The bo-Adams spectral sequence

Mark Behrens (Notre Dame)
Joint with Agnes Beaudry (Uchicago), Prasit Bhattacharya (Notre Dame), Dominic Culver (Notre Dame), Zhouli Xu (Uchicago)

Generalized Adams spectral sequences

- $R=$ ring spectrum (cohomology theory with cup products)
- $R_{*}:=R_{*}(p t)=\pi_{*} R$
- $R_{*} R=$ ring of "R-cooperations".
- Dual to $R^{*} R=$ ring of R-operations (natural transformations $R^{*}(-) \rightarrow R^{*}$)
- E.g. $R=H \mathbb{F}_{p}$ (ordinary mod 2 cohomology):

$$
\begin{gathered}
R^{*} R=A=\text { Steenrod algebra } \\
R_{*} R=A_{*}=\text { dual Steenrod algebra }
\end{gathered}
$$

- R-Adams-spectral sequence (ASS):

$$
{ }^{R} E_{1}^{s, t}=R_{t}(\underbrace{R \wedge \cdots} \wedge X) \Rightarrow \pi_{t-s}\left(X_{R}\right)
$$

Generalized Adams spectral sequences

R-ASS

$$
{ }^{R} E_{1}^{s, t}=R_{t}(\underbrace{R \wedge \cdots \wedge R}_{s} \wedge X) \Rightarrow \pi_{t-s}\left(X_{R}\right)
$$

- $X=$ space or spectrum
- $\pi_{*}\left(X_{R}\right)=$ stable homotopy groups of the "R-localization" of X
E.g. $R=H \mathbb{F}_{p}$:

$$
\pi_{*} X_{R}=\left(\pi_{*} X\right)_{p}^{\wedge}
$$

- If $R_{*} R$ is flat over R_{*}, then $R_{*} R$ is a Hopf algebra, and

$$
{ }^{R} E_{2}^{s, t}=\operatorname{Ext}_{R_{*} R}\left(R_{*}, R_{*} X\right)
$$

WARNING: this is Ext of comodules over the coalgebra $R_{*} R$

Adams spectral sequence

$$
\operatorname{Ext}_{A_{*}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow\left(\pi_{t-s}^{s}\right)_{p}
$$

Adams spectral sequence

$$
E x t_{A_{*}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow\left(\pi_{t-s}^{S}\right)_{p}
$$

-Many differentials
$-d_{r}$ differentials go back by 1 and up by r

Adams spectral sequence

$$
\operatorname{Ext}_{A_{*}}^{S, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow\left(\pi_{t-s}^{S}\right)_{p}
$$

-Many differentials

- d_{r} differentials go back by 1 and up by r
$\frac{\text { Adams spectral sequence }}{E x t_{A_{*}}^{S, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow\left(\pi_{t-s}^{s}\right)_{p}}$

$\frac{\text { Adams spectral sequence }}{E x t_{A_{*}}^{S, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow\left(\pi_{t-s}^{s}\right)_{p}}$

$$
\operatorname{Ext}_{A_{t}}^{s t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Rightarrow \pi_{ \pm} b_{0}
$$

$\left(b_{0}=\right.$ convection neal K-thy $)$

From now in all spaces/spectra are implicitly localized at 2!

bo-ASS: ${ }^{b o} E_{1}^{s, t}=b o_{t}\left(b o^{\wedge s}\right) \Rightarrow \pi_{t-s}(S)$

- Motivation: bo is v_{1}-periodic (aka Bott periodic) - good at detecting v_{1}-periodic homotopy.
- Used by Mahowald to compute $v_{1}^{-1} \pi_{*} S$ at $p=2$. (proving the 2-primary v_{1}-periodic telescope conjecture)
- Lellmann-Mahowald computed bo-ASS for sphere through dimension 20
- GOOD NEWS: no differentials through this range!
- BAD NEWS: $b o_{*} b o$ is NOT flat over $b o_{*}$--- thus hard to compute $b o E_{2}^{S, t}$
- TODAY: method to compute ${ }^{\text {bo }} E_{2}^{S, t}$, computes bo-ASS through dimension 40 "with ease"

