Congruences amongst modular forms and the divided β family

Mark Behrens

(MIT)

Chromatic Theory

$$
\begin{gathered}
\left(\pi_{*}^{s}\right)_{(p)}=p \text {-loorl stabh htpy sps } \\
\text { of spheres }
\end{gathered}
$$

Chromatic Theory

$$
\left(\pi_{*}^{s}\right)_{(p)}=p \text {-local stable htpy asps }
$$ of spheres

- Admits a filtration (chromatic filtration)
- $k^{\text {th }}$ layer exhibits periodic behavior

$$
\begin{aligned}
& \quad\left(v_{k}-\text { peiciodicily }\right) \\
& \left|v_{k}\right|=2\left(p^{k}-1\right)
\end{aligned}
$$

Chromatic Theory

$$
\left(\pi_{*}^{s}\right)_{(p)}=p \text {-local stable huey asps }
$$

- Admits a filtration (chromatic filtration)

$$
S_{(p)} \rightarrow \ldots \rightarrow S_{E^{(2)}} \rightarrow S_{E_{(1)}} \rightarrow S_{Q}
$$

- $k^{\text {th }}$ layer exhibits periodic behavior (v_{k}-periodicity)
"kt lap" $M_{k} S \longrightarrow S_{E(k)} \rightarrow S_{E(k-1)}$

$$
\pi_{\neq}(s)_{(p)} \quad p=5
$$

$$
\text { perod }=2\left(p^{2}-1\right)
$$

$$
=48
$$

V_{2}-periodic

$$
\pi_{\neq}(s)_{(p)} \quad p=5
$$

\qquad

v_{3}-periodic
computation', Ravenel

Greek letter elements
The most fundimental V_{n}-periodic efts are the GREEK LETER ELTS

Greek letter elements
The nost fundemental V_{n}-periodic elts are th GREEK LETER ELTS

Notation

$$
\begin{array}{ll}
v_{1} \text {-peridic: } & \alpha_{i / j} \\
v_{2} \text {-periodi: } & \beta i / j, k \\
v_{3} \text {-peiodic: } & \gamma_{i / j, k, l}
\end{array}
$$

$$
\pi_{\neq}(S)_{(p)} \quad p=5
$$

v_{1}-periodic: α-Samily

Greek letter notation: $\alpha_{i / j} \in\left(\pi_{2 p-1) i-1}^{s}\right)$

$\alpha_{i / j}$ is $p^{j}-$ torsion

$$
\left(\alpha_{i}:=\alpha_{i / h}\right)^{j \leq \nu_{p}(i)+1}
$$

$$
\pi_{\neq}(s)_{(p)} \quad p=5
$$

$$
\pi_{\neq}(s)_{(p)} \quad p=5
$$

V_{1}-torsion in y_{2}-fumily

$" 5 / 4$ " \vec{v}

B-Samily notation

$$
\begin{aligned}
& \sum_{p^{k} \text {-torsion }} \beta_{i / j, k} \in\left(\pi_{\left.\left.2 p^{2}-1\right) i-2 x_{p}-1\right) j-2}^{s}\right)_{(p)} \\
& \text { Converion } \quad v_{2} \beta_{i / j, k}=\beta_{i+1} / j, k \\
& \beta_{i / j, 1}=: \beta_{i / j} \\
& v_{1} \beta_{i / j, k}=B_{i / j-1, k} \\
& \beta_{i}=\beta_{i}\left\{\quad p \beta_{i} / j, k=\beta_{i} / j, k-1\right.
\end{aligned}
$$

Description of B fumily.

$$
\begin{gathered}
\cdot \beta_{1} \\
\cdot \beta_{2} \\
\vdots \\
\cdots \quad \underset{\beta_{p / 2}}{ } \cdot \beta_{p}
\end{gathered}
$$

