Wrapping spheres around spheres

Mark Behrens
(Dept of Mathematics)

Spheres??

S^{2}

1-dimensional sphere

2-dimensional sphere

3-dimensional sphere and higher...
(I'll explain later!)

Wrapping spheres?

Wrapping S^{1} around S^{1}

- Wrapping one circle around another circle
- Wrapping rubber band around your finger

...another example...

Wrapping S^{1} around S^{2}
-Wrapping circle around sphere
-Wrapping rubber band around globe

...and another example.

Wrapping S^{2} around S^{1}

- Wrapping sphere around circle
- Flatten balloon, stretch around circle

Goal: Understand all of the ways to wrap S^{k} around S^{n} !

- n and k are positive numbers
- Classifying the ways you can wrap is VERY HARD!
- Turns out that interesting patterns emerge as n and k vary.
- We'd like to do this for not just spheres, but for other geometric objects - spheres are just the simplest!

Plan of talk

- Explain what I mean by "higher dimensional spheres"
- Work out specific low-dimensional examples
- Present data for what is known
- Investigate number patterns in this data

n-dimensional space

To specify a point, give 2 numbers

3-dimensional space

-The world we live in

- To specify a point, give 3 numbers (x, y, z).

Higher dimensional space

- Points in 4-dimensional space are specified with 4 numbers (x, y, z, w)
- Points in n-dimensional space are specified with n numbers:

$$
\left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}\right)
$$

Higher dimensional spheres:

The circle S^{1} is the collection of all points (x, y) in 2-dimensional space of distance 1 from the origin $(0,0)$.

Higher dimensional spheres:

The sphere S^{2} is the collection of all points (x, y, z) in 3-dimensional space of distance 1 from the origin $(0,0,0)$.
$\sqrt{x^{2}+y^{2}+z^{2}}=1$

Higher dimensional spheres:

S^{3} is the collection of all points (x, y, z, w) in 4-dimensional space of distance 1 from the origin ($0,0,0,0$).

$$
\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}=1
$$

S^{n-1} is the collection of all points $\left(x_{1}, \ldots, x_{n}\right)$ in n -dimensional space of distance 1 from the origin.

$$
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}}=1
$$

Spheres: another approach

(This will help us visualize S^{3})
S^{1} is obtained by taking a line segment and gluing the ends together:

Spheres: another approach

(This will help us visualize S^{3})
S^{2} is obtained by taking a disk and gluing the opposite sides together:

Spheres: another approach

(This will help us visualize S^{3})
S^{3} is obtained by taking a solid ball and gluing the opposite hemispheres together:

Spheres: another approach

 (This will help us visualize S^{3})You can think of S^{3} this way: If you are flying around in S^{3}, and fly through the surface in the northern hemisphere, you reemerge in the southern hemisphere.

Wrapping S^{1} around S^{1}

For each positive integer n, we can wrap the circle around the circle n times

Wrapping S^{1} around S^{1}

We can wrap counterclockwise to get the negative numbers

The unwrap

A trivial example: just drop the circle onto the circle.

The unwrap wraps 0 times around

Equivalent wrappings

We say that two wrappings are equivalent if one can be adjusted to give the other

For example:
This wrapping is equivalent to...
...this wrapping. (the "wrap 1")

Winding number

Every wrapping of S^{1} by S^{1} is equivalent to "wrap n " for some integer n. Which wrap is this equivalent to?

Handy trick:

1) Draw a line perpendicular to S^{1}
2) Mark each intersection point with + or - depending on direction of crossing
3) Add up the numbers - this is the

"winding number"

What have we learned:

The winding number gives a correspondence:

Wrapping S^{1} around S^{2}

What have we learned:

- Every way of wrapping S^{1} around S^{2} is equivalent to the "unwrap"
- FACT: the same is true for wrapping any sphere around a larger dimensional sphere.
- REASON: there will always be some place of the larger sphere which is uncovered, from which you can "push the wrapping off".

