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An analogy:

Particle physics:

• All matter is built from elementary 
particles                                                                                                                    

• Goal: Discover all fundamental 
particles

• Tool: Massive accelerators and 
detectors [LHC]

Homotopy theory:

• Topological spaces (up to homotopy) 
are built by attaching together disks 
(of varying dimensions)

• Goal: Compute all attaching maps 
(homotopy groups of spheres)

• Tool: Massive spectral sequences

[Adams spectral sequence]



Matter: built out of elementary particles



CW complex:
Built out of disks - 𝐷𝑛

“n-cells”



CW complexes
• Theorem:

Every topological space is (weakly) homotopy equivalent to a CW complex.

• CW complexes have the form 𝑋 = 𝑛𝑋ڂ
𝑛

𝑋0 = 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠

𝑋1 = 𝑋0 ∪𝜕 {𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠}

𝑋2 = 𝑋1 ∪𝜕 {𝑠𝑒𝑡 𝑜𝑓 𝑑𝑖𝑠𝑘𝑠}

⋮

𝑋𝑖+1 = 𝑋𝑖 ∪𝜕 {𝑠𝑒𝑡 𝑜𝑓 𝐷
𝑖+1}



CW complexes
• Theorem:

Every topological space is (weakly) homotopy equivalent to a CW complex.

• CW complexes have the form 𝑋 = 𝑛𝑋ڂ
𝑛

𝑋0 = 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠

𝑋1 = 𝑋0 ∪𝜕 {𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠}

𝑋2 = 𝑋1 ∪𝜕 {𝑠𝑒𝑡 𝑜𝑓 𝑑𝑖𝑠𝑘𝑠}

⋮

𝑋𝑖+1 = 𝑋𝑖 ∪𝜕 {𝑠𝑒𝑡 𝑜𝑓 𝐷
𝑖+1}



CW complexes

Inductively, the CW complex 𝑋 is determined

up to homotopy by the homotopy classes of

the attaching maps

𝛼 ∈ 𝜋𝑖(𝑋
𝑖)

CW-complexes/homotopy = “matter of geometry”

Building blocks – elements of homotopy groups



Elementary particles: complicated

[Wikipedia commons]



Homotopy groups of spheres: also complicated

Computation: Serre, Toda, … 
Chart: Hatcher



Down to business…
• For the rest of this talk, all CW complexes are finite, connected, with fixed basepoint.

• We will discuss the simpler problem of classifying such CW complexes up to stable 
equivalence [still hard!]:

𝑋 ≃𝑠𝑡 𝑌 ⇔ Σ𝑁𝑋 ≃ Σ𝑁𝑌 𝑁 ≫ 0 [define Σ]

• Stable homotopy category of these:

Morphisms:      𝑋, 𝑌 𝑠𝑡 = Σ𝑁𝑋, Σ𝑁𝑌 N ≫ 0 (𝑡ℎ𝑒𝑠𝑒 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒)

• Stable equivalence of CW complex depends on stable attaching maps

𝛼 ∈ 𝜋𝑛
𝑠𝑡 𝑋 ≔ 𝑆𝑛, 𝑋 𝑠𝑡 “stable homotopy groups of 𝑋”



Stable homotopy groups of spheres:

𝜋𝑛
𝑠𝑡 𝑆𝑛 𝜋𝑛+1

𝑠𝑡 𝑆𝑛 𝜋𝑛+2
𝑠𝑡 𝑆𝑛 𝜋𝑛+3

𝑠𝑡 𝑆𝑛 𝜋𝑛+4
𝑠𝑡 (𝑆𝑛)



Basic particle detectors:

• Takeaway: 

Use simple particle (electron) to 
detect more exotic particles

[AMS-02 experiment]
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Goal: build a detector of (stable) homotopy groups

• Homology – a simple computable approximation of homotopy groups

Hurewicz homomorphism:           𝜋∗
𝑠𝑡 𝑋 → 𝐻∗(𝑋) [typically not an iso!]