Description of B fumily

$$
\frac{\text { Relationship lo Bernoull: \#'s }}{B_{n}=n^{+4} \text { Bernoilli murolar }}
$$

n	0	1	2	4	6	8	10	12	14	16	18	20
$\sim B_{n}$	1	$-\frac{1}{2}$	$\frac{1}{6}$	$-\frac{1}{30}$	$\frac{1}{42}$	$-\frac{1}{30}$	$\frac{5}{66}$	$-\frac{691}{2730}$	$\frac{7}{6}$	$-\frac{3617}{510}$	$\frac{43867}{798}$	$-\frac{174611}{330}$

Relationship to Bersooll: \#'s

$$
B_{n}=n^{+y} \text { Berroilli number }
$$

Thin (Admus) $p>2$

$$
\begin{gathered}
\alpha_{i / j} \text { evists }\left.\Longleftrightarrow \dot{p}\right|_{n=\left(e^{-1)} i\right.}{\operatorname{denom}\left(\frac{B_{n}}{n}\right)}^{n} .
\end{gathered}
$$

Adims' Themi Gives a relationstip

$$
\begin{gathered}
p \text {-local } v_{1} \text {-periodic } \\
\text { honotpy }
\end{gathered} \Longleftrightarrow \begin{gathered}
p \text {-local aritheetic } \\
\text { propertles of } \\
\text { Bernoull: \#'s }
\end{gathered}
$$

Adims' Thani Gives a relationship
 simultaneo-sh concode p-pinary homotipy for ency pine p!

OUR GOAL: Give a relationship

"pf" of Admn's thm:
"pf" of Adwn's thm: (Disclaint : Reisisonist $\begin{gathered}\text { Histoy! }) ~\end{gathered}$

1) $\underset{\substack{\text { - periolic } \\ \text { homotory }}}{\Longleftrightarrow} \Longleftrightarrow \pi_{1} S$
"pf" of Adwn's thm: (Disclaint: Reisisonist $\left.\begin{array}{rl}\text { Histoy! }\end{array}\right)$
2) $\underset{\substack{\text { - perodic } \\ \text { homotory }}}{ } \Longleftrightarrow \pi \neq M_{1} S$
3)

$$
\begin{gathered}
J \rightarrow K u_{p} \xrightarrow[\mu^{l}-1]{ } k u_{p} \quad\langle l\rangle=\mathbb{z}_{p}^{x} \\
M_{1} S \xrightarrow[\simeq]{\longrightarrow} M_{1} J
\end{gathered}
$$

3) $M_{1} S \rightarrow M_{1} K U \underset{\varphi^{l}-1}{\longrightarrow} M_{1} K U$
induces SES

$$
0 \rightarrow \pi_{2 k} M_{1} J \rightarrow Q / 22(p) \xrightarrow[l^{k}-1]{\mathbb{Q}} / 2(p) \longrightarrow 0
$$

3) $M_{1} S \rightarrow M_{1} K U \underset{\varphi^{l}-1}{\longrightarrow} M_{1} K U$
induces SES

$$
0 \rightarrow \pi_{2 k}^{M_{1} J \rightarrow Q / 22(p)} \xrightarrow[l^{k}-1]{\mathbb{Q}} \mathbb{2 (p)} \longrightarrow 0
$$

4) Them (Liphitz-Syluatr)

$$
\left(l^{k}-1\right) \frac{B_{k}}{k} \in \mathbb{Z}_{(p)} \quad\left[\begin{array}{cc}
\text { with } & p \text {-adc } \\
\text { valuate } \\
\text { if } & (p-1) \mid k
\end{array}\right]
$$

Program: Emulate this

$$
\begin{aligned}
& \mathrm{KU} \leadsto T M F \\
& \mathrm{~J} \longrightarrow Q(\ell)
\end{aligned}
$$

numbers \sim modular
 of Berrolliti's modular forms

Remainder of this talk:

- Modular forms
- Statement of main result
- TM $+Q(l)$
- Outline of poof of min result

