotients are therefore given by the spectra

L(k) := Σ−k Sp2k
(S)/Sp2k−1

(S).

These spectra were studied extensively by Kuhn, Mitchell, and Priddy [KMP82], and
occur in the stable splittings of classifying spaces. Applying π∗ to the symmetric
powers filtration gives rise to an exact couple, and hence a homological type spectral
sequence

(1–1) E1
k,t = πtL(k)⇒ πk+tHZ.

Kuhn’s theorem [Kuh82], known as the ‘Whitehead conjecture,’ states that this spectral
sequence collapses at E2 , where it is concentrated on the k = 0 line.

Arone and Mahowald [AM99] proved that the layers of the (2-local) Goodwillie tower
of the identity functor evaluated on spheres satisfy Di(Sn) ' ∗ unless i = 2k . Arone
and Dwyer [AD01] proved there are equivalences

(1–2) ΣkD2k (S1) ' ΣL(k).

Applying π∗ to the the fiber sequences

Ω∞D2k (S1)→ P2k (S1)→ P2k−1(S1)

results in an exact couple, giving the Goodwillie spectral sequence for S1 :

(1–3) Ek,t
1 = πtD2k (S1)⇒ πt(S1).

Spectral sequences (1–1) and (1–3) both converge to Z, and, by (1–2), have isomorphic
E1 -terms. They differ in that one is of homological type, and one is of cohomological
type, and thus in particular their d1 -differentials go in opposite directions. Kuhn’s
theorem leads to the following natural question: does the Goodwillie spectral sequence
for S1 also collapse at its E2 -page? More specifically, do the d1 -differentials in each
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of the spectral sequences serve as contracting chain homotopies for the E1 -pages of
the other? The aim of this paper is to prove that indeed this is the case.

To more precisely state the main theorem of this paper, we need to recall exactly what
Kuhn proved in [Kuh82]. In his proof of the 2-primary Whitehead conjecture, Kuhn
formed a Kahn-Priddy sequence

(1–4) S1 � Ω∞ΣL(0)
d0

�
δ0

Ω∞ΣL(1)
d1

�
δ1

Ω∞ΣL(2)
d2

�
δ2

· · ·

The maps dk are the infinite loop space maps induced by the composites

L(k + 1) = Σ−k−1Sp2k+1
(S)/Sp2k

(S) ∂−→ Σ−kSp2k
(S)/Sp2k−1

(S) = L(k).

The maps dk may be regarded as the attaching maps between consecutive layers of
the symmetric powers filtration on HZ, and induce on π∗ the d1 -differentials in the
spectral sequence (1–1). To define the maps δk , Kuhn constructed summands Xk of
the suspension spectra Σ∞(S1)∧2k

hΣok2
, and showed that these summands are equivalent to

ΣL(k) [Kuh82, Cor. 1.7]. In particular, we have retractions

(1–5) ΣL(k) id //

ιk   AAAAAAAA ΣL(k)

Σ∞(S1)∧2k

hΣok2
.

pk

>>}}}}}}}}

The maps δk in (1–4) are given by the composites

Ω∞ΣL(k) Ω∞ιk−−−→ Q(S1)∧2k

hΣok2

JH−→ Q(S1)∧2k+1

hΣo(k+1)
2

Ω∞pk+1−−−−−→ Ω∞ΣL(k + 1).

Here, JH is the James-Hopf map. Kuhn showed that the sum

dkδk + δk−1dk−1

is a self-equivalence of Ω∞ΣL(k). This amounts to an analysis of the diagram

(1–6) E−1

�������

�������

��

E0

}}zzzzzzzz h0

��

E1

}}zzzzzzzz h1

��
S1 Ω∞ΣL(0)oo

bbFFFFFFFF

Ω∞ΣL(1)
d0

oo
d̃0

aaDDDDDDDD

Ω∞ΣL(2)
d1

oo
d̃1

aaDDDDDDDD

· · ·

where the infinite loop spaces Ek fit into fiber sequences

Ek → Ω∞ΣL(k)
d̃k−1−−→ Ek−1
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and the maps hk are given by the composites

Ek → Ω∞ΣL(k) δk−→ Ω∞ΣL(k + 1).

To prove the Whitehead conjecture, Kuhn proved the following theorem.

Theorem 1–7 ([Kuh82]) The composites d̃k ◦ hk are equivalences.

Kuhn proved Theorem 1–7 by showing that d̃k ◦ hk is a homology equivalence.

We now turn our attention to the Goodwillie tower of the identity functor. As explained
in [ADL08], precomposing the Goodwillie tower of the identity with the functor

χ : V 7→ SV

gives the Weiss tower for the functor χ: we have natural equivalences of towers of
functors from vector spaces to spaces

{PW
i (χ)(V)} ' {Pi(Id)(SV )}.

(See [Aro98, Lem. 1.2], [Wei95, Ex. 5.7] for the proof of an almost identical result.)
Let

φk : D2k (SV )→ BD2k+1(SV )

be the attaching map between consecutive non-trivial layers in the Weiss tower. Arone-
Dwyer-Lesh prove that there exist natural transformations

ψk : BkD2k (SV )→ Bk+1D2k+1(SV )

so that
Ωkψk = φk.