• Homology classes will be the “electrons” in our detector which detect elements 
of 𝜋∗

𝑠𝑡(𝑋)



Cellular homology
Form a chain complex – basis given by cells – differential given by degrees of 
attaching maps:



Cellular homology
Form a chain complex – basis given by cells – differential given by degrees of 
attaching maps:



Cellular homology
Form a chain complex – basis given by cells – differential given by degrees of 
attaching maps:

[“Graph” notation]







Cellular homology
Form a chain complex – basis given by cells – differential given by degrees of 
attaching maps:



Cellular homology



Cellular homology



Cellular homology



Cellular homology: different coefficients

Homology with coefficients in a 
ring R – each dot represents a 
copy of R instead of a copy of ℤ.

[In this example, 𝑅 = 𝔽2]

BAD detector?? Does not detect degree 2 attaching maps!



Cohomology: reverse arrows



Cohomology: cup product structure

Cohomology is a ring!

In this example,

𝐻∗ ℝ𝑃4; 𝔽2 = 𝔽2 𝑥 /(𝑥5)

Better detector: degree 2 attaching map detected by 𝑥2 ≠ 0
[If 2-cell attached to 1-cell with deg 0 map, would get 𝑥2 = 0]



Cell diagrams: a way of encoding attaching maps



Cell diagrams: a way of encoding attaching maps

Let j be minimal so that 𝛼 factors through 𝑋𝑗



Cell diagrams: a way of encoding attaching maps

Suppose X has j-cells 𝐷1
𝑗
, 𝐷2

𝑗
, …

For each such cell 𝐷𝑘
𝑗

there is a projection map



Cell diagrams: a way of encoding attaching maps

We say:

“the i-cell attaches to the j-cell 𝐷𝑘
𝑗

with attaching map 𝛼𝑘”



Cell diagrams: a way of encoding attaching maps

We say:

“the i-cell attaches to the j-cell 𝐷𝑘
𝑗

with attaching map 𝛼𝑘”

Note:
- A given cell can attach nontrivially to many other cells

- In this way, the stable equivalence class of 𝑋 is essentially determined by the 

collection of all its attaching maps 𝛼𝑘 ∈ 𝜋𝑖−1
𝑠𝑡 (𝑆𝑗)

- This is why I asserted that the stable homotopy groups of spheres are the 
“elementary particles” which comprise CW complexes



Cell diagrams: a way of encoding attaching maps

Cell diagram:   “Refinement of Cellular chain complex”

1) Draw one dot for each cell

2) Draw arrows labelled by attaching maps

[examples: ℂ𝑃2, ℝ𝑃4]



Steenrod operations: more structure on mod 2 cohomology
Theorem: (Steenrod)

There are natural homomorphisms (𝑖 ≥ 0)

𝑆𝑞𝑖: 𝐻𝑛 𝑋; 𝔽2 → 𝐻𝑛+𝑖(𝑋; 𝔽2)

• 𝑆𝑞𝑖 𝑥 = ൞

𝑥,
?,

𝑥2,
0

𝑖 = 0
1 ≤ 𝑖 ≤ 𝑛 − 1

𝑖 = 𝑛
𝑖 > 𝑛

• 𝑆𝑞𝑖𝑆𝑞𝑗 = σ𝑘
𝑗−𝑘−1
𝑖−2𝑘

𝑆𝑞𝑖+𝑗−𝑘𝑆𝑞𝑘 [Adem relations]

Steenrod algebra = algebra of these operators

𝒜 ∶= 𝔽2 𝑆𝑞
𝑖 ∶ 𝑖 > 0 / Adem relations

Similar operations on 𝐻∗(𝑋; 𝔽𝑝)

Steenrod operations sometimes 
detect attaching maps!

[examples: ℂ𝑃2, ℝ𝑃4]



For the rest of this talk, all cohomology reduced, with 𝔽2-coefficients!

𝐻∗𝑋 ≔ ෩𝐻∗(𝑋; 𝔽2)









Homology event channels
Given: 

𝑓: 𝑌 → 𝑋

(0) Direct detection

Suppose the induced map
𝑓∗: 𝐻∗𝑋 → 𝐻∗𝑌

is nonzero.

