Exotic spheres and topological modular forms

Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins, and Mark Mahowald)

Poincaré Conjecture

Q: Is every homotopy n-sphere homeomorphic to an n-sphere?

A: Yes!

- *n* = 2: easy.
- $n \ge 5$: (Smale, 1961) h-cobordism theorem
- *n* = 4: (Freedman, 1982)
- *n* = 3: (Perelman, 2003)

Smooth Poincaré Conjecture

Q: Is every homotopy n-sphere diffeomorphic to an n-sphere?

A: Depends on n.

- n = 2: True easy.
- n = 7: (Milnor, 1956) False produced a smooth manifold which was homeomorphic but not diffeomorphic to S⁷! [exotic sphere]
- $n \ge 5$: (Kervaire-Milnor, 1963) `often' false. (true for n = 5,6).
- n = 3: (Perelman, 2003) True.
- n = 4: Unknown.

Smooth Poincaré Conjecture

Q: Is every homotopy n-sphere diffeomorphic to an n-sphere?

A: Depends on n.

- n = 2: True easy.
- n = 7: (Milnor, 1956) False produced a smooth manifold which was homeomorphic but not diffeomorphic to S⁷! [exotic sphere]
- $n \ge 5$: (Kervaire-Milnor, 1963) `often' false. (true for n = 5,6).
- n = 3: (Perelman, 2003) True.
- n = 4: Unknown.

K Goal for this talk

Main Question

For which *n* do there exist exotic *n*-spheres?

Kervaire-Milnor

 $\Theta_n := \{\text{oriented smooth homotopy } n - \text{spheres}\}/h - \text{cobordism}$

(note: if $n \neq 4$, h-cobordant \Leftrightarrow oriented diffeomorphic)

For $n \not\equiv 2(4)$: $0 \rightarrow \Theta_n^{bp} \rightarrow \Theta_n \rightarrow \frac{\pi_n^s}{Im J} \rightarrow 0$

 $\Theta_n := \{\text{oriented smooth homotopy } n - \text{spheres}\}/h - \text{cobordism}$

For $n \not\equiv 2(4)$: $0 \rightarrow \Theta_n^{bp} \rightarrow \Theta_n \rightarrow \frac{\pi_n^S}{Im J} \rightarrow 0$

 $\Theta_n := \{\text{oriented smooth homotopy } n - \text{spheres}\}/h - \text{cobordism}$

For
$$n \not\equiv 2(4)$$
:
 $0 \rightarrow \Theta_n^{bp} \rightarrow \Theta_n \rightarrow \frac{\pi_n^s}{Im J} \rightarrow 0$
 $\Theta_n^{bp} =$ subgroup of those which bound a
parallelizable manifold
 $\pi_n^s =$ stable homotopy groups of spheres

 $J: \pi_n(SO) \to \pi_n^s$ is the J-homomorphism.

 $\Theta_n := \{\text{oriented smooth homotopy } n - \text{spheres}\}/h - \text{cobordism}$

For
$$n \not\equiv 2(4)$$
:
 $0 \rightarrow \Theta_n^{bp} \rightarrow \Theta_n \rightarrow \frac{\pi_n^s}{Im J} \rightarrow 0$ framed
 $\Theta_n^{bp} = \text{subgroup of those which bound a}$
parallelizable manifold
 $\pi_n^s = \text{stable homotopy groups of spheres}$

 $J: \pi_n(SO) \to \pi_n^s$ is the J-homomorphism.

 $\Theta_n := \{\text{oriented smooth homotopy } n - \text{spheres}\}/h - \text{cobordism}$

For $n \not\equiv 2(4)$: $0 \rightarrow \Theta_n^{bp} \rightarrow \Theta_n \rightarrow \frac{\pi_n^s}{Im J} \rightarrow 0$ For $n \equiv 2(4)$: $0 \rightarrow \Theta_n^{bp} \rightarrow \Theta_n \rightarrow \frac{\pi_n^s}{Im J} \rightarrow \mathbb{Z}/_2 \rightarrow \Theta_{n-1}^{bp} \rightarrow 0$ $[m] \mapsto \mathfrak{F}_k(m)$ kervaire Tavariant

