Detectors in homotopy theory

Mark Behrens

University of Notre Dame

An analogy:

Particle physics:

• All matter is built from elementary particles

- Goal: Discover all fundamental particles
- Tool: Massive accelerators and detectors [LHC]

Homotopy theory:

- Topological spaces (up to homotopy) are built by attaching together disks (of varying dimensions)
- Goal: Compute all attaching maps (homotopy groups of spheres)
- Tool: Massive spectral sequences [Adams spectral sequence]

Matter: built out of elementary particles

<u>CW complexes</u>

• Theorem:

Every topological space is (weakly) homotopy equivalent to a CW complex.

• CW complexes have the form $X = \bigcup_n X^n$

 $X^0 = \{set \ of \ points\}$

 $X^1 = X^0 \cup_{\partial} \{set \ of \ intervals\}$

$$X^{2} = X^{1} \cup_{\partial} \{set \ of \ disks\}$$

:

$$X^{i+1} = X^i \cup_{\partial} \{ set \ of \ D^{i+1} \}$$

<u>CW complexes</u>

• Theorem:

Every topological space is (weakly) homotopy equivalent to a CW complex.

• CW complexes have the form $X = \bigcup_n X^n$

 $X^0 = \{set \ of \ points\}$

 $X^1 = X^0 \cup_{\partial} \{set \ of \ intervals\}$

$$X^2 = X^1 \cup_{\partial} \{set \ of \ disks\}$$

•

$$X^{i+1} = X^i \cup_{\partial} \{ set \ of \ D^{i+1} \}$$

<u>CW complexes</u>

Inductively, the CW complex X is determined up to homotopy by the *homotopy classes* of the attaching maps

Elementary particles: complicated

[Wikipedia commons]

Homotopy groups of spheres: also complicated

$\pi_i(S^n)$													
		<i>i</i> 1	→ 2	3	4	5	6	7	8	9	10	11	12
$\stackrel{n}{\downarrow}$	1 2 3 4 5 6 7 8	Z 0 0 0 0 0 0 0	0 Z 0 0 0 0 0 0 0 0	0 Z 0 0 0 0 0 0	$ \begin{bmatrix} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$ \begin{bmatrix} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$ \begin{bmatrix} 0 \\ \mathbb{Z}_{12} \\ \mathbb{Z}_{2} \\ \mathbb{Z}_{2} \\ \mathbb{Z}_{2} \\ \mathbb{Z}_{0} \\ 0 \\ 0 \end{bmatrix} $	0 \mathbb{Z}_2 \mathbb{Z}_2 $\mathbb{Z} \times \mathbb{Z}_{12}$ \mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Q}_2 \mathbb{Q}_2	$\begin{array}{c} \\ 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_{24} \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \end{array}$	$ \begin{array}{c} 0\\ \mathbb{Z}_3\\ \mathbb{Z}_2\\ \mathbb{Z}_2 \times \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}_24\\ \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}_2 \end{array} $	$ \begin{array}{c} 0 \\ \mathbb{Z}_{15} \\ \mathbb{Z}_{24} \times \mathbb{Z}_{3} \\ \mathbb{Z}_{2} \\ 0 \\ \mathbb{Z}_{24} \\ \mathbb{Z}_{2} \\ 0 \\ \mathbb{Z}_{24} \\ \mathbb{Z}_{2} \\ \mathbb{Z}_{2} \\ \end{array} $	$ \begin{bmatrix} 11 \\ 12 \\ 1$	$ \begin{array}{c} 0\\ \mathbb{Z}_2 \times \mathbb{Z}_2\\ \mathbb{Z}_2 \times \mathbb{Z}_2\\ \mathbb{Z}_30\\ \mathbb{Z}_2\\ 0\\ 0\\ 0 \end{array} $

Computation: Serre, Toda, ... Chart: Hatcher

Down to business...