Define: 𝑓 ≔ 𝑓∗ ∈ 𝐻𝑜𝑚𝒜 𝐻∗𝑋,𝐻∗𝑌 = 𝐸𝑥𝑡𝒜
0 (𝐻∗𝑋,𝐻∗𝑌)

“signal”



Homology event channels
Given: 

𝑓: 𝑌 → 𝑋 (zero on cohomology)

(1) Indirect detection “single decay”

• Form a new CW complex - “mapping cone”
𝐶𝑓 ≔ 𝑋 ∪𝑓 𝐶𝑌 [picture]

• The long exact sequence
⋯ → 𝐻∗𝑋→

0
𝐻∗𝑌 → 𝐻∗+1𝐶𝑓 → 𝐻∗+1𝑋→

0
𝐻∗+1𝑌 → ⋯

is actually a short exact sequence:
0 → 𝐻∗𝑌 → 𝐻∗+1𝐶𝑓 → 𝐻∗+1𝑋 → 0

• If this extension of 𝒜-modules is nontrivial, get “signal”:
0 ≠ 𝑓 ∈ 𝐸𝑥𝑡𝒜

1 (𝐻∗+1𝑋,𝐻∗𝑌)



Homology event channels
Given: 

𝑓: 𝑌 → 𝑋 (zero on cohomology)

(s) Indirect detection “s-decays”

• Factor 𝑓 into 
𝑌 = 𝑋0→

𝑓1
𝑋1→

𝑓2
⋯→

𝑓𝑠
𝑋𝑠 = 𝑋

such that each 𝑓𝑖 is zero on cohomology - “event”

• Get an exact sequence
0 → 𝐻∗𝑌 → 𝐻∗+1𝐶𝑓1 → 𝐻∗+2𝐶𝑓2 → ⋯ → 𝐻∗+𝑠𝐶𝑓𝑠 → 𝐻∗+𝑠𝑋 → 0

• Get a “signal”
𝑓 ∈ 𝐸𝑥𝑡𝒜

𝑠 (𝐻∗+𝑠𝑋,𝐻∗𝑌)



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐸𝑥𝑡0 ↔ cells not hit by Steenrod operations

𝐻∗ℝ𝑃16

[Chart: Ext computing software Bruner/Perry]



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐻∗ℝ𝑃16

𝔽2

Event: 
𝜄1: 𝑆

1 → ℝP16

Signal:



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐻∗ℝ𝑃16

𝔽2

Event: 
𝜄3: 𝑆

3 → ℝP16

Signal:



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐻∗ℝ𝑃16

𝔽2

Event: 
𝜄7: 𝑆

7 → ℝP16

Signal:



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐻∗ℝ𝑃16

𝔽2

Event: 
𝜄1 ∘ 𝜂: 𝑆

2 → ℝP16

Signal:

𝐻∗𝐶𝜄1∘𝜂

0

0



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐻∗ℝ𝑃16

𝔽2

Event: 
𝑆3→

𝜂
𝑆2

𝜄1∘𝜂
ℝP16

Signal:

𝐻∗𝐶𝜄1∘𝜂

0

0

𝐻∗𝐶𝜂



Examples of homology events, signals

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝐻∗ℝ𝑃16

𝔽2

Event: 
𝑆7→

2
𝑆7→

2
𝑆7

2𝜄7
ℝP16

Signal:

𝐻∗𝐶2𝜂

0

0

𝐻∗𝐶2

𝐻∗𝐶2



• “noise”: 

𝑓: 𝑌 → 𝑋 could be null homotopic, and yet produce a nonzero signal
0 ≠ 𝑓 ∈ 𝐸𝑥𝑡𝒜

𝑠 𝐻∗+𝑠𝑋,𝐻∗𝑌

• “physically impossible signals”: 

For some signals
𝑥 ∈ 𝐸𝑥𝑡𝒜

𝑠 𝐻∗+𝑠𝑋,𝐻∗𝑌

𝑥 ≠ [𝑓] for any 𝑓

Two problems



Adams differentials - “Noise cancellation”
Turns out you can use physically impossible signals to cancel noise!

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠 Physically impossible event: there is no topological map

𝑆15
𝜄15
ℝP16

Issue: 15-cell attaches to 7-cell with attaching map
2𝜄7 ∘ 𝜎: 𝑆

14 → 𝑆7

invisible to Steenrod operations!

Signal:

𝐻∗ℝ𝑃16

𝔽2



Adams differentials - “Noise cancellation”
Turns out you can use physically impossible signals to cancel noise!

