Wrapping spheres around spheres

Mark Behrens (Dept of Mathematics)

Spheres??

 S^{n} (n > 2)

1-dimensional sphere

2-dimensional sphere

3-dimensional sphere and higher...

(Circle)

(Sphere)

(I'll explain later!)

Wrapping spheres?

Wrapping S¹ around S¹

- Wrapping one circle around another circle
- Wrapping rubber band around your finger

...another example...

Wrapping S¹ around S²

-Wrapping circle around sphere -Wrapping rubber band around globe

...and another example.

Wrapping S² around S¹

- Wrapping sphere around circle
- Flatten balloon, stretch around circle

Goal: Understand all of the ways to wrap S^k around Sⁿ !

- n and k are positive numbers
- Classifying the ways you can wrap is VERY HARD!
- Turns out that interesting patterns emerge as n and k vary.
- We'd like to do this for not just spheres, but for other geometric objects – spheres are just the simplest!

Plan of talk

- Explain what I mean by "higher dimensional spheres"
- Work out specific low-dimensional examples
- Present data for what is known
- Investigate number patterns in this data

- -The world we live in
- To specify a point, give 3 numbers (x,y,z).

Higher dimensional space

 Points in 4-dimensional space are specified with 4 numbers (x,y,z,w)

Points in n-dimensional space are specified with n numbers:

$$(x_1, x_2, x_3, \dots, x_n)$$

Higher dimensional spheres:

The circle S¹ is the collection of all points (x,y) in 2-dimensional space of distance 1 from the origin (0,0).

 $\sqrt{x^2 + y^2} = 1$

Higher dimensional spheres:

The sphere S^2 is the collection of all points (x,y,z) in 3-dimensional space of distance 1 from the origin (0,0,0).

$$\sqrt{x^2 + y^2 + z^2} = 1$$

Higher dimensional spheres:

 S^3 is the collection of all points (x,y,z,w) in 4-dimensional space of distance 1 from the origin (0,0,0,0).

$$\sqrt{x^2 + y^2 + z^2 + w^2} = 1$$

 S^{n-1} is the collection of all points $(x_1,...,x_n)$ in n-dimensional space of distance 1 from the origin.

$$\sqrt{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2} = 1$$

Spheres: another approach (This will help us visualize S³)

S¹ is obtained by taking a line segment and gluing the ends together:

Spheres: another approach (This will help us visualize S³)

S² is obtained by taking a disk and gluing the opposite sides together:

Spheres: another approach (This will help us visualize S³)

S³ is obtained by taking a solid ball and gluing the opposite hemispheres together:

Spheres: another approach

(This will help us visualize S³)

You can think of S³ this way: If you are flying around in S³, and fly through the surface in the northern hemisphere, you reemerge in the southern hemisphere.

Wrapping S¹ around S¹

For each positive integer n, we can wrap the circle around the circle n times

Wrapping S¹ around S¹

We can wrap counterclockwise to get the negative numbers

The unwrap

A trivial example: just drop the circle onto the circle.

The unwrap wraps 0 times around

Equivalent wrappings

We say that two wrappings are <u>equivalent</u> if one can be adjusted to give the other

For example:

This wrapping is equivalent to...

...this wrapping. (the "wrap 1")

Winding number

Every wrapping of S¹ by S¹ is equivalent to "wrap n" for some integer n. Which wrap is this equivalent to?

What have we learned:

The winding number gives a correspondence:

Wrapping S¹ around S²

What have we learned:

- Every way of wrapping S¹ around S² is equivalent to the "unwrap"
- FACT: the same is true for wrapping any sphere around a *larger* dimensional sphere.
- REASON: there will always be some place of the larger sphere which is uncovered, from which you can "push the wrapping off".

Wrapping S² around S²:

(Get negative wraps by turning sphere inside out)

"Winding number"

Same trick for S¹ works for S² for computing the "winding number"

Winding number = 1 + 1 = 2

Fact:

The winding number gives a correspondence:

General Fact!

The winding number gives a correspondence:

Wrapping S² around S¹:

Consider the example given earlier:

In fact, this wrap is equivalent to The unwrap, because you can "shrink the balloon"

What have we learned:

This sort of thing always happens, and we have:

Turns out that this is just a fluke!