$$\Theta_n^{bp}$$

- Trivial for *n* even
- Cyclic for *n* odd

$$\Theta_n^{bp}$$

- Trivial for *n* even
- Cyclic for *n* odd
 - Generated by boundary of an explicit parallelizable manifold given by plumbing construction

$$\Theta_n^{bp}$$

- Trivial for *n* even
- Cyclic for *n* odd:

$$|\Theta_n^{bp}| = \begin{cases} 2^{2k} (2^{2k+1} - 1) num \left(\frac{4B_{k+1}}{k+1}\right), n = 4k+3 \\ \mathbb{Z}/2, & n \equiv 1(4), \exists M^{n+1} \text{ with } \Phi_K = 1 \\ 0, & n \equiv 1(4), \nexists M^{n+1} \text{ with } \Phi_K = 1 \end{cases}$$

Upshot: *n* even \Rightarrow bp gives no exotic spheres

 $n \equiv 3 \ (4) \Rightarrow$ bp gives exotic spheres $(n \ge 7)$ $n \equiv 1 \ (4) \Rightarrow$ bp gives exotic sphere only if there are no M^{n+1} with $\Phi_K = 1$

Computation: Mahowald-Tangora-Kochman Picture: A. Hatcher

• Each dot represents a factor of 2, vertical lines indicate additive extensions

e.g.: $(\pi_3^s)_{(2)} = \mathbb{Z}_8, \quad (\pi_8^s)_{(2)} = \mathbb{Z}_2 \oplus \mathbb{Z}_2$

• Vertical arrangement of dots is arbitrary, but meant to suggest patterns

- Each dot represents a factor of 2, vertical lines indicate additive extensions e.g.: $(\pi_3^s)_{(2)} = \mathbb{Z}_8$, $(\pi_8^s)_{(2)} = \mathbb{Z}_2 \oplus \mathbb{Z}_2$
- Vertical arrangement of dots is arbitrary, but meant to suggest patterns

Computation: Nakamura -Tangora Picture: A. Hatcher

 $\frac{\text{Adams spectral sequence}}{Ext_A^{s,t}(\mathbb{Z}/p,\mathbb{Z}/p) \Rightarrow (\pi_{t-s}^s)_p}$

<u>Adams spectral sequence</u> $Ext_A^{s,t}(\mathbb{Z}/p,\mathbb{Z}/p) \Rightarrow (\pi_{t-s}^s)_p$

-Many differentials $-d_r$ differentials go back by 1 and up by r_{-1} .

. . .

= Kervaire Invariant 1.

Kervaire Invariant

 $\Phi_K: \pi_n^s \to \mathbb{Z}/2$

Browder:

$$(\Phi_K \neq 0) \Rightarrow (n = 2^k - 2)$$

Kervaire Invariant

 $\Phi_K: \pi_n^S \to \mathbb{Z}/2$

Browder:

 $(\Phi_K(x) \neq 0) \Leftrightarrow (x \text{ detected by } h_j^2 \text{ in ASS})$

<u>Kervaire Invariant</u>

 $\Phi_{\kappa}: \pi_n^S \to \mathbb{Z}/2$

Browder:

 $(\Phi_{K}(x) \neq 0) \Leftrightarrow \left(x \text{ detected by } h_{j}^{2} \text{ in ASS}\right)$ $\underbrace{\text{Computation}}_{n \in \{2, 6, 14, 30, 62\}}_{n \in \{2, 6, 14, 30, 62\}}$ $\underbrace{\text{Barratt - Jones- Mahawald '84}}_{84}$

Kervaire Invariant

 $\Phi_{\kappa}: \pi_n^S \to \mathbb{Z}/2$

Browder:

 $(\Phi_K(x) \neq 0) \Leftrightarrow (x \text{ detected by } h_j^2 \text{ in ASS})$

Computation in ASS: $\Phi_K \neq 0$ for $n \in \{2, 6, 14, 30, 62\}$

Hill-Hopkins-Ravenel:

 $\Phi_K = 0$ for all $n \ge 254$ (Note: the case of n = 126 is still open)

Summary: Exotic spheres

- $\Theta_n \neq 0$ if:
- $\Theta_n^{bp} \neq 0$:

 \circ $n \equiv$ 3 (4) and $n \ge$ 7

 $n \equiv 1$ (4) and $n \notin \{1,5,13,29,61,125\}$ [Kervaire]

