Manifolds and Cobordism

.

Mark Behrens

Def: A <u>d</u>-dimensional <u>manifold</u> is 9 M $\subseteq \mathbb{R}^n$ which locally looks like \mathbb{R}^d " Subset Example, A 1-dim'l manifold in R²

Def! <u>d</u>-dimensional <u>manifold</u> is q M $\subseteq \mathbb{R}^n$ which locally looks like \mathbb{R}^d " A Subset Example

A 1-dimil manifold in R²

Manifolds with boundaries

Manifolds with boundaries

boundary of M

with boundaries Manifolds

boundary of M.

Closed Manifolds M satisfies A closed mfld Def: • 2M= Ø · bounded

Closed Manifolds A closed mfld sattrue s M Def! • $\partial M = \phi$ · bounded

O-din'l manifolds

R° = a point.

a o-dinif marifold in R²

O-din'l manifolds

R° = a point.

Connected 1-dimil manifolds Only two kinds: R' [not closed] S' [closud] (circle)

Connected Closed 2-dimit manifolds \sim \checkmark gens 2 genus 1 genus O genus 10 \smile \mathcal{A}

Connected Closed 2-dinil manifolds $(\sim$ (____) \smile genes 2 genus 1 genus O genus = "# of handles = (- -)2 handles

Connected Closed 2-dimil manifolds ORIENTABLE (\sim) genes 2 genus 1 genus O genus 10 0 0 0 0 0 0 0

Möbins Strip The

(Non-orientable manifold w/ boundary)

q Non-orientable i you travel glong a loop and end up on the other side" [M.C. Escher]

Projettue space A closed non-orientable surface

Projettue space A closed non-prientable surface

Non-orientable: contains a Mobius band.

space A closed non-orientable Proje the Surface Cut out the möbing lognd and. Hemisphere Non-orientable: contains a Mobius bund,

space. A closed non-orientable surface Proje the Non-orientable: contains a Mobius band,

space A closed non-orientable surface Proje the

contains a Mabius band, Non-orientable:

Projettle space A closed non-orientable surface

get a disk. and 400

Projettle space A closed non-orientable surface projective space is a möbius band with a disk glued along ite boundy.

Projettle space A closed non-orientable surface

projecture space is a möbius band with a disk glued along ite boundy.

The Klein Bottle: another non orientable Surface.

["The shape of space", J. Weeks]

Figure 5.6 Cutting a Klein bottle in two.

2-dimil manifolds Connected Closed oriented : \checkmark \sim \checkmark genes 2

genus O

genus 1

2-dimil manifolds! Connected Closed oriented : \checkmark \checkmark \sim cut out a disk
Connected Closed 2-dimit manifolds oriented. \checkmark \checkmark olse in 'n a möbius band

manifolds Closed 2-dimil Connected Non oriented olse n olie Na Nöbius olse in band 66.11 band 144 band 1111 66.11

Connected Closed 2-dinil manifolds Non oriented : \checkmark this gives 9 complete class: fixedian!

What about luestion!

Spher Spher M/ 3 mobils bands Slued in ?

What about evestion'

What about Question! Sphe w/ 3 mobilis \otimes \bigotimes \otimes bands glued in ? torus w/ 1 mobils bond gledin w/ V H Kley both w/1 mobius band shed in

On to 3-mflds... 3-manifolds Without boundary? (closed 3-mflds)

 $s^3 \subset R^4$

6

 ${(x, y, z, w) \in \mathbb{R}^{4}}$: $x^{2} + y^{2} + z^{2} + w^{2} = 1$

S³ is obtained by taking a solid ball and gluing the opposite hemispheres together:

You can think of S³ this way: If you are flying around in S³, and fly through the surface in the northern hemisphere, you reemerge in the southern hemisphere.

P³ is obtained by taking a solid ball and gluing antipodal points together:

You can think of P³ this way: If you are flying around in P³, and fly through the surface in the northern hemisphere, you reemerge in the southern hemisphere, but flipped backwards.

You can think of P³ this way: If you are flying around in P³, and fly through the surface in the northern hemisphere, you reemerge in the southern hemisphere, but flipped backwards.

You can think of P³ this way: If you are flying around in P³, and fly through the surface in the northern hemisphere, you reemerge in the southern hemisphere, but flipped backwards.

Classification of 3-mflds

Classification of 3-mflds

Really Hard!