Under the Arone-Dwyer equivalence ΣL(k) ' ΣkD2k (S1), we get a delooped calculus
version of the Kahn-Priddy sequence

S1 � D1(S1)
d0

�
ψ0

BD2(S1)
d1

�
ψ1

B2D4(S1)
d2

�
ψ2

· · ·

Our main theorem is the following (Conjecture 1.4 of [ADL08]).

Theorem 1–8 The sums
dkψk + ψk−1dk−1

are equivalences.
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Remark 1–9 Our proof uses no specific properties of the natural transformations ψk ,
except for the fact that they are k-fold deloopings of the natural transformations φk .
Therefore Theorem 1–8 holds independently of the choice of the deloopings.

As the maps ψk induced the d1 -differentials in the spectral sequence (1–3) on π∗ , we
get the following corollary.

Corollary 1–10 The Goodwillie spectral sequence for S1 collapses at the E2 page.

Our proof of the main theorem is similar to that of Kuhn in that we analyze the diagram
of fiber sequences

(1–11) E−1

�������

�������

��

E0

���������
h′0

��

E1

~~}}}}}}}} h′1

��
S1 D1(S1)oo

``AAAAAAA

BD2(S1)d0

oo
d̃0

``AAAAAAAA

B2D4(S1)d1

oo
d̃1

aaBBBBBBBB

· · ·

where the maps h′k are given by the composites

Ek → BkD2k (S1)
ψk−→ Bk+1D2k+1(S1).

To prove Theorem 1–8, it suffices to show that the composites d̃k ◦h′k are equivalences.
We prove this by establishing that these composites induce isomorphisms on mod 2
homology. We will do this by endowing H∗Ω∞ΣL(k) with a weight filtration, and will
prove

Theorem 1–12 The induced maps

(ψk)∗, (δk)∗ : E0H∗ΣL(k)→ E0H∗ΣL(k + 1)

on the associated graded homology groups with respect to the weight filtration are
equal.

This theorem, together with the observation that the maps dk behave well with respect
to the weight filtration, will allow us to deduce Theorem 1–8.

The homological analysis of the maps ψk will be performed by observing that, at least
up to the weight filtration, the homological behavior of the attaching maps between ith
and 2ith layers of any functor F from spaces to spaces is essentially dictated by the
homological behavior of the left action of the operad ∂∗(Id) on the derivatives ∂∗(F)
(such left operadic module structure exists by the work of Arone and Ching [AC],
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[Chi05]). The 2-primary homological behavior of this action in the case of the identity
functor, when evaluated on spheres, was determined by the author [Beh].

This paper is organized as follows. In Section 2 we study functors from spaces to
spaces concentrated in degrees [i, 2i], and relate the attaching maps in their Goodwillie
tower to the left action of ∂∗(Id). In Section 3 we recall from [Beh] the construction
of homology operations Q̄j which act on the stable homology of the derivatives of
any functor from spaces to spaces, and their relationship to the Arone-Mahowald
computation of the stable homology of the Goodwillie tower of the identity evaluated
on spheres [AM99]. We also recall some homology calculations of [Kuh82]. The main
theorems are proved in Section 4.
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2 Generalized quadratic functors

For the purposes of this section, let F be an analytic finitary homotopy functor

F : Top∗ → Top∗

for which there exists an integer i ≥ 1 so that the Goodwillie layers Dk(F) are trivial
unless i ≤ k ≤ 2i. We regard such functors as “generalized quadratic functors,” as the
operadic structure of their derivatives bears similarities to the quadratic case of i = 1.
In this section we analyze the relationship between the left action of ∂∗(Id) on ∂∗(F)
and the attaching maps between layers of the Goodwillie tower of F .
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There is only one potentially non-trivial component to the left action of ∂∗(Id) on
∂∗(F): this is the map

(2–1) µ : ∂2(Id) ∧ ∂i(F) ∧ ∂i(F)→ ∂2i(F).

We remind the reader that ∂2(Id) ' S−1 (with trivial Σ2 action).

There is a fiber sequence of functors

(2–2) F(X)→ P2i−1(F)(X)
φ−→ BD2i(F)(X).

By [ADL08, Thm. 4.2], the functor P2i−1(F)(X) admits a canonical infinite delooping

P2i−1(F)(X) ' Ω∞P2i−1(F)(X),

where P2i−1(F) is a spectrum valued functor. The attaching map φ has an adjoint

φ̃ : Σ∞Ω∞P2i−1(F)(X)→ ΣD2i(F)(X).

Viewing φ̃ as a natural transformation of functors Top∗ → Sp, there is an induced
natural transformation on 2ith layers of the Goodwillie towers of these functors:

(2–3) φ̃2 : D2i(Σ∞Ω∞P2i−1(F))(X)→ ΣD2i(F)(X).

The following lemma identifies the domain of φ̃2 .

Lemma 2–4 There is a natural equivalence

D2i(Σ∞Ω∞P2i−1(F))(X) ' Di(F)(X)∧2
hΣ2
.

Proof The derivatives of the functor Σ∞Ω∞ are well known to be given by

∂i(Σ∞Ω∞) = S

with trivial Σi -action (see, for instance, [Kuh07, Ex. 6.2]). We have (by the chain rule
[AC])

∂2i(Σ∞Ω∞P2i−1(F)) ' (∂∗(Σ∞Ω∞) ◦ ∂∗(P2i−1F))2i

' Σ2i+ ∧
Σ2oΣi

∂i(F)∧2.