- For the rest of this talk, all CW complexes are finite, connected, with fixed basepoint.
- We will discuss the simpler problem of classifying such CW complexes up to *stable equivalence* [still hard!]:

$$X \simeq_{st} Y \iff \Sigma^N X \simeq \Sigma^N Y \quad N \gg 0$$
 [define Σ]

• Stable homotopy category of these:

Morphisms: $[X, Y]^{st} = [\Sigma^N X, \Sigma^N Y]$ N $\gg 0$ (these stabilize)

• Stable equivalence of CW complex depends on stable attaching maps

 $\alpha \in \pi_n^{st}(X) \coloneqq [S^n, X]^{st}$ "stable homotopy groups of X"

Stable homotopy groups of spheres:

$\pi_i(S^n)$													
		i - 1	2	3	4	5	6	7	8	9	10	11	12
$\stackrel{n}{\downarrow}$	1 2 3 4	ℤ 0 0 0	0 ℤ 0 0	0 ℤ ℤ 0	0 ℤ ₂ ℤ ₂ ℤ	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \end{array}$	$\begin{matrix} 0 \\ \mathbb{Z}_{12} \\ \mathbb{Z}_{12} \\ \mathbb{Z}_{2} \end{matrix}$	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z} \times \mathbb{Z}_{12} \end{array}$	$ \begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \end{array} $	$ \begin{array}{c} 0 \\ \mathbb{Z}_3 \\ \mathbb{Z}_3 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \end{array} $	$\begin{matrix} 0 \\ \mathbb{Z}_{15} \\ \mathbb{Z}_{15} \\ \mathbb{Z}_{24} \times \mathbb{Z}_{3} \end{matrix}$	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_{15} \end{array}$	$ \begin{array}{c} 0 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_2 \end{array} $
	5 6 7 8	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	ℤ 0 0 0	ℤ ₂ ℤ 0 0	ℤ ₂ ℤ2 ℤ	\mathbb{Z}_{24} \mathbb{Z}_{2} \mathbb{Z}_{2}	\mathbb{Z}_2 \mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_{2} \mathbb{Z}_{24} \mathbb{Z}_{2}	\mathbb{Z}_2 \mathbb{Z} \mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_{2}
									$\pi_n^{st}(S^n)$ π	$\tau_{n+1}^{st}(S^n)$ 1	$ au_{n+2}^{st}(S^n)$ π	$\sum_{n+3}^{st}(S^n)$) $\pi_{n+4}^{st}(S^n)$

Basic particle detectors:

• Takeaway:

Use simple particle (electron) to detect more exotic particles

Goal: build a detector of (stable) homotopy groups

- Homology a simple computable approximation of homotopy groups
 - Hurewicz homomorphism: $\pi^{st}_*(X) \to H_*(X)$ [typically not an iso!]
- Homology classes will be the "electrons" in our detector which detect elements of $\pi^{st}_*(X)$

Form a chain complex – basis given by cells – differential given by degrees of attaching maps:

["Graph" notation]

IRP4 = 54/antipodal

IRP4 = 54/Gatipodal

$$\frac{\mathbb{RP}^{\flat} \hookrightarrow \mathbb{RP}^{\flat} \hookrightarrow \mathbb{RP}^{\flat} \hookrightarrow \mathbb{RP}^{\flat} \hookrightarrow \mathbb{RP}^{\flat} \hookrightarrow \mathbb{RP}^{\flat}}{2} \xrightarrow{3} \frac{4}{2}$$

$$C_{4}(\mathbb{RP}^{\dagger}) \circ \cdots \overset{2}{2} \xrightarrow{3} \overset{2}{2} \circ \overset{2}{2} \overset{2}{$$

IRP4 = 54/Gatipodal

	Rp ^o c	- RP <	- IRP' C	$\rightarrow RP^{3} \subset$	- RP4
dim	0	I	2	3	4
C. (RP4)	٠	• <	2	• <	2
Fl. (RP4)	Z	ZZ	O	2/2	0

Cellular homology: different coefficients

Cohomology: reverse arrows

Cohomology: cup product structure

X = CW complex

 $\chi^{i} = \chi^{i} \cup_{\mathbf{x}} D^{i}$

X = CW complex $\chi^{i} = \chi^{i-i} \cup_{\alpha} D^{i}$

.