• Remains to check: is $\frac{\pi_n^s}{Im J} \neq 0$ for

 \circ *n* even

○n ∈ {1,5,13,29,61,125? }

= InJ = 8-fold periodic $\Rightarrow \frac{\pi_n}{Im_s} \neq 0$ for n = 8k+d

Summary: Exotic spheres

 $\Theta_n \neq 0$ if:

- $\Theta_n^{bp} \neq 0$:
 - \circ $n \equiv$ 3 (4) and $n \ge$ 7
 - \circ *n* ≡ 1 (4) and *n* ∉ {1,5,13,29,61,125?}

•
$$\frac{\pi_n^3}{\operatorname{Im} J} \neq 0$$
 for $n \equiv 2$ (8)

• Remains to check: is $\frac{\pi_n^S}{Im J} \neq 0$ for $\circ n \equiv 0$ (4) or $n \equiv -2$ (8) $\circ n \in \{1, 5, 13, 29, 61, 125?\}$

• Limitation: only know $(\pi_n^s)_2$ for $n \le 63$

•
$$\left(\frac{\pi_n^s}{\operatorname{Im} J}\right)_p = 0$$
 in this range for $p \ge 7$.

Non-trivial elements in *Coker J*: $n \equiv 0$ (4)

Stem	p = 2	p = 3	p = 5
4	0	0	0
8	3	0	0
12	0	0	0
16	η4	0	0
20	кbar	β1^2	0
24	h4εη	0	0
28	ε кbar	0	0
32	q	0	0
36	t	β2 β1	0
40	кbar^2	β1^4	0
44	g2	0	0
48	e0 r	0	0
52	кbar q	β2^2	0
56	кbart	0	0
60	kbar^3	0	0

= kervaire inv 1

Non-trivial elements in *Coker J*:

 $n \equiv -2 \ (8)$

Stem **p** = 3 **p** = 2 **p** = 5 6 v^2 0 **14**|k 0 **22** ε k \mathbf{O} **30** 0 4 β1^3 \mathbf{O} **38** y β3/2 β1 β2 β1^2 **46** w ŋ ()**54** v2^8 v^2 0 0 β2^2 β1 62 h5 n 0

Non-trivial elements in *Coker J*:

 $n \in \{1,5,13,29,61\}$ [where $\Theta_n^{bp} = 0$ because of Kervaire classes]

Stem	p = 2	p = 3	p = 5
1	0	0	0
5	0	0	0
13	0	β1α1	0
29	0	β2α1	0
61	0	β4α1	0

Conclusion For $n \le 63$, the only n for which $\Theta_n = 0$ are: 1,2,3,4,5,6,12,61

Beyond low dimensions...

<u>Strategy</u>: try to demonstrate Coker J is non-zero in certain dimensions by producing infinite periodic families such as the one above.

Need to study <u>periodicity</u> in π_*^s

Generalized Moore spectra:

$$M_{(i_0,i_1,\ldots,i_k)} = S/(p^{i_0},v_1^{i_1},\ldots,v_k^{i_k})$$

Desuspension (top cell in dim 0):

$$M^{0}_{(i_{0},...,i_{k})} = \Sigma^{-d} M_{(i_{0},i_{1},...,i_{k})}$$

Find a v_n -self map

$$\Sigma^d M^0_{(i_0,\dots,i_{n-1})} \xrightarrow{\mathbf{v}} M^0_{(i_0,\dots,i_{n-1})}$$

Get a periodic family:

$$\begin{array}{ccc} \pi_{t}M_{(i_{0},\ldots,i_{n-1})} & \stackrel{\mathbf{v}^{\mathbf{k}}}{\to} \pi_{t+kd}M^{0}_{(i_{0},\ldots,i_{n-1})} \to \pi_{t+kd}S \\ & \stackrel{\mathbf{\psi}}{\swarrow} \\ \end{array}$$

Exotic spheres from β -family

• β_k exists for $p \ge 5$ and $k \ge 1$ [Smith-Toda] $\Theta_n \ne 0$ for $n \equiv -2(p-1) - 2 \mod 2(p^2 - 1)$