Wrapping S^{2} around S^{2} :

Wrap 0

Wrap 1

Wrap 2
(Get negative wraps by turning sphere inside out)

"Winding number"

Same trick for S^{1} works for S^{2} for computing the "winding number"

Winding number $=1+1=2$

Fact:

The winding number gives a correspondence:

General Fact!

The winding number gives a correspondence:

Summary:

Wrapping S^{2} around S^{1} :

Consider the example given earlier:

In fact, this wrap is equivalent to The unwrap, because you can "shrink the balloon"

What have we learned:

This sort of thing always happens, and we have:

Turns out that this is just a fluke!
There are many interesting ways to wrap $\mathrm{S}^{\mathrm{n+k}}$ around S^{n} for $\mathrm{n}>1$, and $\mathrm{k}>0$.

Wrapping S^{3} around S^{2} :

Recall: we are thinking of S^{3} as a solid ball with the northern hemisphere glued to the southern hemisphere.

Consider the unwrap:

1) Take two points in S^{2}
2) Examine all points in S^{3} that get sent to these two points.
3) Because the top and bottom are identified, these give two separate circles in S^{3}.

Hopf fibration: a way to wrap S^{3} around S^{2} different from the unwrap

Hopf fibration: a way to wrap S^{3}

 around S^{2} different from the unwrap

Keyring model of Hopf fibration

FeC+

Counting the number of times these circles are linked gives a correspondence:
$\left(\right.$ Ways to wrap S^{3} around $\left.\mathrm{S}^{2}\right) \longleftrightarrow\binom{$ The integers: }{$\ldots-2,-1,0,1,2, \ldots}$

Number of ways to wrap \mathbf{S}^{n+k} around \mathbf{S}^{n}

	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$	n=7	$\mathrm{n}=8$	n=9	$\mathrm{n}=10$	$\mathrm{n}=11$
k=1	Z	2	2	2	2	2	2	2	2	2
k=2	2	2	2	2	2	2	2	2	2	2
k=3	2	12	Z*12	24	24	24	24	24	24	24
k=4	12	2	2^{2}	2	0	0	0	0	0	0
k=5	2	2	2^{2}	2	Z	0	0	0	0	0
k=6	2	3	24*3	2	2	2	2	2	2	2
k=7	3	15	15	30	60	120	Z*120	240	240	240
k=8	15	2	2	2	8*6	2^{3}	2^{4}	2^{3}	2^{2}	2^{2}
k=9	2	2^{2}	2^{3}	2^{3}	2^{3}	2^{4}	2^{5}	2^{4}	$\mathrm{Z}^{*} 2^{3}$	2^{3}
k=10	2^{2}	12*2	$\begin{aligned} & 40 * 4^{*} \\ & 2 * 3^{2} \end{aligned}$	18*8	18*8	24*2	$8^{2 *} 2^{*} 3^{2}$	24*2	12*2	$2^{2 *} 3$
k=11	12*2	$84 * 2^{2}$	$84 * 2^{5}$	$504 * 2^{2}$	504*4	504*2	504*2	504*2	504	504

Note: "Z" means the integers

Some of the numbers are factored to indicate that there are distinct ways of wrapping