Let j be minimal so that α factors through X^j

 $X = CW \quad complex$ $X^{i} = X^{i'} \cup D^{i}$ $X^{i} = X^{i'} \cup U^{j}$ $K^{i} = X^{i'} \cup U^{j}$

Suppose X has j-cells $D_1^j, D_2^j, ...$

For each such cell D_k^j there is a projection map

 $X = CW \quad complex$ $X^{i} = X^{i-1} \cup_{k} D^{i}$ $X^{i} = X^{i-1} \cup_{k} D^{j}$ $X^{i} = X^{i-1} \cup_{k} D^{j}$ We say:
"the i-cell attaches to the j-cell D_{k}^{j} with attaching map α_{k} "

Note:

- A given cell can attach nontrivially to many other cells
- In this way, the stable equivalence class of X is essentially determined by the collection of all its attaching maps $\alpha_k \in \pi_{i-1}^{st}(S^j)$
- This is why I asserted that the stable homotopy groups of spheres are the "elementary particles" which comprise CW complexes

 $X = CW \quad complex$ $X^{i} = X^{i-i} \cup_{K} D^{i}$ $X^{j} = X^{j-i} \cup_{K} U D^{j}_{K}$

Cell diagram: "Refinement of Cellular chain complex"

1) Draw one dot for each cell

2) Draw arrows labelled by attaching maps

Steenrod operations: more structure on mod 2 cohomology

Theorem: (Steenrod)

There are natural homomorphisms ($i \ge 0$)

 $Sq^i: H^n(X; \mathbb{F}_2) \to H^{n+i}(X; \mathbb{F}_2)$

•
$$Sq^{i}(x) = \begin{cases} x, & i = 0 \\ ?, & 1 \le i \le n - 1 \\ x^{2}, & i = n \\ 0 & i > n \end{cases}$$

Steenrod operations sometimes detect attaching maps!

[examples: $\mathbb{C}P^2$, $\mathbb{R}P^4$]

• $Sq^{i}Sq^{j} = \sum_{k} {\binom{j-k-1}{i-2k}}Sq^{i+j-k}Sq^{k}$ [Adem relations]

Steenrod algebra = algebra of these operators

 $\mathcal{A} := \mathbb{F}_2 \langle Sq^i : i > 0 \rangle$ / Adem relations

Similar operations on $H^*(X; \mathbb{F}_p)$

For the rest of this talk, all cohomology reduced, with \mathbb{F}_2 -coefficients!

 $H^*X \coloneqq \widetilde{H}^*(X; \mathbb{F}_2)$

Game plan to build our detector...

Game plan to build our detector...

Silicon particle detector:

Our homotopy detector:

channels

Particle detector event channels

Many different possibilities for decay channels for a given particle

 $f^*: H^*X \to H^*Y$

is nonzero.

Define: $[f] \coloneqq f^* \in Hom_{\mathcal{A}}(H^*X, H^*Y) = Ext^0_{\mathcal{A}}(H^*X, H^*Y)$ "signal"

Homology event channels

Given:

 $f: Y \to X$ (zero on cohomology)

- (1) Indirect detection "single decay"
- Form a new CW complex "mapping cone"

 $C_f := X \cup_f CY$

• The long exact sequence

$$\cdot \xrightarrow{} H^*X \xrightarrow{}_{0} H^*Y \xrightarrow{} H^{*+1}C_f \xrightarrow{} H^{*+1}X \xrightarrow{}_{0} H^{*+1}Y \xrightarrow{} \cdots$$

is actually a short exact sequence:

$$0 \to H^*Y \to H^{*+1}C_f \to H^{*+1}X \to 0$$

• If this extension of \mathcal{A} -modules is nontrivial, get "signal": $0 \neq [f] \in Ext^{1}_{\mathcal{A}}(H^{*+1}X, H^{*}Y)$

[picture]

Homology event channels Given:

 $f: Y \to X$ (zero on cohomology)