 $\sum_{i=1}^{2(e^2-1)} M_{i,1} \longrightarrow M_{i,1}$

<u>Coker J</u>														
n = 0 mod	Λ			n -	-2 mor	8 (including Kenya	ire Inv 1)			n - 20k - 3	(where G	n0hn - 0	because of	Konvaire class)
n – 0 mou	-				-2 11100	o (including Kerva	iie iiiv 1j			II – 2° K - 3	(where c	_ir-op = 0	because of	
Stem	p = 2	p = 3	p = 5	Ste	m	p = 2	p = 3	p = 5		Stem	p = 2	p = 3	p = 5	
4	() () (<mark>)</mark>	6	v^2	C) (0	1	()	0 0	
8	ε	C) (14	k	C) (0	5	()	0 0	
12	() C) (D	22	εk	C) (0	13	()β1α1	0	
16	η4	C) (ס	30	θ4	β1^3	(0	29	()β2α1	0	
20	кbar	β1^2		D	38	у	β3/2	β1		61	() β4 α1	0	ļ
24	h4εη	C) (D	46	wη	β2 β1^2	(0	125?			0	
28	ε кbar	C) (D	54	v2^8 v^2	C) (0					
32	q	C) (ס	62	h5 n	β2^2 β1	(0					
36	t	β2 β1		0	70		C) (0					
40	кbar^2	β1^4)	78		β2^3	(0					
44	g2	C) (ס	86		β6/2	β2						
48	e0 r	C) (D	94		β5	(0					
52	кbar q	β2^2		D	102		β6/3 β1^2	2 (0					
56	кbart	C) (D	110			(0					
60	kbar^3	C) (D	118			(0					
64		C) (D	126			(0					
68		<α1,β3/2,β2>		D	134			β3						
72		β2^2 β1^2			142			(0					
76		C	β1^2		150			(0					
80		C) (D	158			(0					
84		β5 β1		D	166			(0					
88		 С) (D	174			(0					
92		B6/3 B1			182			β4	-					
96		() () () () () () () () () ()) ()	190			B1^5						
100		B2 B5)	198			р (0					
104		p=p0)	206			ß5/4						
108					214			β5/3						
112					222			β5/2						
116					230			β5/ <u>-</u>						
120					238			B2 B1^4						
124			B2 B1		246			р <u>грт</u>	n					
128			<u>ргрт</u> (254			(n					
132					262				0					
132					202									
1/0					270			ß1						
140					2/0			B2 B1A4						
144					200			<mark>p5p1~4</mark>	0					[
148			0104		294									
152			p1/4		302									45
156				1	310			(
160				ע	318			. (U					

Exotic spheres from β -family

- β_k exists for $p \ge 5$ and $k \ge 1$
- [Smith-Toda] $\Theta_n \neq 0 \text{ for } n \equiv -2(p-1) - 2 \mod 2(p^2 - 1)$
- β_k exists for p = 3 and $k \equiv 0,1,2,3,5,6$ (9) [B-Pemmaraju] $\Theta_n \neq 0$ for $n \equiv -6, 10, 26, 42; 74, 90 \mod 144$ $\sum_{i=1}^{n \neq 4} M_{i,1}^{\circ} \longrightarrow M_{i,1}^{\circ}$ [uses TMF]

Exotic spheres from β -family

- $\beta_k = \beta_{k/1,1}$ exists for $p \ge 5$ and $k \ge 1$ [Smith-Toda] $\Theta_n \ne 0$ for $n \equiv -2(p-1) - 2 \mod 2(p^2 - 1)$
- β_k exists for p = 3 and $k \equiv 0,1,2,3,5,6$ (9) [B-Pemmaraju] $\Theta_n \neq 0$ for $n \equiv -6, 10, 26, 42, 74, 90 \mod 144$ $\alpha \parallel \equiv 2$ (8) (3)