The real motivation: tmf-ASS

- tmf $=$ topological modular forms (sees v_{1} and v_{2}-periodic homotopy)
- Much more powerful than bo

$$
\operatorname{Ext}_{A_{t}}^{s t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Rightarrow \pi_{ \pm} b_{0}
$$

($b_{0}=$ concotira neal K-thy)

Adams spectral sequence

$$
E x t_{A_{*}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow\left(\pi_{t-s}^{S}\right)_{p}
$$

Adams spectral sequence

The real motivation: tmf-ASS

- tmf $=$ topological modular forms (sees v_{1} and v_{2}-periodic homotopy)
- Much more powerful than bo
- Bad news: $t m f_{*} t m f$ not flat over $\operatorname{tm} f_{*}$
- Good news: getting a fairly good understanding of $t m f_{*} t m f$ (B-Ormsby-Stapleton-Stojanoska --- aka B.O.S.S.)
[Current collaboration does not have same ring to it: "BBBCX"]

The real motivation: tmf-ASS

- Hope: tmf-ASS should get up through dimension 60 or 70 "with ease".
- Wang-Xu recently showed $\pi_{61} S$ has no 2-torsion

CONSEQUENCE: no exotic spheres in dimension 61! (super-hard mod 2 ASS computation)

- If we could push our understanding of $\pi_{*} S$ into the 90 's, we would have a shot at resolving the outstanding Kervaire invariant question in dimension 126

The real motivation: tmf-ASS

- Potential to understand $v_{2}^{-1} \pi_{*} S$ at $p=2$ (we currently only have good understanding at odd primes)
- Telescope conjecture??? (don't know this for v_{2}-periodic homotopy at any prime - folks believe it's false...)

Connective K-theory cooperations
 Brown-Gitler spectrum perspective

- $H \mathbb{Z}=\mathrm{U}_{i} B_{i} \quad\left(B_{i}=i^{\text {th }}\right.$ integral Brown-Gitler spectrum $)$
- $H_{*}\left(B_{i}\right) \subset H_{*}(H \mathbb{Z})=\mathbb{F}_{2}\left[\zeta_{1}^{2}, \zeta_{2}, \ldots\right]$
subspace spanned by monomials of weight $\leq 2 i\left(\right.$ weight $\left.\left(\zeta_{i}\right)=2^{i-1}\right)$ $\zeta_{i}=c\left(\xi_{i}\right)$
-bo $\wedge b o \simeq \bigvee_{i} \Sigma^{4 i}$ bo $\wedge B_{i}$
[Mahowald-Milgram]

Connective K-theory cooperations
 Brown-Gitler spectrum perspective

- bo $\wedge b o^{s} \simeq \bigvee_{I=\left(i_{1}, \ldots, i_{s}\right)} \Sigma^{4|I|}$ bo $\wedge B_{I}$
- $B_{I}=B_{i_{1}} \wedge \cdots \wedge B_{i_{s}}$
- $|I|=i_{1}+\cdots+i_{s}$
- bo $\wedge B_{I} \simeq H V_{I} \vee\left\{\begin{array}{c}b o^{<2|I|-\alpha(I)>}, \quad|I| \text { even } \\ b s p^{<2|I|-\alpha(I)-1>},|I| \text { odd }\end{array}\right.$
- $V_{I}=$ graded \mathbb{F}_{2}-vector space
- $\alpha(i)=$ number of 1's in dyatic expansion of i
- $\alpha(I)=\alpha\left(i_{1}\right)+\cdots+\alpha\left(i_{s}\right)$
- $b o^{<n>}=n$th Adams cover of bo (bsp = symplectic K-theory)