We therefore have

D2i(Σ∞Ω∞P2i−1(F))(X) ' ∂2i(Σ∞Ω∞P2i−1(F)) ∧hΣ2i X∧2i

' [Σ2i+ ∧
Σ2oΣi

∂i(F)∧2] ∧hΣ2i X∧2i

' Di(F)(X)∧2
hΣ2
.
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Lemma 2–4 allows us to regard φ̃2 as a map

φ̃2 : Di(F)(X)∧2
hΣ2
→ ΣD2i(F)(X).

Our main observation is the following.

Theorem 2–5 The map

Σ−1φ̃2 : Σ−1Di(F)(X)∧2
hΣ2
→ D2i(F)(X)

is homotopic to the composite

Σ−1Di(F)(X)∧2
hΣ2
' (∂2(Id) ∧ ∂i(F)∧2 ∧ X∧2i)hΣ2oΣi

µ∧1−−→ (∂2i(F) ∧ X∧2i)hΣ2i

' D2i(F)(X).

The proof of Theorem 2–5 will occupy the remainder of this section, and will require a
series of supporting lemmas. At the heart of the argument is the following idea: given
the attaching map φ, compute the induced left action of ∂∗(Id) on ∂∗(F). This will
result in a formula relating φ̃2 and µ.

To compute the left action we use the machinery of Arone and Ching. For a functor
G : Top∗ → Top∗ , Arone and Ching [AC] show that ∂∗(Σ∞G) is a left comodule over
the commutative cooperad Comm∗ , and moreover show that ∂∗(G) can be recovered
from the cooperadic cobar construction

∂∗(G) ' C(1∗,Comm∗, ∂∗(Σ∞G)).

The cobar construction is Spanier-Whitehead dual to the bar construction

(2–6) C(1∗,Comm∗, ∂∗(Σ∞G)) ' B(1∗,Comm∗, ∂∗(Σ∞G))∨.

Here, following [AC],
∂∗(Σ∞G) := ∂∗(Σ∞G)∨,

and must be interpreted as a symmetric sequence of pro-spectra for a general functor
G. Note that in in the right-hand side of (2–6), we have abusively used Comm∗ to also
denote the commutative operad, as it has the same underlying symmetric sequence as
the commutative cooperad. Ching’s topological model for the bar construction [Chi05]

B(1∗,Comm∗, ∂∗(Σ∞G))

carries a left coaction by the cooperad

B(1∗,Comm∗, 1∗) ' ∂∗(Id).
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The action of ∂∗(Id) induced on the dual recovers the left action of ∂∗(Id) on ∂∗(G).
The proof of Theorem 2–5 will follow from an analysis of how this process plays out,
when applied to our functor F .

The first step to the approach outlined above is to compute ∂∗(Σ∞F). The strategy is
to use the fiber sequence (2–2). Note that as the functors P2i−1(F) and BD2i(F) factor
through the category of spectra, the derivatives of Σ∞ of these functors are easily
deduced from the derivatives of Σ∞Ω∞ by applying the chain rule [AC].

Since F is analytic, for X sufficiently highly connected there is a natural equivalence

(2–7) Σ∞F(X) ' hTotΣ∞(BD2i(F)(X)×• × P2i−1(F)(X))

where
T•(X) := BD2i(F)(X)×• × P2i−1(F)(X)

is the Rector cosimplicial model [Rec70] for the homotopy fiber (2–2)

P2i−1(F)(X)
//
// BD2i(F)(X)× P2i−1(F)(X)oo

//
//
//
BD2i(F)(X)×2 × P2i−1(F)(X) · · ·oo
oo

and hTot denotes homotopy totalization.

In preparation for our arguments, we briefly discuss some general properties of the
homotopy Tot-tower. For a cosimplicial spectrum Z• , this tower takes the form:

h Tot0 Z• ← h Tot1 Z• ← h Tot2 Z• ← · · · .

Let fibnZ• denote the homotopy fiber

fibnZ• → h Totn Z• → h Totn−1 Z•.

There are homotopy fiber sequences

fibnZ• → Zn → holim
[n]�[k]

k<n

Zk

Since a surjection [n] � [k] is uniquely determined by specifying the subset of arrows
of

[n] = (0→ 1→ 2→ · · · → n)

which go to identity arrows in [k], the fiber fibnZ• is computed as the total homotopy
fiber of an n-cubical diagram

(2–8) fibnZ• ' htfiber
{

Zn−|S|
}

S⊆n

where the maps in the n-cubical diagram are given by codegeneracy maps of Z• .



10 Mark Behrens

Since F was assumed to be analytic, there exists ρ, q such that on sufficiently highly
connected spaces X the natural transformations

F(X)→ Pk(F)(X)

are (q−k(ρ−1)+(k+1)conn(X))-connected. We will need the following connectivity
estimate.

Lemma 2–9 On sufficiently highly connected spaces X , the map

Σ∞F(X)→ h Totn Σ∞T•(X)

is (n + 1)(q− (2i− 1)(ρ− 1)) + 1 + 2i(n + 1)conn(X)-connected.

Proof Using the splitting

Σ∞(Y × Y ′) ' Σ∞Y ∨ Σ∞Y ′ ∨ Σ∞Y ∧ Y ′

for Y,Y ′ ∈ Top∗ , one inductively computes from (2–8) that

fibnΣ∞T•(X) ' Σ∞BD2i(F)(X)∧n ∧ P2i−1(F)(X)+.