KO Hurewicz homomorphism

<u>Hurewicz image of TMF (p = 3)</u>

<u>Coker J</u>															
	-														
n = 0 mod	4				n = -2 mod	8 (including Kervai	ire Inv 1)		n = 24	^k - 3	(where O	_n^bp = (0 because of	Kervaire cl	ass)
Stem	n=2	n = 3	n=5		Stem	n = 2	n = 3	n = 5	Stem		n = 2	n = 3	n=5		
4	0	<u>19-5</u> ()	0	<u>6</u>	v^2	0	0	Jten	1	<u> </u>	p-3	0 0		
8	ε	C)	0	14	k	0	0		5	0		0 0		
12	0	C	Ĵ	0	22	εk	0	0		13	0	β1α1	0		
16	η4	C)	0	30	θ4	β1^3	0		29	0	β2 α1	0		
20	кbar	β1^2		0	38	у	β3/2	β1		61	0	β4α1	0		
24	h4 ε η	C)	0	46	wη	β2 β1^2	0		125?			0		
28	ε кbar	C)	0	54	v2^8 v^2	0	0							
32	q	C)	0	62	h5 n	β2^2 β1	0							
36	t	β2 β1		0	70		0	0							
40	кbar^2	β1^4		0	78		β2^3	0							
44	g2	C)	0	86		β6/2	β2							
48	e0 r	C)	0	94		β5	0							
52	кbar q	β2^2		0	102		β6/3 β1^2	0							
56	кbar t	C)	0	110			0							
60	kbar^3	C)	0	118			0							
64		C)	0	126			0							
68		<α1,β3/2,β2>		0	134			β3							
72		β2^2 β1^2		0	142			0							
76		C	β1^2		150			0							
80		C)	0	158			0							
84		β5 β1		0	166			0							
88		C)	0	174		β1^3	0							
92		β6/3β1		0	182		β3/2	β4							
96		C)	0	190		β2 β1^2	β1^5							
100		β2 β5		0	198			0							
104				0	206		β2^2 β1	β5/4							
108		0.0/0.0		0	214		0010	β5/3							
112		β6/3β1^3		0	222		β2^3	β5/2			ļ				
116				0	230		β6/2	β5 02.0444							
120			02.04	U	238		β5 0c/2.0102	β2β1^4							
124			B2 B1	0	246		pb/3 p1^2	0							
128				0	254			0							
132				0	262			0							
130				0	2/0			Q1							
140				0	2/8										
144				0	280			p3p1/4							
148			β1 Δ <i>4</i>	U	294			0			l				
152			р14	0	210			0			l				
100				0	510		B1A 2	0							
100				v	219		h12	0							

= V₁-periodic

Hurewicz image of TMF (p = 2)

Plan to determine Hurewicz Image of tmf

(3) Produce
$$V_2^{32}$$
: $\Sigma^{192} M_{ij} \longrightarrow M_{ij}^{..}$

	<u>Plan to determine Hurewicz Image of tmf</u>
(\mathbf{i})	$Y \in \pi_x tmf$, $* < 192$, $Y v_2$ -periodic Try to construct element $Y \to T^S$
	$\pi^{s} \longrightarrow \pi \operatorname{tnf}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(2)	Determine i, $3 $ s.t. $52^{i}x = 0$
	$\mathcal{T}_{x}^{S} \mathcal{M}_{ij}^{O} \to \mathcal{T}_{x}^{S} \qquad (\sqrt{x} = 0)$
	$\chi \longrightarrow \chi$ (4) Get a 192-periodic Junity $\overline{\chi} \longrightarrow \chi$ $\overline{\mathcal{K}}_{-} M_{-}^{0} \longrightarrow \overline{\mathcal{K}}_{-} \pm \overline{\mathcal{K}}_{+} \pm mf$
(3)	Produce U
	$V_2 \cdot L M_{ij} \rightarrow M_{ij} V_2 \times V_2 \times V_67$

 v_2 -periodicity at the prime 2 Thm [B-Hill-Hopkins - Mahowald] $\exists v_1^{32} : \sum_{i=1}^{192} M_{i,4}^0 \longrightarrow M_{i,4}^0$ User TMF

 v_2 -periodicity at the prime 2 Thm [B-Hill-Hopkins - Mahowald] $7 \quad v_{2}^{32} : \sum_{i=1}^{i=1} M_{i,4}^{0} \longrightarrow M_{i,4}^{0}$ Uses TMF Problem: Minimum $c_j j \quad s.t.$ for $y \in \pi_x tmf(v_x - periodic)$ $\begin{cases} z^i y = 0 \\ v_i^j y = 0 \end{cases}$ (i, i) = (3, 8)