Adams spectral sequence for "good" part of bo \wedge bo $\leftrightarrow \sum^{4 i}\left\{\begin{array}{l}b_{0}^{\langle 2 i-\alpha(i)\rangle} \\ b_{5} p^{\langle 2 i-\alpha(i)-1\rangle}\end{array}\right.$

bo-ASS: $E_{1}-$ term

$$
{ }^{b o} E_{1}^{s, t}=b o_{t} b o^{s} \simeq \bigoplus_{I=\left(i_{1}, \ldots, i_{s}\right)} V_{I} \oplus\left\{\begin{array}{cc}
\pi_{t} \Sigma^{4|I|} b o^{<2|I|-\alpha(I)>}, & |I| \text { even } \\
\pi_{t} \Sigma^{4|I|} b s p^{<2|I|-\alpha(I)-1>}, & |I| \text { odd }
\end{array}\right.
$$

bo-ASS: $E_{1}-$ term

"big, ugly, and incomputable"
bo-ass: E_{2}-term

$$
\begin{aligned}
& 0 \rightarrow{ }^{\text {evil }} E_{1}^{s, t} \longrightarrow{ }^{h_{0}} E_{1}^{s, t} \longrightarrow{ }^{\text {god }} E_{1}^{\text {sit }} \rightarrow 0 \\
\Rightarrow & \text { LES } \\
\cdots & \rightarrow{ }^{\text {evil }} E_{2}^{s, t} \longrightarrow{ }^{\text {bo }} E_{2}^{s, t} \rightarrow{ }^{\text {god }} E_{2}^{s, t} \rightarrow \cdots
\end{aligned}
$$

bo-ass: E_{2}-term

$$
0 \rightarrow{ }^{\text {evil }} E_{1}^{5, t} \longrightarrow{ }^{h_{0}} E_{1}^{s, t} \longrightarrow{ }^{\operatorname{god}} E_{1}^{s, t} \longrightarrow 0
$$

\Rightarrow LES

$$
\cdots \rightarrow{ }^{\text {eril }} E_{2}^{s, t} \longrightarrow{ }^{b_{0}} E_{2}^{s, t} \rightarrow{ }^{\text {sod }} E_{2}^{s, t} \rightarrow \cdots
$$

- duad couplefely compund
- sod E_{2} compluther corputed [weisht ss] $\}$ Lellimionil
- devil not comuctable! \bigodot

Our contribution: can use $E x t_{A_{*}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ to compute ${ }^{e v i l} E_{2}^{*, *}$ directly!

Our contribution: can use $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ to compute ${ }^{\text {evil }} E_{2}^{* * *}$ directly!
"Algebraic bo-resolution"

$$
{ }_{a l g}^{b_{l}} E_{1}^{s, l, l}=E_{x t}^{s, t}(1)\left(b_{0}^{n l}\right) \Rightarrow E_{x t}^{s+l, t}\left(F_{2}, \mathbb{F}_{2}\right)
$$

Our contribution: can use $\operatorname{Ext}_{A_{*}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ to compute ${ }^{\text {evil }} E_{2}^{*, *}$ directly!
"Algebraic bo-resolution"

$$
\begin{aligned}
& { }_{\text {alg }}^{b l y} E_{1}^{s, t, l}=\operatorname{Ext}_{A(1)}^{s, t}\left(b_{0}^{n l}\right) \Rightarrow \operatorname{Ext}_{A}^{s+l, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { LES on } E_{2} \text {-terns }
\end{aligned}
$$

Main Thm ($B B B C x$)

Main Thm ($B B B C x$)

$$
\operatorname{evil}_{\text {evil }} E_{2}^{s, t, l}=\left\{\begin{array}{cl}
\text { exil } E_{2}^{l, t}, & s=0 \\
0, & 0 / w
\end{array}\right.
$$

Strategy use knarldde of $E_{\text {at }}^{A}\left(F_{2}, \mathbb{F}_{c}\right)$ and Sool E_{2}^{\cdots} to deduce ${ }^{\text {euil }} E_{2} \cdot$!