There are many interesting ways to wrap S^{n+k} around S^n for n > 1, and k > 0.

Wrapping S³ around S²:

Recall: we are thinking of S³ as a solid ball with the northern hemisphere glued to the southern hemisphere.

Consider the unwrap:

- 1) Take two points in S²
- Examine all points in S³ that get sent to these two points.
- 3) Because the top and bottom are identified, these give two separate circles in S³.

<u>Hopf fibration: a way to wrap S³</u> around S² different from the unwrap

<u>Hopf fibration: a way to wrap S³</u> around S² different from the unwrap

Keyring model of Hopf fibration

Fact:

Counting the number of times these circles are linked gives a correspondence:

Number of ways to wrap S^{n+k} around Sⁿ

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11
k=1	Z	2	2	2	2	2	2	2	2	2
k=2	2	2	2	2	2	2	2	2	2	2
k=3	2	12	Z*12	24	24	24	24	24	24	24
k=4	12	2	$ 2^2$	2	0	0	0	0	0	0
k=5	2	2	2^2	2	Z	0	0	0	0	0
k=6	2	3	24*3	2	2	2	2	2	2	2
k=7	3	15	15	30	60	120	Z*120	240	240	240
k=8	15	2	2	2	8*6	2 ³	2 ⁴	2 ³	2 ²	2 ²
k=9	2	2 ²	2^3	2 ³	2^3	2 ⁴	2 ⁵	2 ⁴	Z*2 ³	2 ³
k=10	2 ²	12*2	40*4*	18*8	18*8	24*2	8 ² *2*3 ²	24*2	12*2	2 ² *3
			2*3							
k=11	12*2	84*2 ²	84*2 ⁵	504*2 ²	504*4	504*2	504*2	504*2	504	504

Note: "Z" means the integers

Some of the numbers are factored to indicate that there are distinct ways of wrapping

Number of ways to wrap S^{n+k} around Sⁿ

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11
k=1	Ζ	2	2	2	2	2	2	2	2	2
k=2	2	2	2	2	2	2	2	2	2	2
k=3	2	12	Z *12	24	24	24	24	24	24	24
k=4	12	2	2^2	2	0	0	0	0	0	0
k=5	2	2	2^2	2	Ζ	0	0	0	0	0
k=6	2	3	24*3	2	2	2	2	2	2	2
k=7	3	15	15	30	60	120	Z *120	240	240	240
k=8	15	2	2	2	8*6	2 ³	2 ⁴	2 ³	2 ²	2 ²
k=9	2	2 ²	2^3	2 ³	2 ³	2 ⁴	2 ⁵	2 ⁴	Z *2 ³	2 ³
k=10	2 ²	12*2	40*4* 2*3 ²	18*8	18*8	24*2	8 ² *2*3 ²	24*2	12*2	2 ² *3
k=11	12*2	84*2 ²	84*2 ⁵	504*2 ²	504*4	504*2	504*2	504*2	504	504

The integers form an infinite set – the only copies of the integers are shown in red. This pattern continues. All of the other numbers are finite!

Number of ways to wrap S^{n+k} around Sⁿ

	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	n=11
k=1	Z	2	2	2	2	2	2	2	2	2
k=2	2	2	2	2	2	2	2	2	2	2
k=3	2	12	Z*12	24	24	24	24	24	24	24
k=4	12	2	$ 2^2$	2	0	0	0	0	0	0
k=5	2	2	$ 2^2$	2	Z	0	0	0	0	0
k=6	2	3	24*3	2	2	2	2	2	2	2
k=7	3	15	15	30	60	120	Z*120	240	240	240
k=8	15	2	2	2	8*6	2^3	2 ⁴	2^3	2 ²	2 ²
k=9	2	2 ²	2^3	2 ³	2 ³	2 ⁴	2 ⁵	2 ⁴	Z*2 ³	2 ³
k=10	2 ²	12*2	40*4* 2*3 ²	18*8	18*8	24*2	8 ² *2*3 ²	24*2	12*2	2 ² *3
k=11	12*2	84*2 ²	84*2 ⁵	504*2 ²	504*4	504*2	504*2	504*2	504	504

STABLE RANGE: After a certain point, these values become independent of n

Below is a table of the stable values for various k.

k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9
2	2	24	0	0	2	240	2 ²	2 ³

k = 10	k = 11	k = 12	k = 13	k = 14	k = 15	k = 16	k = 17	k = 18
2*3	504	0	3	2 ²	480*2	2 ²	24	8*2

Below is a table of the stable values for various k.