Number of ways to wrap \mathbf{S}^{n+k} around \mathbf{S}^{n}

	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$	n=7	$\mathrm{n}=8$	n=9	$\mathrm{n}=10$	$\mathrm{n}=11$
k=1	Z	2	2	2	2	2	2	2	2	2
k=2	2	2	2	2	2	2	2	2	2	2
k=3	2	12	Z*12	24	24	24	24	24	24	24
k=4	12	2	2^{2}	2	0	0	0	0	0	0
k=5	2	2	2^{2}	2	Z	0	0	0	0	0
k=6	2	3	24*3	2	2	2	2	2	2	2
k=7	3	15	15	30	60	120	Z*120	240	240	240
k=8	15	2	2	2	8*6	2^{3}	2^{4}	2^{3}	2^{2}	2^{2}
k=9	2	2^{2}	2^{3}	2^{3}	2^{3}	2^{4}	2^{5}	2^{4}	$\mathrm{Z}^{*} 2^{3}$	2^{3}
k=10	2^{2}	12*2	$\begin{aligned} & 40 * 4^{*} \\ & 2 * 3^{2} \end{aligned}$	18*8	18*8	24*2	$8^{2 *} 2^{*} 3^{2}$	24*2	12*2	$2^{2 *} 3$
k=11	12*2	$84 * 2^{2}$	$84 * 2^{5}$	$504 * 2^{2}$	504*4	504*2	504*2	504*2	504	504

The integers form an infinite set - the only copies of the integers are shown in red. This pattern continues. All of the other numbers are finite!

Number of ways to wrap \mathbf{S}^{n+k} around \mathbf{S}^{n}

	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$	$\mathrm{n}=7$	$\mathrm{n}=8$	$\mathrm{n}=9$	$\mathrm{n}=10$	$\mathrm{n}=11$
k=1	Z	2	2	2	2	2	2	2	2	2
k=2	2	2	2	2	2	2	2	2	2	2
k=3	2	12	Z*12	24	24	24	24	24	24	24
k=4	12	2	2^{2}	2	0	0	0	0	0	0
k=5	2	2	2^{2}	2	Z	0	0	0	0	0
k=6	2	3	24*3	2	2	2	2	2	2	2
k=7	3	15	15	30	60	120	Z ${ }^{\text {1 }} 120$	240	240	240
k=8	15	2	2	2	8*6	2^{3}	2^{4}	2^{3}	$2{ }^{2}$	2^{2}
k=9	2	2^{2}	2^{3}	2^{3}	2^{3}	2^{4}	2^{5}	2^{4}	$\mathrm{Z}^{*} 2^{3}$	2^{3}
$\mathrm{k}=10$	2^{2}	12*2	$\begin{aligned} & 40^{*} 4^{*} \\ & 23^{*} \end{aligned}$	18*8	18*8	24*2	$8^{2} 2^{*} 3^{2}$	24*2	12*2	$2^{2 *} 3$
$\mathrm{k}=11$	12*2	$84 * 2^{2}$	$84 * 2^{5}$	$504 * 2^{2}$	504*4	504*2	504*2	504*2	504	504

STABLE RANGE: After a certain point, these values become independent of n

Stable values

Below is a table of the stable values for various k.

$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$	$k=9$
2	2	24	0	0	2	240	2^{2}	2^{3}

$k=10$	$k=11$	$k=12$	$k=13$	$k=14$	$k=15$	$k=16$	$k=17$	$k=18$
$2^{*} 3$	504	0	3	2^{2}	$480^{*} 2$	2^{2}	2^{4}	$8^{*} 2$

Stable values

Below is a table of the stable values for various k. Here are their prime factorizations.

$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$	$k=9$
2	2	$2^{3 *} 3$	0	0	2	$2^{4 *} 3^{*} 5$	$(2)(2)$	$(2)(2)(2)$

$k=10$	$k=11$	$k=12$	$k=13$	$k=14$	$k=15$	$k=16$	$k=17$	$k=18$
$(2)(3)$	$2^{3 *} 3^{2 *} 7$	0	3	$(2)(2)$	$\left(2^{5 *} 3^{*} 5\right)$ (2)	$(2)(2)$	$(2)(2)$ $(2)(2)$	$\left(2^{3}\right)(2)$

Stable values

Below is a table of the stable values for various k.