Th m ($B B B C x)$
Sod E_{2} o.: only gets contributions from

$$
E_{x t_{A(1)}}\left(B_{I}\right)
$$

for $I=(\underbrace{1, \ldots, 1}_{i_{0}}, \underbrace{2, \ldots, 2}_{i_{1}}, \underbrace{4, \ldots, 4}_{i_{2}}, \cdots$) " $h_{0}^{i_{0}} h_{1}^{i_{1}} h_{2}^{i_{2}}$

Then (Base)

$$
E_{\text {Kt }}^{A(N)}\left(B_{I}\right)
$$

for $I=(\underbrace{1, \cdots,}_{i_{0}}, \underbrace{2}_{i_{1}} \cdots \underbrace{4}_{i_{2}} \cdot \cdots, 4)$ Contribution from

$$
" h_{0}^{i_{0} h_{1} h_{1} i_{1}^{1} h_{2}^{i}} \cdots \cdot
$$

$$
\begin{gathered}
h_{k}^{i_{k}} h_{k+1}^{i_{k+1}} \cdots \quad i_{k} \neq 0 \\
\text { is a " }\left(2^{k+2}-1\right) \text {-truncated" } \\
" 2^{k+3} \text {-periodic" }\left\{\begin{array}{l}
b_{0}<\rightarrow \\
h s p^{<\longrightarrow}
\end{array}\right.
\end{gathered}
$$

Connecting map:

$$
{ }_{a}^{b_{0}} E_{2}^{\cdots} \longrightarrow \operatorname{good}_{a l y} E_{2}^{\cdots}
$$

use V_{1}-periodic $E_{x t}$

Connecting map:

$$
{ }_{a 0}^{b_{0}} E_{2}^{\cdots \cdots} \longrightarrow \operatorname{gold}_{a l y}^{\cdots} E_{2}^{\cdots}
$$

Thm [BBBCX]
"Algahrai telecopar Car"

$$
\begin{aligned}
& v_{1}^{-1}{ }_{a b}^{b_{0}} E_{2}^{\prime \cdots} \stackrel{\cong}{\cong} v_{1}^{-1}{ }_{a l y}^{\text {god }} E_{2} \cdots \\
& \| \\
& v_{1}^{-1} E_{x t_{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
\end{aligned}
$$

Connecting map:

$$
{ }_{a}^{b_{0}} E_{2}^{\cdots \cdots} \longrightarrow \operatorname{good}_{a l y} E_{2}^{\cdots}
$$

Thm [BBBCX]
"Algehraic teleccope Corf"

$$
v_{1}^{-1} b_{a b}^{b_{0}} E_{2}^{\cdots} \xrightarrow{\cong} v_{1}^{-1} \operatorname{loly}_{-1 / d} E_{2}^{\cdots}
$$

Consequere:

$$
\begin{aligned}
& x \in{ }_{{ }^{6} b}^{b o} E_{2}^{\prime} \quad v_{1} \text {-periodrc } \\
& \downarrow
\end{aligned}
$$

Connecting map:

$$
{ }_{a}^{b_{0}} E_{2}^{\cdots} \longrightarrow \operatorname{good}_{a l y}^{\cdots} E_{2}^{\cdots}
$$

Control the [BBBCx]

$$
\begin{aligned}
& \Rightarrow v_{1}^{k-l} x \longmapsto y \\
& v_{1}^{-1} E x t_{A}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
\end{aligned}
$$

Topological Weight Spectral Sequence ${ }^{\omega s s} E_{1}^{s, t, \omega t} \Rightarrow{ }^{s \omega d} E_{2}^{s, t}$

$$
h_{0}^{2}=b_{0}^{\langle 2\rangle}
$$

Topological Weight Spectral Sequence

$$
{ }^{\text {css }} E_{1}^{s, t, w t} \Rightarrow{ }^{\text {sod }} E_{2}^{s, t}
$$

Topological Weight Spectral Sequence ${ }^{\text {css }} E_{1}^{s, t, \omega t} \Rightarrow{ }^{\text {sod }} E_{2}^{s, t}$

bo-Adams spectral sequence $\operatorname{good} E_{2}^{s, t} \oplus{ }^{\text {evil }} E_{2}^{s, t} \Rightarrow \pi_{t-s} S$