Modular forms:
$C=$ elliptic core our $k \quad\left({ }^{\prime} h r(k) \neq p\right)$

$$
\underset{\substack{\mathbb{R} \\ T_{l} C}}{\mathbb{Z}_{\ell} \times \mathbb{Z}_{l}}{\underset{i m}{i}}^{\lim _{i}(\bar{l})\left[\ell^{i}\right]}
$$

Modular forms:
$C=$ elliptic corn our $k \quad(\operatorname{chr}(k) \neq p)$

$$
\underset{\substack{\mathbb{R} \\ T_{l} C}}{\mathbb{Z}_{\ell} \times \mathbb{Z}_{l}} \underset{\lim _{i} C(l)\left[l^{i}\right]}{ }
$$

Level stater $\quad \eta: \mathbb{Z}_{l} \times \mathbb{Z}_{l} \xrightarrow{\cong} T_{l} C$

Modular forms:
$C=$ elliptic curn our $k \quad(\operatorname{chr}(k) \neq p)$

$$
\underset{\substack{\mathbb{R} \\ T_{l} C}}{\mathbb{Z}_{\ell} \times \mathbb{Z}_{l}} \underset{\lim _{i} C(\ell)\left[\ell^{i}\right]}{ }
$$

Lewel structur

$$
\begin{gathered}
\eta: \mathbb{Z}_{l} \times \mathbb{Z}_{l} \xrightarrow{\cong} T_{l} C \\
K \subset C_{1} L_{2}\left(\mathbb{Z}_{l}\right)
\end{gathered}
$$

$G L_{2}\left(\mathbb{Z}_{0}\right) \subset$ lend stuacmes K-leal stuture: $[n]_{k} \quad$ k-orbit
$m(k)=\operatorname{moduli}$ of pairs $\left(c,[n]_{k}\right) / \mathbb{Z}[1 / 1]$
$c=$ ellipte cume
$[\eta]_{k}=k$-lool strictuen
ω
line buodle
$m(k)$

$$
\left.\omega\right|_{c}=T_{e}^{*} C
$$

Important examples

$$
K=K_{0}:=G_{1} L_{2}\left(\mathbb{Z}_{e}\right)
$$

$m\left(K_{0}\right)=m_{\text {ell }} l^{l / 2} \mid=$ moduli of elliptic cones C

$$
K=K_{0}(l):=\left\{A \in G L_{2}\left(z_{l}\right) \left\lvert\, A \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \bmod l\right.\right\}
$$

$M\left(K_{0}(l)\right)=$ moduli of elliott cums w/ $\Gamma_{0}(l)$-strache: $(C, H) \quad H \leqslant C$ cycle of order ℓ

Modular forms
weight an modulo r forms leal K / R :

$$
M_{n}(K)_{R}:=\operatorname{sections}\left(\begin{array}{c}
\omega^{\otimes n} \\
\downarrow \\
m(K)_{R}
\end{array}\right)
$$

q-expansion Modular forms have "q-expansions"

\[

\]

q-exponsions have intevestiy arithmetic poperties:
Examples: Eisenstein Series

$$
\begin{array}{ll}
E_{4}=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} & \\
E_{6}=1-504 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} & \text { Note: } \\
E_{8}=1+480 \sum_{n=1}^{\infty} \sigma_{7}(n) q^{n} & E_{n}=1-\frac{2 n}{B_{n}} q+\cdots \\
E_{10}=1-264 \sum_{n=1}^{\infty} \sigma_{0}(n) q^{n} & E_{n} \in M_{n}\left(K_{0}\right)_{Q} \\
E_{12}=1+\frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{*} & \\
E_{14}=1-24 \sum_{n=1}^{\infty} \sigma_{13}(n) q^{n} . &
\end{array}
$$

(Sefre; a coosse in arithmettc)