Classification of n-manifolds

- Classification of 3-manifolds: "Thurston's geometrization conjecture". This was essentially proved by Perelman in 2003 – as a special case, the 100 year old "Poincare conjecture" was proven in dimension 3.
- Classification of 4-manifolds: MUCH HARDER
- Classification of 5-manifolds and higher: still hard, but "easier" than dimensions 3 and 4.
- Theorem: for n > 3, there is no ALGORITHM for determining if two n-manifolds are the same!

Simpler Taski Manifolds up to COBORDISM Des Let M, and M₂ be n-minifolds. We say M, and M₂ are <u>cobordant</u> if there exists an (n+1)-manifold W. $\Im W = M, \# M_{Z}$ Example i S'11 S' is cobordant to S'

$$\frac{Cobordism}{\Omega_n} = \frac{Groups}{M_n M_2}$$

$$\frac{Closed}{folds}$$

Note: Sin is an abelian gp.

 $\left[\mathsf{M}_{1}\right] + \left(\mathsf{M}_{2}\right] = \left[\mathsf{M}_{1} \sqcup \mathsf{M}_{2}\right]$

 $\left[\phi\right] = 0$

cobordisms. Null

 $[M] = 0 \quad \text{in} \quad \Omega_n \quad \text{iff} \quad M \sim \phi$ i.e. $\exists w \quad s.t. \quad \exists w = M$

 $e.g, \left[S'\right] = 0$ in D.

 $S' = 2D^2$

Computation of Ω_0

2 (1-manifold) = even # of w/bandy) = points e.g. OW = 4-points

Computation of Ω_0

2 (1-manifold) = even # of w/bandy) = points e.g. W = 4-points W = 4

Computation of Ω_{o}

 $\left[5 \text{ patts} \right] \simeq \left[l \text{ point} \right]$

Computation Ω_{o} の # points] Eve $\begin{bmatrix} 4 & \text{points} \end{bmatrix} \sim \begin{bmatrix} \phi \end{bmatrix}$ # pohti] [odd $[S patts] \simeq [l point]$ 1 point]

2/2 Ω_{\circ} Ω_{o} Computation of Fern # points] $\begin{bmatrix} 4 & \text{points} \end{bmatrix} \sim \begin{bmatrix} \phi \end{bmatrix}$ [odd # pohti] $\left[5 \text{ point} \right] \simeq \left[l \text{ point} \right]$ 17 [1 point]

Computation of Ω_1 eny closed 1-manifold is a dicjoint union of circles Recall :

 Ω_{1} Computation of Recall: 1-manifold is a eng closed dic joint union of circles

NULL-COBORDANT!

 Ω_{1} Computation of Recall: 1-manifold is a eng closed dic joint union of circles NULL-COBORDANT!

Trivial group

Computation of 552

[solid Tors] 2 vm

All orientable 2-mflds Computation of Ω_{a} NULL COBORDANT are [solid ball] =) man [solid Torrs] $) = \mathcal{F}$ MMM =)

P² is Not null cobordant,

<u>Surgery</u>: A way to cobordisms. make

Surgery: A way to make cobordisms.

Colve in $\mathcal{D}^2 \times \mathcal{S}^\circ$

Surgery: Ą way to make cobordisms. Remove band th $\mathcal{Z}_{1} \times \mathcal{D}_{1}$ band Colve in $D^2 \times S^{\circ}$

genus is The Surgery: redied by 1 A way to make cobordisms. Remove band th $\mathcal{S}_{1}\times \mathcal{D}_{1}$ brad Colve in $D^2 \times S^{\circ}$

Theorem' (Thom)

 $|\chi_i| = i$ as a grad $|X_i| = i$ $\int r^{1} ry$ $\approx Z_{2} [X_i] \quad i \neq 2^{i} - 1]$ Tall dimensions

Theorem: (Thom)

 $\left(\right)_{\star} \stackrel{\sim}{=} \frac{\chi}{2} \left[\chi_{i} \right] i \neq 2^{k} - 1 \right]$

45678 3 \mathcal{O} 2 $\chi_{2}^{2}\chi_{5}\chi_{2}^{3}\chi_{5}\chi_{2}\chi_{5}^{4}$ χ_2 1 χ_{4} $\chi_{4}\chi_{2}$ $\chi_{4}\chi_{2}^{2}$ X₆ 2 X4 X6 X2

X8