For conn(X) ≥ ρ the map

P2i(F)(X)→ P2i−1(F)(X)

is q − (2i − 1)(ρ − 1) + 2i · conn(X)-connected. Therefore the fiber D2i(F)(X) is
q− (2i−1)(ρ−1) + 2i ·conn(X)−1-connected, and the space BD2i(F)(X) is q− (2i−
1)(ρ − 1) + 2i · conn(X)-connected. Let X be highly enough connected to make this
number positive. Then fibnΣ∞T• is n(q− (2i− 1)(ρ− 1)) + 2in · conn(X)-connected.
We deduce that the map

Σ∞F(X) ' h Tot Σ∞T•(X)→ h Totn Σ∞T•(X)

is (n + 1)(q− (2i− 1)(ρ− 1)) + 1 + 2i(n + 1)conn(X)-connected.

We are now able to identify ∂∗(Σ∞F) for ∗ ≤ 2i.

Lemma 2–10 There are equivalences

∂k(Σ∞F) ' ∂k(F), for i ≤ k < 2i,

∂2i(Σ∞F) ' fiber
(

Σ2i+ ∧
Σ2oΣi

∂i(F)∧2 ∂2i(φ̃2)−−−−→ Σ∂2i(F)
)
.
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Proof Recall from the proof of Lemma 2–4 that we used the chain rule to deduce

∂2i(Σ∞P2i−1(F)) ' Σ2i+ ∧
Σ2oΣi

∂i(F)∧2.

The same argument shows that:

∂k(Σ∞P2i−1(F)) ' ∂k(F), for i ≤ k < 2i,

∂2i(Σ∞BD2i(F)) ' Σ∂2i(F).

By Lemma 2–9, the functors Σ∞F and h Tot0 Σ∞T• agree to order 2i − 1 and the
functors Σ∞F and h Tot1 Σ∞T• agree to order 2i. It follows [Goo03] that

∂k(Σ∞F) ' h Tot0 ∂k(Σ∞T•), k < 2i,

∂2i(Σ∞F) ' h Tot1 ∂2i(Σ∞T•).

This immediately implies the first equivalence of the lemma.

To prove the second equivalence, we must compute h Tot1 ∂2i(Σ∞T•). The ∂2i com-
putations above imply that

(2–11) ∂2i(Σ∞Ts) ' Σ∂2i(F) ∨ · · · ∨ Σ∂2i(F)︸ ︷︷ ︸
s

∨ Σ2i+ ∧
Σ2oΣi

∂i(F)∧2.

We claim that under the equivalences (2–11), the last coface map in the cosimplicial
Σ2i -spectrum ∂2i(Σ∞T•) from level 0 to level 1 is given by

d1 = ∂2i(φ̃2)× 1,

and the codegeneracy map from level 1 to level 0 is the map which collapses out the
wedge summand Σ∂2i(F). The second equivalence of the lemma follows immediately
from this claim.

To establish the claim concerning the cosimplicial structure maps above, observe that
the d1 map from level 0 to level 1 in the cosimplicial functor Σ∞T•(X) is the composite

δ : Σ∞P2i−1(F)(X) Σ∞∆−−−→ Σ∞
(
P2i−1(F)(X)× P2i−1(F)(X)

)
Σ∞φ×1−−−−−→ Σ∞

(
BD2i(F)(X)× P2i−1(F)(X)

)
.

The induced map ∂2i(δ) is determined by the composites with the projections onto the
wedge summands of

∂2i(Σ∞(BD2i(F)× P2i−1(F)) ' Σ∂2i(F) ∨ Σ2i+ ∧
Σ2oΣi

∂i(F)∧2
hΣ2
.

Composing δ with the projection onto the second factor gives the identity, and this
implies that the second component of ∂2i(δ) is the identity. Composing δ with the
projection onto the first factor is the natural transformation

Σ∞φ : Σ∞P2i−1(F)(X)→ Σ∞BD2i(F)(X).
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Using the fact that the adjoint φ̃ is the composite

Σ∞Ω∞P2i−1(F)(X)
Σ∞φ−−−→ Σ∞Ω∞ΣD2i(F)(X) ε−→ ΣD2i(F)(X),

together with the fact that ε is a ∂2i -equivalence, we deduce that the first component
of ∂2i(δ) is ∂2i(φ̃2), as desired. The claim concerning the codegeneracy of ∂2i(Σ∞T•)
follows immediately from the fact that the codegeneracy from level 1 to level 0 of the
cosimplicial functor T•(X) projects away the first component.

The last equivalence of Lemma 2–10 gives a fiber sequence of Σ2i -spectra:

(2–12) ∂2i(F)
η−→ ∂2i(Σ∞F)

ξ−→ Σ2i+ ∧
Σ2oΣi

∂i(F)∧2 ∂2i(φ̃2)−−−−→ Σ∂2i(F).

Our next task is to understand the left coaction of Comm∗ on ∂∗(Σ∞F) in low degrees
in terms of the attaching map φ.

Lemma 2–13 Under the equivalence ∂i(F) ' ∂i(Σ∞F), the map ξ of (2–12) agrees
with the left Comm∗ -comodule structure map

∂2i(Σ∞F)→ Σ2i+ ∧
Σ2oΣi

Comm2 ∧ ∂i(Σ∞F)∧2.