(s) Indirect detection "s-decays"

• Factor *f* into

$$Y = X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_s} X_s = X$$

such that each f_i is zero on cohomology - "event"

• Get an exact sequence $0 \to H^*Y \to H^{*+1}C_{f_1} \to H^{*+2}C_{f_2} \to \dots \to H^{*+s}C_{f_s} \to H^{*+s}X \to 0$

 $[f] \in Ext^{s}_{\mathcal{A}}(H^{*+s}X, H^{*}Y)$

Examples of homology events, signals

 $f: S^n \to \mathbb{R}P^{16}$

[Chart: Ext computing software Bruner/Perry]

Examples of homology events, signals

<u>Two problems</u>

• "noise":

 $f: Y \to X$ could be null homotopic, and yet produce a nonzero signal $0 \neq [f] \in Ext^{s}_{\mathcal{A}}(H^{*+s}X, H^{*}Y)$

• "physically impossible signals":

For some signals

 $\boldsymbol{x} \in Ext^{S}_{\mathcal{A}}(H^{*+s}X, H^{*}Y)$

 $x \neq [f]$ for any f

<u>Adams differentials - "Noise cancellation"</u>

Turns out you can use physically impossible signals to cancel noise!

 $f: S^n \to \mathbb{R}P^{16}$

<u>Adams differentials - "Noise cancellation"</u>

Turns out you can use physically impossible signals to cancel noise!

 $f: S^n \to \mathbb{R}P^{16}$

Adams differentials - "Noise cancellation"

Turns out you can use physically impossible signals to cancel noise!

 $f: S^n \to \mathbb{R}P^{16}$

<u>Adams differentials – "noise cancellation"</u>

Turns out, there are differentials (Adams spectral sequence)

 $d_{\mathbf{r}}: Ext^{s}_{\mathcal{A}}(H^{*+s+n}X, \mathbb{F}_{2}) \to Ext^{s+\mathbf{r}}_{\mathcal{A}}(H^{*+s+\mathbf{r}+n-1}X, \mathbb{F}_{2})$

 $d_r(impossible \ signal) = noise$

Theorem (Adams)

 $H^*(Ext^*_{\mathcal{A}}(H^*X, \mathbb{F}_2), \{d_r\}) \cong \pi^{st}_*(X)^{\wedge}_2 \qquad [2-completion = "2-torsion"]$

[Isomorphism of sets]

(version for $H^*(-; \mathbb{F}_p) \Rightarrow p$ -completion)

Elementary particles of homotopy theory:

[Wikipedia commons]

Higher energies $-d_0^3 e_0$ P^3e_0 P^3c_0 $d_0^2 j + h_0^5 R_1$ Pd_0m Pda Pdor $Q'^{\bullet} \bullet Pu$ \mathbf{P}_{2} $e^{\frac{1}{2}v}$ $d_0^2 e_0$ $d_0 e_0^2 \bullet$ d_0e_0g Pd_0e_0 Pd D^2 $e_0 m_{ullet}$ dom NA A P N^{\bullet} $d_1 g^{\bullet}$ Ph_2h_5 C 12 hsd $h_5 f_0$ h_3g_2 $5e_0$ h_5c_1 $h_2^2 h_5$ 0 Ð, 30 3234 36 38 4244464850 525456 $\mathbf{58}$ 60 62 6440

Higher energies

Higher energies

Elementary particles of homotopy theory:

[Wikipedia commons]

Elementary particles of homotopy theory:

[Wikipedia commons]

Higher energies require fancier detectors

SLAC

<u>Tevatron</u>

<u>LHC</u>

Real – K-theory (ko)

[Lellmann-Mahowald] [Beaudry-B-Bhattacharya-Culver-Xu]

Topological modular forms (tmf)

[Mahowald] – started thinking about the tmf-ASS [B-Ormsby-Stojanoska-Stapleton] - \mathcal{A}_{tmf} [Beaudry-B-Bhattacharya-Culver-Xu] – computing $Ext_{\mathcal{A}_{tmf}}$ [work in progress]