Main Th m:
$p>3$
$\langle\phi\rangle=2 I_{p}^{x}$
$\beta_{i / j, k}$ exists \Longleftrightarrow
(in $M_{2} S$)

$$
n n\left(e^{2}-1\right)_{i}
$$

$f \in M_{n}\left(K_{0}\right)_{z t}$
(a) $f(q) \neq h(\varepsilon) \bmod p$
for any $h \in M_{<n}\left(K_{0}\right)_{z}$
(b) There exists $g \in M_{n-(--1) j}\left(K_{0}(e)\right)_{z}$
st.

$$
f\left(q^{\ell}\right)-f(q) \equiv g(q) \bmod p^{k}
$$

Picture

$$
\begin{aligned}
& M_{n}\left(K_{0}(\ell)\right) \\
& \text { (1) } \\
& g(q) \cdot \sim_{\text {Congment }}^{\bmod } \underset{p^{k}}{ } f\left(q^{l}\right)-f(q) \\
& \uparrow \\
& f \in M_{n}\left(k_{0}\right)_{\mathbb{Z}} \\
& 1
\end{aligned}
$$

Not congment to fom of lous weight

Topological Modular forms: [Coerss-Hopkkins-Miller]
$\theta_{\text {ell }}=$ shend of $E_{\infty}-$ on $_{\text {on }}\left(m_{\text {ell }}\right)_{\text {et }}$ sputim $\circ\left(M_{\text {ell }}\right)_{\text {et }}$

Topological Modular forms: [Goerss-Hophkins-Miller]
$\theta_{\text {ell }}=$ shend of $E_{\infty}-i$ in spection
$\mathrm{KCGL}\left(z_{\ell}\right)$

Relatborstip to moduler foms

$$
\pi_{2 n}(T M F(K))_{(p)}=M_{n}(K)_{\mathbb{Z}_{(p)}}\left[\Delta^{-1}\right]
$$

$$
\Delta=d r_{0} \text { iminnt } \in M_{24}(K)
$$

Q (l) spectum

$$
\begin{aligned}
& k \triangleleft L_{2}(\mathbb{z} \ell) \\
\Rightarrow & m_{1}(k) \quad \text { anlois } \quad G_{1}\left(z_{l}\right) / k \\
& m_{\text {all }}[1 / \ell] \\
\Rightarrow & \operatorname{TMF}(K) \circlearrowleft G_{l} L_{2}\left(z_{l}\right) / K
\end{aligned}
$$

$$
\begin{aligned}
& V:=\underset{K<G_{2}\left(z_{\ell}\right)}{\lim _{Q} T M F(K)} \\
& G L_{2}\left(z_{\ell}\right)
\end{aligned}
$$

Fact: action extends to $\operatorname{GL}_{2}\left(Q_{2}\right)$ using "quasi-isogenles"

Sheaf conditon on $\theta_{\text {oel }}$

$$
\Rightarrow \quad \operatorname{TMF}(K) \simeq V^{h K}
$$

Defrui:

$$
Q(\ell):=V^{h G_{2}\left(Q_{l}\right)}
$$

Cosimplicial Resolution

$$
C_{1} L_{2}\left(Q_{l}\right) \subset \beta_{\left(2-\operatorname{dim}_{1} \lambda \sin \operatorname{simp}^{\prime} t\right)} \quad \text { Building for } a_{2}\left(Q_{l}\right)
$$

Contructibilin of $B+\sin p l$ cal decomposition

$$
\Rightarrow Q(l) \simeq \operatorname{Tot}\left(\operatorname{ThF}\left(K_{0}\right) \rightarrow \underset{\operatorname{TMF}\left(K_{0}(l)\right)}{\vec{\theta}\left(K_{0}\right)} \vec{\rightarrow} \operatorname{TMF}\left(K_{0}(l)\right)\right)
$$