Proof The left coaction of Comm∗ on

∂∗(Σ∞P2i−1(F)) = ∂∗(Σ∞Ω∞P2i−1(F))

is easily deduced from the chain rule [AC], together with the fact that under the
equivalence

∂∗(Σ∞Ω∞) ' Comm∗,

the left coaction of Comm∗ on ∂∗(Σ∞Ω∞) is given by the left coaction of Comm∗ on
itself. In particular, the coaction map corresponding to the partition 2i = i + i is given
by the composite (of equivalences)

∂2i(Σ∞P2i−1(F)) '−→ Σ2i+ ∧
Σ2oΣi

∂i(F)∧2 '−→ Σ2i+ ∧
Σ2oΣi

∂i(Σ∞P2i−1(F))∧2.

The natural transformation of functors

F → P2i−1(F)

induces a map of left Comm∗ -comodules

∂∗(Σ∞F)→ ∂∗(Σ∞P2i−1(F)).
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In particular, there is a commutative diagram

∂2i(Σ∞F)
ξ //

��

Σ2i+ ∧
Σ2oΣi

∂i(F)∧2

=

��
Σ2i+ ∧

Σ2oΣi
∂i(Σ∞F)∧2

'
// Σ2i+ ∧

Σ2oΣi
∂i(F)∧2

where the vertical arrows are Comm∗ -comodule structure maps. We conclude that the
map ξ in (2–12) encodes the primary Comm∗ -comodule structure map, as desired.

Proof of Theorem 2–5 By [AC], we have

(2–14) ∂∗(F) ' C(1∗,Comm∗, ∂∗(Σ∞F)).

In particular, we have

∂2i(F) ' C(1∗,Comm∗, ∂∗(Σ∞F))2i

' fiber
(
∂2i(Σ∞F)

ξ−→ Σ2i+ ∧
Σ2oΣi

∂i(F)∧2
)
.

This equivalence was already recorded in the fiber sequence (2–12), but now it implicitly
records more structure, as (2–14) is an equivalence of left ∂∗(Id)-modules. Indeed,
we now compute from (2–14) the ∂∗(Id)-module structure of ∂∗(F) in terms of the
attaching map φ.

To accomplish this, we work with dual derivatives, and then dualize. We have

∂∗F = B(1∗,Comm∗, ∂∗(Σ∞F)).

Using the Ching model for the bar construction [Chi05], we have a pushout

∂I ∧ Σ2i+ ∧
Σ2oΣi

∂i(F) � � //

ξ∨

��

I ∧ Σ2i+ ∧
Σ2oΣi

∂i(F)

��
∂I ∧ ∂2i(Σ∞F) // B(1∗,Comm∗, ∂∗(Σ∞F))2i
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and the ∂∗(Id)-comodule structure map is explicitly given by the map of pushouts

∂I ∧ Σ2i+ ∧
Σ2oΣi

∂i(F) � � //

ξ∨

��

=

$$IIIIIIIII

I ∧ Σ2i+ ∧
Σ2oΣi

∂i(F)

��

=

%%LLLLLLLLLL

∂I ∧ Σ2i+ ∧
Σ2oΣi

∂i(F) � � //

��

I ∧ Σ2i+ ∧
Σ2oΣi

∂i(F)

��

∂I ∧ ∂2i(Σ∞F) //

$$JJJJJJJJJJJJ ∂2i(F)

&&MMMMMMMMMM

∗ // Σ2i+ ∧
Σ2oΣi

∂2(Id) ∧ ∂i(F)∧2

In particular, we deduce that the coaction map

µ∨ : ∂2i(F)→ Σ2i+ ∧
Σ2oΣi

∂2(Id) ∧ ∂i(F)∧2

is precisely the connecting morphism (Σ−1∂2i(φ̃2))∨ in the cofiber sequence dual to
the fiber sequence (2–12):

Σ2i+ ∧
Σ2oΣi

∂i(F)∧2 ξ∨−→ ∂2i(Σ∞F)
η∨−→ ∂2i(F)

(Σ−1∂2i(φ̃2))∨−−−−−−−−→ Σ

(
Σ2i+ ∧

Σ2oΣi
∂i(F)∧2

)
.

Dualizing, we deduce that
µ = Σ−1∂2i(φ̃2)

and the theorem follows.

3 Homology of the layers

In this section we briefly recall some facts about the homology of the layers of the
Goodwillie tower of the identity evaluated on spheres. This computation is due to
Arone and Mahowald [AM99], but we will need to take advantage of the interpretation
presented in [Beh].

Let F : Top∗ → Top∗ be a reduced finitary homotopy functor. In [Beh], the author
introduced operations

Q̄j : H∗(Di(F)(X))→ H∗+j−1(D2i(F)(X)).
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These operations were defined as follows: the left action of ∂∗(Id) on ∂∗(F) yields a
map

µ : Σ−1∂i(F)∧2 ' ∂2(Id) ∧ ∂i(F)∧2 → ∂2i(F).

This map induces a map

µ′ : Σ−1Di(F)(X)∧2
hΣ2
→ D2i(F)(X).

The operations are given by

(3–1) Q̄j(x) := µ′∗σ
−1Qjx

for x ∈ H∗(Di(F)(X)).

In [Beh], the Arone-Mahowald computation is interpreted in terms of these operations,
and it is shown that

H∗(D2k (Sn)) = F2
{

Q̄i1 · · · Q̄ikιn : is ≥ 2is+1 + 1, ik ≥ n
}
.