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠 Noise: the event below gives a non-zero signal
𝑆14→

2
𝑆14

𝜄7∘𝜎
ℝP16

Issue: the element 2𝜎𝜄7 ∈ 𝜋14
𝑠𝑡(ℝ16) is null homotopic-

since the 15-cell attaches to 7-cell with attaching map
2𝜎: 𝑆14 → 𝑆7

2𝜎𝜄7 extends over a disk!

Signal:

𝐻∗ℝ𝑃16

𝔽2

𝐻∗𝐶𝜄7∘𝜎

0

0

𝐻∗𝐶2



Adams differentials - “Noise cancellation”
Turns out you can use physically impossible signals to cancel noise!

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠 The “invisible” attaching map 2𝜎: 𝑆14 → 𝑆7

simultaneously creates a physically impossible signal 
a noise signal.

Noise cancellation – cancel the noise with the 
correlated physically impossible signal.
“Adams differential”

Signal:





Adams differentials – “noise cancellation”

Turns out, there are differentials (Adams spectral sequence)

𝑑𝑟: 𝐸𝑥𝑡𝒜
𝑠 𝐻∗+𝑠+𝑛𝑋, 𝔽2 → 𝐸𝑥𝑡𝒜

𝑠+𝑟 𝐻∗+𝑠+𝑟+𝑛−1𝑋, 𝔽2

𝑑𝑟 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑛𝑜𝑖𝑠𝑒

Theorem (Adams)

𝐻∗ 𝐸𝑥𝑡𝒜
∗ 𝐻∗𝑋, 𝔽2 , 𝑑𝑟 ≅ 𝜋∗

𝑠𝑡 𝑋 2
∧ [2-completion = “2-torsion”]

[Isomorphism of sets]

(version for 𝐻∗ −;𝔽𝑝 ⇒ p-completion)



Adams differentials - “Noise cancellation”
Turns out you can use physically impossible signals to cancel noise!

𝑓 ∈ 𝐸𝑥𝑡𝒜
𝑠 (𝐻∗+𝑠+𝑛ℝ𝑃16, 𝔽2)

𝑓: 𝑆𝑛 → ℝ𝑃16

𝑛

𝑠

𝜋∗
𝑠𝑡 ℝ𝑃16 : ℤ2 ℤ2 ℤ8 ℤ2 0 ℤ2

ℤ16
× ℤ2

ℤ2
3 ℤ2

4 ℤ8
× ℤ2

ℤ8 0 0 ℤ2
2

ℤ32
× ℤ2

2 ℤ2
5 ℤ2

7 ℤ8
3

× ℤ2

ℤ8
× ℤ2

4
ℤ8
× ℤ2



Adams differentials - “Noise cancellation”

𝑛

𝑠

𝜋∗
𝑠𝑡 ℝ𝑃16 : ℤ2 ℤ2 ℤ8 ℤ2 0 ℤ2

ℤ16
× ℤ2

ℤ2
3 ℤ2

4 ℤ8
× ℤ2

ℤ8 0 0 ℤ2
2

ℤ32
× ℤ2

2 ℤ2
5 ℤ2

7 ℤ8
3

× ℤ2

ℤ8
× ℤ2

4
ℤ8
× ℤ2

Only one little problem: you have no a priori knowledge what 
the differentials are!

Only technique for deducing them: “guile” 



𝜋𝑛+𝑘
𝑠𝑡 (𝑆𝑘)





Elementary particles of homotopy theory:

[Wikipedia commons]







Higher energies







Higher energies require fancier detectors
SLAC



Tevatron



LHC



ASS: mod 2 cohomology



Real –K-theory 𝑘𝑜
[Lellmann-Mahowald]
[Beaudry-B-Bhattacharya-Culver-Xu]

𝐸𝑥𝑡𝒜𝑏𝑜
(𝑘𝑜∗ 𝑆𝑘 , 𝑘𝑜∗ 𝑆𝑘+𝑛 )



Topological modular forms (tmf)
[Mahowald] – started thinking about the tmf-ASS
[B-Ormsby-Stojanoska-Stapleton] - 𝒜𝑡𝑚𝑓

[Beaudry-B-Bhattacharya-Culver-Xu] 
– computing 𝐸𝑥𝑡𝒜𝑡𝑚𝑓

[work in progress]