Relationship to v_{z}-periodicity

$$
S \longrightarrow Q(e)
$$

Then is a subsp $\Gamma \subset \Phi_{2}$ and sp companion of ANSS's [Morava change of rings]

$$
\begin{aligned}
& H^{+}\left(\Gamma,\left(E_{2}\right)_{x} /\left(\rho^{\infty}, L_{1}^{\infty}\right)\right)^{\infty+1} \Rightarrow \quad \pi_{3} \quad M_{2} Q(l) \\
& \uparrow \uparrow \\
& H_{\text {cont }}^{*}\left(\$_{2},\left(E_{2}\right)_{3} /\left(p^{\infty}, u_{1}^{\infty}\right)\right)^{h_{0} \cdot 1} \Rightarrow \pi_{\star} M_{2} S
\end{aligned}
$$

Proof of Main The:

$$
\begin{aligned}
& H^{+}\left(\Gamma \quad\left(E_{2}\right)_{1} /\left(\rho^{\infty}, u_{1}^{\infty}\right)\right)^{(a+1} \Rightarrow \quad \pi_{1} \quad M_{2} Q(l) \\
& \uparrow \text { hell } \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{\nu / j, k} \text { live in } H^{0}
\end{aligned}
$$

Thmi (B-Lawson)

$$
\begin{array}{r}
\langle l\rangle= \\
\mathbb{Z}_{p}^{x}, \quad p>2 \\
\Gamma{\underset{\text { dense }}{ }}^{\mathbb{S}_{2}} \text { porinite }
\end{array}
$$

Proof of Main The:

$$
\begin{aligned}
& H^{+}\left(\Gamma \quad\left(E_{2}\right)_{1} /\left(\rho^{\infty}, u_{1}^{\infty}\right)\right)^{(a+1} \Rightarrow \quad \pi_{1} \quad M_{2} Q(l) \\
& \uparrow e^{\text {iso on }} H^{\circ} \text { by derisy } \uparrow \\
& \begin{array}{c}
\left.H_{\text {cont }}^{*}\left(\$_{2}, E_{2} E_{0} / \rho_{0}^{\infty}, u_{1}^{\infty}\right)\right)^{h_{0} \mid} \Rightarrow \pi_{*} M_{2} S \\
\beta_{\nu / j, k} \text { live in } H^{0}
\end{array}
\end{aligned}
$$

Proof of Main The:

$$
\begin{aligned}
& f^{\beta_{i / j, k}} \text { lie in } H^{\circ}(I) \\
& H^{+}\left(\Gamma \quad\left(E_{2}\right)_{1} /\left(\rho^{\infty}, u_{1}^{\infty}\right)\right)^{(a+1} \Rightarrow \quad \pi_{1} \quad M_{2} Q(l) \\
& \uparrow e^{\text {iso on }} H^{\circ} \text { by derisy } \uparrow \\
& \begin{array}{c}
\left.H_{\text {cont }}^{*}\left(\$_{2},\left(E_{2}\right), / \rho_{1}^{\infty}, u_{1}^{\infty}\right)\right)^{h_{0} / 1} \Rightarrow \pi_{*} M_{2} S \\
\beta_{\nu / j, k} \text { live in } H^{0}
\end{array}
\end{aligned}
$$

Building decompositran:

$$
\begin{aligned}
& d_{0}: f(q) \longmapsto\left(l^{n} f\left(q^{l}\right), l^{n} f(q)\right) \\
& \text { wairt } n \\
& d_{\imath}: f(q) \longmapsto(f(q), f(q))
\end{aligned}
$$

Finul ingrediant: (using results of $\begin{aligned} & \text { Serre }+ \text { Swinnebar-Dre) }) ~\end{aligned}$

Comments/Questions:

- Shows complicated B-pattern reflects a p-local part of a global pheromonan in moduler foms
- Car you use this to give NEW compritation of B-patturm

$$
\left(\begin{array}{l}
\text { Miller-Ravenal-Wilson }
\end{array}\right) \Longrightarrow\binom{\text { new? }}{\text { congavaces }}
$$

- Relatorship to GoLavres" "f-invariant"?