Here are their prime factorizations.

k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9
2	2	2 ^{3*} 3	0	0	2	24*3*5	(2)(2)	(2)(2)(2)

k = 10	k = 11	k = 12	k = 13	k = 14	k = 15	k = 16	k = 17	k = 18
(2)(3)	2 ^{3*} 3 ^{2*} 7	0	3	(2)(2)	(2 ⁵ *3*5)	(2)(2)	(2)(2)	(2 ³)(2)
					(2)		(2)(2)	

Below is a table of the stable values for various k.

Note that there is a factor of 2ⁱ whenever k+1 has a factor of 2ⁱ⁻¹ and is a multiple of 4

k = 1	k = 2	k = 3	k = 4 = 2 ²	k = 5	k = 6	k = 7	k = 8 = 2 ³	k = 9
2	2	2 ³ *3	0	0	2	<mark>2</mark> 4*3*5	(2)(2)	(2)(2)(2)

k = 10	k = 11	k = 12	k = 13	k = 14	k = 15	k = 16	k = 17	k = 18
		= 2 ² *3				= 24		
(2)(3)	2 ³ *3 ² *7	0	3	(2)(2)	(<mark>2</mark> 5*3*5)	(2)(2)	(2)(2)	(2 ³)(2)
					(2)		(2)(2)	

Below is a table of the stable values for various k.

There is a factor of 3ⁱ whenever k+1 has a factor of 3ⁱ⁻¹ and is divisible by 4

k = 1	k = 2	k = 3	k = 4 = 4	k = 5	k = 6	k = 7	k = 8 = 4*2	k = 9
2	2	2 ^{3*} 3	0	0	2	2 ^{4*} 3*5	(2)(2)	(2)(2)(2)

k = 10	k = 11	k = 12	k = 13	k = 14	k = 15	k = 16	k = 17	k = 18
		= 4*3				= 4 *4		
(2)(3)	2 ^{3*} 3 ² *7	0	3	(2)(2)	(2 ^{5*} 3 *5)	(2)(2)	(2)(2)	(2 ³)(2)
					(2)		(2)(2)	

Below is a table of the stable values for various k.

There is a factor of 5^{i} whenever k+1 has a factor of 5^{i-1} and is divisible by 8

k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8 = <mark>8</mark>	k = 9
2	2	2 ^{3*} 3	0	0	2	2 ⁴ *3* <mark>5</mark>	(2)(2)	(2)(2)(2)

k = 10	k = 11	k = 12	k = 13	k = 14	k = 15	k = 16	k = 17	k = 18
						= <mark>8</mark> *2		
(2)(3)	2 ³ *3 ² *7	0	3	(2)(2)	(2 ⁵ *3* <mark>5</mark>)	(2)(2)	(2)(2)	(2 ³)(2)
					(2)		(2)(2)	

Below is a table of the stable values for various k.

There is a factor of 7^i whenever k+1 has a factor of 7^{i-1} and is divisible by 12

k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9
2	2	2 ^{3*} 3	0	0	2	2 ⁴ *3*5	(2)(2)	(2)(2)(2)

k = 10	k = 11	k = 12	k = 13	k = 14	k = 15	k = 16	k = 17	k = 18
		= 12						
(2)(3)	2 ^{3*} 3 ^{2*} 7	0	3	(2)(2)	(2 ⁵ *3*5)	(2)(2)	(2)(2)	(2 ³)(2)
					(2)		(2)(2)	

What's the pattern?

Note that:

$$4 = 2(3-1)$$

8 = 2(5-1)
12 = 2(7-1)

In general, for p a prime number, there is a factor of pⁱ if k+1 has a factor of pⁱ⁻¹ and is divisible by 2(p-1).

The prime 2 is a little different...

.....2(2-1) does not equal 4!

Beyond...

- It turns out that all of the stable values fit into patterns like the one I described.
- The next pattern is so complicated, it takes several pages to even describe.
- We don't even know the full patterns after this – we just know they exist!
- The hope is to relate all of these patterns to patterns in number theory.

Some patterns for the prime 5