$$v_{2} \text{-periodicity at the prime 2}$$

$$Thm [B-Hill-Hopkins - Mahowald]$$

$$\exists v_{2}^{32} : \sum^{192} M_{1,4}^{0} \longrightarrow M_{1,4}^{0}$$

$$Uses TMF$$

$$Thm [B-Mahowald]$$

$$\exists v_{2}^{32} : \sum^{192} M_{3,8}^{0} \longrightarrow M_{3,8}^{0}$$

$$Allows for co-plek determination of Hurewicz image p=2$$

v_2 -periodicity at the prime 2

The [B-Hill-Hopkins - Mahowald]

$$J_{2}^{32}: Z_{1}^{192} M_{14}^{\circ} \longrightarrow M_{14}^{\circ}$$
 for this then:
"tenf-resolutions"
The [B-Mahowald] (AKA "eo_2-resolutions")
 $J_{2}^{32}: Z_{1}^{192} M_{3,8}^{\circ} \longrightarrow M_{3,8}^{\circ}$
Allows for complete determination
of Hurewicz image $p = 2$

$$v_2^{32}$$
 on $M_{1,4}^0$
bon = nth bo-Brown-Gitler spectrum
$$v_2^{32} \text{ on } M_{1,4}^0$$

bon = nth bo-Brown-Gitler spectrum
bon = H^{*}(bon; F.) Module over A

$$v_{2}^{32} \text{ on } M_{1,4}^{0}$$

$$\underline{bon} = n^{\underline{th}} \quad \underline{bo-Brown-Gitler} \text{ spectrum}$$

$$bon = H^{*}(\underline{bon}; F_{2}) \quad Module \quad over \quad \mathcal{A}$$

$$\mathcal{A}/\!\!/_{A(2)} = H^{*}(\underline{tmf})$$

$$\cong \bigoplus_{A(2)} \sum_{n \ge 0}^{n} bon$$

$$v_{2}^{32} \text{ on } M_{1,4}^{0}$$

$$bo_{n} = n^{th} bo - Brown - Gitler spectrum
$$bo_{n} = H^{*}(bo_{n}; F_{2}) \quad Module \quad over \quad \mathcal{A}$$

$$\mathcal{A} //A(s) = H^{*}(tmf)$$

$$\stackrel{\simeq}{\to} \bigoplus_{n \ge 0} \Sigma^{\otimes n} bo_{n}$$

$$SS: algebraic \quad tmf - resolution$$

$$Ext_{A(2)}(bo_{n}, \otimes \cdots \otimes bo_{n} \otimes M) \Rightarrow Ext_{A}(M)$$

$$A(s) = F_{n} = 0$$$$

$$v_2^{32} \text{ on } M_{1,4}^0$$

$$= \sum_{\substack{A(2) \\ A(2)}} (b_{0_1,0} \cdots \otimes b_{0_n,s} \otimes M_{1,4}) \Rightarrow E_{xt_A}(M_{1,4})$$

$$v_{2}^{32} \text{ on } M_{1,4}^{0}$$

$$E_{xt}\left(b_{n_{1}}\otimes\cdots\otimes b_{n_{s}}\otimes M_{1,4}\right) \Longrightarrow E_{xt}\left(M_{1,4}\right)$$

$$v_{2}^{32}\in E_{xt}A_{(2)}\left(M_{1,4}\right)$$
Vanishing lines
$$\Longrightarrow d_{\Gamma}\left(v_{2}^{32}\right) \quad detected \quad \text{on } b_{0} \quad j \in 3$$

ZOOM in on this area...

Modifications for the case of $M_{3,8}^0$

- Only potential targets of $d_r(v_2^{32})$ come from bo_1^j for $0 \le j \le 6$ and $bo_1^j \otimes bo_2$ for $0 \le j \le 2$.
- Many potential contributions from $h_{2,1}^s$ for s < 24, which are not handled by $\bar{\kappa}^6 = 0$.
- Use result of Davis-Mahowald-Rezk:

$$tmf \wedge tmf = \bigcup_{n} \Sigma^{8n} tmf \wedge \underline{bo}_{n}$$

In this decomposition, <u> bo_2 </u> attaches nontrivially to <u> bo_1 </u>

Q: So why does the "dual" of tmf show up in π_*^s ?