Recall that H∗(S1)∧2k

hΣok2
contains a direct summand

R̃1(k) = F2{Qi1 o · · · o Qikι1 : is ≥ is+1 + · · ·+ ik + 1}.

In [Kuh82], certain idempotents ek are constructed to act on R̃1(k) (in [Kuh82], these
idempotents are denoted Dk−1 , but we use the notation ek in this paper so as to not
create confusion with the notation used for the layers of the Goodwillie tower). These
idempotents split off the summand H∗(ΣL(k)). Kuhn shows that

H∗(ΣL(k)) = F2 {ek(Qi1 o · · · o Qikι1) : is ≥ 2is+1 + 1, ik ≥ 1} .

Lemma 3–2 Under the equivalence ΣL(k) ' ΣkD2k (S1) of (1–2), we have a bijection
between the two bases

ek(Qi1 o · · · o Qikι1)↔ σkQ̄i1 · · · Q̄ikι1.

Proof In Section 1.4 of [Beh] an algebra R̄n of operations Q̄j is defined, with relations

(1) Q̄rQ̄s =
∑

t

[(
s− r + t

s− t

)
+

(
s− r + t

2t − r

)]
Q̄r+s−tQ̄t,

(2) Q̄j1 · · · Q̄jk = 0, if j1 < j2 + · · ·+ jk + n.

Here, and throughout this section, mod 2 binomial coefficients
(a

b

)
∈ F2 are defined

for all a, b ∈ Z by (
a
b

)
= coefficient of tb in (1 + t)a .
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Let R̄n(k) be the summand additively generated by length k sequences of operations.
It is shown in [Beh] that H∗ΣkD2k (S1) is precisely the quotient of R̃1(k) by relation
(1) above, and therefore

H∗D2k (S1) = R̄1(k){ι1}.

Kuhn’s idempotents ek are defined in [Kuh82] as certain iterates of idempotents

Ts : R̃1 → R̃1, 1 ≤ s ≤ k − 1

where

Ts(Qi1 o · · · o Qik ) =∑
t

[(
is+1 − is + t

is+1 − t

)
+

(
is+1 − is + t

2t − is

)]
Qi1 o · · · o Q̄is+is+1−t o Qt o · · · o Qik .

Let

(3–3) νk : R̃1(k)→ R̄1(k)

be the canonical surjection. Clearly νkTs = νk , and therefore νkek = νk . In particular

νkekQi1 o · · · o Qik = Q̄i1 · · · Q̄ik .

We remark that the above lemma, and the homomorphisms used in its proof, allow us
to easily describe the effect on homology

(ιk)∗ : H∗ΣkD2k (S1)→ H∗(S1)∧2k

hΣok2
,

(pk)∗ : H∗(S1)∧2k

hΣok2
→ H∗ΣkD2k (S1)

of the splitting maps (1–5) in terms of the Q̄-basis. Namely, we have

(ιk)∗σkQ̄i1 · · · Q̄ikι1 = ek(Qi1 o · · · o Qikι1)(3–4)

(pk)∗Qi1 o · · · o Qikι1 = σkQ̄i1 · · · Q̄ikι1.(3–5)

Since (1–2) and (1–5) give the spectrum ΣkD2k (S1) as a summand of the suspension
spectrum Σ∞(S1)∧2k

hΣok2
, we can explicitly describe the homology of its zeroth space

[CLM76]:

H∗(BkD2k (S1)) = F
(
F2
{
σkQ̄i1 · · · Q̄ikι1 : is ≥ 2is+1 + 1, ik ≥ 1

})
.

Here, F is the functor

F : graded F2 -vector spaces→ allowable R-algebras
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which associates to a graded F2 -vector space V the free allowable algebra over the
Dyer-Lashof algebra.

We endow H∗(BkD2k (S1)) with a (decreasing) weight filtration by declaring that

w(x) = 2k for x ∈ H∗ΣkD2k (S1),

w(Qix) = 2 · w(x),

w(x ∗ y) = w(x) + w(y).

This weight filtration is related to Goodwillie calculus in the following manner. As
indicated in the proof of Lemma 2–4, the functor Σ∞Ω∞ has derivatives

∂i(Σ∞Ω∞) = S

with trivial Σi -action. For connected spectra E , the Goodwillie tower Pi(Σ∞Ω∞)(E)
converges, giving a spectral sequence

(3–6) Ei,∗
1 = H∗(E∧i

hΣi
)⇒ H∗(Ω∞E).

In [Kuh07, Ex. 6.1], it is explained that the Goodwillie tower for Σ∞Ω∞ splits when
evaluated on connected suspension spectra. In these cases the spectral sequence (3–6)
degenerates. By naturality, this also holds for summands of connected suspension
spectra. The weight filtration is simply an appropriate scaling of the filtration in this
spectral sequence.

The induced morphisms

H∗BkD2k (S1)
(dk)∗
�

(δk)∗
H∗Bk+1D2k+1(S1)

were computed in [Kuh82]: we end this section be recalling these explicit descriptions.

Suppose that
Qj1 · · ·Qj`σk+1Q̄i1 · · · Q̄ik+1ι1

is an algebra generator of H∗Bk+1D2k+1(S1). Writing

ek+1Qi1 o · · · o Qik+1 =
∑

Qi′1 o · · · o Qi′k+1 ,

we have

(dk)∗Qj1 · · ·Qj`σk+1Q̄i1 · · · Q̄ik+1ι1 =
∑

Qj1 · · ·Qj`Qi′1σkQ̄i′2 · · · Q̄i′k+1 .

Furthermore, as dk is an infinite loop map, (dk)∗ is a map of algebras. We see that
(dk)∗ preserves the weight filtration. In fact, (dk)∗ is isomorphic to its own associated
graded (with respect to the monomial basis).
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Suppose that
Qj1 · · ·Qj`σkQ̄i1 · · · Q̄ikι1

is an algebra generator of H∗BkD2k (S1). Then we have

(δk)∗Qj1 · · ·Qj`σkQ̄i1 · · · Q̄ikι1 =
∑

s

Qj1 · · · Q̄js · · ·Qj`σkQ̄i1 · · · Q̄ikι1.

Here, we move the Q̄i past the Qj ’s using the mixed Adem relation

Q̄rQs =
∑

t

[(
s− r + t

s− t

)
+

(
s− r + t

2t − r

)]
Qr+s−tQ̄t.

In particular, (δk)∗ preserves the weight filtration on algebra generators. While the
map (δk)∗ is not a map of algebras, Kuhn shows that its associated graded with respect
to the weight filtration is a map of algebras [Kuh82, Prop. 2.7].

4 Homological behavior of ψk

In this section we will prove Theorem 1–12, and then explain how it implies Theo-
rem 1–8.

The map δk is given by the composite

(4–1) Ω∞ΣkD2k (S1) JH−→ Ω∞
(
ΣkD2k (S1)

)∧2
hΣ2

Ω∞αk−−−−→ Ω∞Σk+1D2k+1(S1)

where αk is the composite (see (1–2) and (1–5))(
ΣkD2k (S1)

)∧2
hΣ2

(ιk)∧2
hΣ2−−−−→ Σ∞(S1)∧2k+1

hΣok+1
2

pk+1−−→ Σk+1D2k+1(S1)

and the James-Hopf map JH is defined by the splitting of Σ∞Ω∞ΣkD2k (S1) induced
by the retract of the Goodwillie towers

Pi(Σ∞Ω∞)(ΣkD2k (S1))

(ιk)∗ ))RRRRRRRRRRRRR
id // Pi(Σ∞Ω∞)(ΣkD2k (S1))

Pi(Σ∞Ω∞)(Σ∞(S1)∧2k

hΣok2
)
(pk)∗

55lllllllllllll

Consider the natural transformation of functors from vector spaces to spectra given by
the the adjoint of ψk :

ψ̃k : Σ∞Ω∞ΣkD2k (SV )→ Σk+1D2k+1(SV ).
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On the level of the 2k+1 st layers of the corresponding Weiss towers, ψ̃k induces a map

[ψ̃k]2 : (ΣkD2k (SV ))∧2
hΣ2
' DW

2k+1(Σ∞Ω∞ΣkD2k ◦ χ)(V)→ Σk+1D2k+1(SV ).

The proof of Theorem 1–12 will rest on the following two lemmas.

Lemma 4–2 The natural transformation ψk , when evaluated on S1 , admits a factor-
ization

Ω∞ΣkD2k (S1) JH−→ Ω∞
(
ΣkD2k (S1)

)∧2
hΣ2

Ω∞[ψ̃k]2−−−−−→ Ω∞Σk+1D2k+1(S1).

Proof of Lemma 4–2 Since the functor Σk+1D2k+1(SV ) is of degree 2k+1 in V , the
adjoint ψ̃k factors as

Σ∞Ω∞ΣkD2k (SV )→ PW
2k+1(Σ∞Ω∞ΣkD2k ◦ χ)(V) τk−→ Σk+1D2k+1(SV )

Specializing to the case of V = R, and using the splitting

PW
2k+1(Σ∞Ω∞ΣkD2k ◦ χ)(R) ' P2(Σ∞Ω∞)(ΣkD2k (S1))

' ΣkD2k (S1) ∨
(
ΣkD2k (S1)

)∧2
hΣ2

we see that in this case τk may be decomposed as

τk = [ψ̃k]1 ∨ [ψ̃k]2.

Using [Nis87, Cor. 5.4], we see that

[ΣkD2k (S1),Σk+1D2k+1(S1)] ∼= [L(k),L(k + 1)] = 0.

Therefore [ψ̃k]1 ' ∗, and the lemma follows.

Lemma 4–3 The induced maps

(αk)∗, ([ψ̃k]2)∗ : H∗
(
ΣkD2k (S1)

)∧2
hΣ2
→ H∗Σk+1D2k+1(S1).

are equal.

Proof of Lemma 4–3 The map

(αk)∗ : H∗
(
ΣkD2k (S1)

)∧2
hΣ2
→ H∗Σk+1D2k+1(S1)

can be computed using (3–4), (3–5), and the relation νkTs = νk established in the
proof of Lemma 3–2. One finds that (αk)∗ is given by

(αk)∗QjσkQ̄i1 · · · Q̄ikι1 = σk+1Q̄jQ̄i1 · · · Q̄ikι1.