A: Gross-Hopkins duality: $v_2^{-1}\pi_*M_{3,8}^0$ is self-dual

Homotopy carried by bottom cell is dual to homotopy carried on top cell.

Bottom cell carries $\pi_* tmf \Rightarrow$ top cell carries $\pi_* tmf^{\vee}$

$$\pi_* M^0_{3,8} \to \pi^s_*$$

<u>Coker J</u>													
n = 0 mod	A				od Q (including Komu	aina (m. / 1)		n - 20/ - 2) (where O	nAhn - O	he course of	Komusina alu	
n – o mou	4			112 11	ou a (including kerva	are niv 1)		II – 2''K - 3	(where O	_n~op = 0	because of	Aervaire cia	155/
Stem	p = 2	p = 3	p = 5	Stem	p = 2	p = 3	p = 5	Stem	p = 2	p = 3	p = 5		
4	0	()	0	6 v^2	C) 0	1	. () () 0		
8	ε	(0	0	14 k	(0 0	5	C) () 0		
12	0	(<u>ן</u>	0	22 ε k	(0 0	13	(β1α1	0		
16	η4	()	0	30 0 4	β1^3	0	29	() <mark>β2 α1</mark>	0		
20	кbar	β1^2		0	38 <mark>y</mark>	β3/2	β1	61	. (β4α1	0		
24	h4εη)	0	46 w η	<mark>β2 β1^2</mark>	0	125?	w kbar^4		0		
28	ε кbar)	0	54 v2^8 v^2	C) 0		= in tmf				
32	q	()	0	62 h5 n	β2^2 β1	0		= not in t	mf, not kn	own to be v	2-periodic	
36	t	β2 β1		0	70 <kbar w,ν,η=""></kbar>	(0 0		= not in t	mf, but v2	-periodic		
40	кbar^2	β1^4		0	78	<mark>β2^3</mark>	0		= Kervair	e			
44	g2	()	0	86	<mark>β6/2</mark>	β2		= trivial				
48	e0r	(ט	0	94	β5	0						
52	кbar q	β2^2		0 1	02 v2^16 v^2	β6/3 β1^2	2 0						
56	кbart	()	0 1	10 v2^16 k		0						
60	kbar^3	()	0 1	18 v2^16 η^2 kbar		0						
64	η6	()	0 1	26		0						
68	v2^8 k v^2	<α1,β3/2,β2>		0 1	34		β3						
72		β2^2 β1^2		0 1	42 v2^16 η w		0						
76		() <mark>β1^2</mark>	1	50 (v2^16 ε kbar)η^2	v2^9	0						
80	kbar^4	()	0 1	58		0						
84		β5 β1		0 1	66		0						
88	g2^2	()	0 1	74 beta32/8	β1^3	0						
92)	β6/3 β1		0 1	82 beta32/4	β3/2	β4						
96	n6 d1	()	0 1	90	β2 β1^2	β1^5						
100	kbar^5	B2 B5		0 1	98 v2^32 v^2		0						
104	ν2^16ε			0 2	06 k	β2^2 β1	β5/4						
108	η6 g2			0 2	14 ε k		β5/3						
112		β6/3 β1^3		0 2	22	β2^3	β5/2		1				
116	2v2^16 kbar			0 2	30	β6/2	β5		1				
120	(v2^16 n kbar)v			0 2	38 w n	β5	B2 B1^4		i i				
124	v2^16 k^2		B2 B1		46 v2^8 v^2	B6/3 B1^2	$\gamma = \rho = 0$						
128	v2^16 a		P= P=	0 2	54	p0,5 p1 1	0						
132	$(h2 h6^{2})v$			0 2	62 < kbar w v n >		0						
136	$\sqrt{2^{10} 2}$				70		0						
140				0 2	78		β1						
144	$((v_2^{16} n_w)n_2)n_2$	v2^9			86		B3 B1^4						
1/12	v2^16 s khar	.2 5			94 v2^16 v^2	v2^18	ب 1964						
152			<u>B144</u>		02 v2^16 k	VZ 10	0						
156	<10 x x x x x x x x x x x x x x x x x x x		<u>рт 4</u>		10 v2^16 n^2 khar		0					86	
120	<u> 0 0 2,20,1 °2</u>				19	B1 A2	0						
100					10	рт <u>э</u>	0		J				