We just need to show that the same holds for [ψ̃k]2 .
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Since φk = Ωkψk , the evaluation maps ΣkΩk → Id allow one to fit the adjoints φ̃k , ψ̃k

of these natural transformations into the following commutative diagram

ΣkΣ∞Ω∞D2k (SV )
Σkφ̃k //

Ek

��

Σk+1D2k+1(SV )

=

��
Σ∞Ω∞ΣkD2k (SV )

ψ̃k

// Σk+1D2k+1(SV )

On the level of 2k+1 st Weiss layers, evaluated on V = R, we get a diagram

Σk
(
D2k (S1)

)∧2
hΣ2

Σk[φ̃k]2 //

Ek

��

Σk+1D2k+1(S1)

=

��(
ΣkD2k (S1)

)∧2
hΣ2 [ψ̃]2

// Σk+1D2k+1(S1)

The map

(Ek)∗ : H∗Σk (D2k (S1)
)∧2

hΣ2
→ H∗

(
ΣkD2k (S1)

)∧2
hΣ2

is surjective, since Qi -operations commute with (Ek)∗ (see, for example, [BMMS86,
Lem. II.5.6]). Therefore, it suffices to compute

([φ̃k]2)∗ : H∗
(
D2k (S1)

)∧2
hΣ2
→ H∗ΣD2k+1(S1).

We compute this map using the technology of Section 2.

Let P2k,2k+1(X) be the generalized quadratic functor defined by the fiber sequence

P2k,2k+1(X)→ P2k+1(X)→ P2k−1(X).

Then, as explained in Section 2, there is a fiber sequence

P2k,2k+1(X)→ Ω∞P2k,2k+1−1(X)
φk−→ Ω∞ΣD2k+1(X).

Here we have purposefully abused notation, as this new attaching map φk agrees with
the old φk when X is a sphere. Associated to the adjoint of φk is a transformation

[φ̃k]2 : D2k (X)∧2
hΣ2
→ ΣD2k+1(X)

which reduces to the previously defined [φ̃k]2 when X is a sphere. Theorem 2–5
implies that Σ−1[φ̃k]2 is given by the map

Σ−1D2k (X)∧2
hΣ2
→ D2k+1(X)
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induced by the left action of ∂∗(Id). Letting X = S1 , and using (3–1), we deduce that

([φ̃k]2)∗QjQ̄i1 · · · Q̄ikι1 = σQ̄jQ̄i1 · · · Q̄ik .

We therefore deduce that

([ψ̃k]2)∗QjσkQ̄i1 · · · Q̄ikι1 = σk+1Q̄jQ̄i1 · · · Q̄ikι1,

and the lemma follows.

Using the above two lemmas, we may now prove Theorem 1–12 and deduce Theo-
rem 1–8.

Proof of Theorem 1–12 Endow

H∗Ω∞
(
ΣkD2k (S1)

)∧2
hΣ2

= FH∗
(
ΣkD2k (S1)

)∧2
hΣ2

with a weight filtration by defining

w(x) = 2k+1 for x ∈ H∗
(
ΣkD2k (S1)

)∧2
hΣ2
,

w(Qix) = 2 · w(x),

w(x ∗ y) = w(x) + w(y).

Then, by Propositions 2.5 and 2.7 of [Kuh82], the map

JH∗ : H∗Ω∞ΣkD2k (S1)→ H∗Ω∞
(
ΣkD2k (S1)

)∧2
hΣ2

preserves the weight filtration. The maps of the (collapsing) spectral sequences (3–6)
induced by αk and [ψ̃k]2 imply that the maps

(Ω∞αk)∗, (Ω∞[ψ̃k]2)∗ : H∗Ω∞
(
ΣkD2k (S1)

)∧2
hΣ2
→ H∗Ω∞Σk+1D2k+1(S1)

both preserve the weight filtration. Lemma 4–3 implies that on the level of associated
graded groups, the maps E0(Ω∞αk)∗ and E0(Ω∞[ψ̃k]2)∗ are equal. It follows from
(4–1) and Lemma 4–3 that

E0(δk)∗ = E0(ψk)∗ : E0H∗BkD2k (S1)→ E0H∗Bk+1D2k+1(S1)

as desired.

Remark 4–4 The referee points out that the fact that the map JH∗ preserves the
weight filtration can also be easily deduced from calculus: take the induced map of
Goodwillie towers on the natural transformation of functors

Σ∞JH : Σ∞Q(−)→ Σ∞Q(−)∧2
hΣ2

from spaces to spectra, and apply homology.
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Proof of Theorem 1–8 Referring to Diagram (1–11), it is shown in [Kuh82] that

H∗(Ek) = Im(dk)∗ ⊆ H∗BkD2k (S1).

The weight filtration on H∗BkD2k (S1) therefore induces a weight filtration on H∗Ek . It
follows from Theorem 1–12 that

E0(h′k)∗ = E0(hk)∗ : E0H∗Ek → E0H∗Bk+1D2k+1(S1).

Kuhn proved Theorem 1–7 by showing that

E0(d̃k)∗ ◦ E0(hk) = Id : E0H∗Ek → E0H∗Ek.

We deduce that
E0(d̃k)∗ ◦ E0(h′k) = Id : E0H∗Ek → E0H∗Ek

and thus d̃k ◦ h′k is a self-equivalence of Ek . Consider the induced splittings

BkD2k (S1) ' Ek−1 × Ek.

With respect to these splittings, dk takes “matrix form”

dk =

[
0 0
1 0

]
and there exist self-equivalences fk : Ek → Ek so that

ψk =

[
∗ fk
∗ 0

]
.

We deduce that

dkψk + ψk−1dk−1 =

[
fk−1 0
∗ fk

]
and in particular, dkψk + ψk−1dk−1 is an equivalence.
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