Note that there is a factor of 2^{i} whenever $k+1$ has a factor of 2^{i-1} and is a multiple of 4

$k=1$	$k=2$	$k=3$	$k=4$ $=2^{2}$	$k=5$	$k=6$	$k=7$	$k=8$ $=2^{3}$	$k=9$
2	2	$2^{3^{*} 3}$	0	0	2	$2^{2^{*} 3^{*} 5}$	$(2)(2)$	$(2)(2)(2)$

$k=10$	$k=11$	$\mathrm{k}=12$ $=2^{2 *} 3$	$\mathrm{k}=13$	$\mathrm{k}=14$	$\mathrm{k}=15$	$\mathrm{k}=16$ $=2^{4}$	$\mathrm{k}=17$	$\mathrm{k}=18$
$(2)(3)$	$2^{3 * 3^{2 *} 7}$	0	3	$(2)(2)$	$\left(2^{5 *} 3^{*} 5\right)$ (2)	$(2)(2)$	$(2)(2)$ $(2)(2)$	$\left(2^{3}\right)(2)$

Stable values

Below is a table of the stable values for various k.
There is a factor of 3^{i} whenever $k+1$ has a factor of 3^{i-1} and is divisible by 4

$k=1$	$k=2$	$k=3$	$k=4$ $=4$	$k=5$	$k=6$	$k=7$	$k=8$ $=4^{*} 2$	$k=9$
2	2	$2^{3 *} 3$	0	0	2	$2^{4 *} 3^{*} 5$	$(2)(2)$	$(2)(2)(2)$

$k=10$	$k=11$	$k=12$ $=4^{*} 3$	$k=13$	$k=14$	$k=15$	$k=16$ $=4^{*} 4$	$k=17$	$k=18$
$(2)(3)$	$2^{3 *} 3^{2 *} 7$	0	3	$(2)(2)$	$\left(2^{5 *} 3^{*} 5\right)$ (2)	$(2)(2)$	$(2)(2)$ $(2)(2)$	$\left(2^{3}\right)(2)$

Stable values

Below is a table of the stable values for various k.
There is a factor of 5^{i} whenever $k+1$ has a factor of 5^{i-1} and is divisible by 8

$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$ $=8$	$k=9$
2	2	$2^{3 *} 3$	0	0	2	$2^{4 *} 3^{*} 5$	$(2)(2)$	$(2)(2)(2)$

$k=10$	$k=11$	$k=12$	$k=13$	$k=14$	$k=15$	$k=16$ $=8^{*} 2$	$k=17$	$k=18$
$(2)(3)$	$2^{3 *} 3^{2 *} 7$	0	3	$(2)(2)$	$\left(2^{5 *} 3^{*} 5\right)$ (2)	$(2)(2)$	$(2)(2)$ $(2)(2)$	$\left(2^{3}\right)(2)$

Stable values

Below is a table of the stable values for various k.
There is a factor of 7^{i} whenever $k+1$ has a factor of 7^{i-1} and is divisible by 12

$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$	$k=9$
2	2	$2^{3 *} 3$	0	0	2	$2^{4 *} 3^{*} 5$	$(2)(2)$	$(2)(2)(2)$

$k=10$	$k=11$	$k=12$ $=12$	$k=13$	$k=14$	$k=15$	$k=16$	$k=17$	$k=18$
$(2)(3)$	$2^{3 *} 3^{2 *} 7$	0	3	$(2)(2)$	$\left(2^{5 *} 3^{*} 5\right)$ (2)	$(2)(2)$	$(2)(2)$ $(2)(2)$	$\left(2^{3}\right)(2)$

What's the pattern?

Note that:

$$
\begin{aligned}
& 4=2(3-1) \\
& 8=2(5-1) \\
& 12=2(7-1)
\end{aligned}
$$

In general, for p a prime number, there is a factor of p^{i} if $k+1$ has a factor of p^{i-1} and is divisible by $2(p-1)$.

The prime 2 is a little different...
.....2(2-1) does not equal 4 !

Beyond...

- It turns out that all of the stable values fit into patterns like the one I described.
- The next pattern is so complicated, it takes several pages to even describe.
- We don't even know the full patterns after this - we just know they exist!
- The hope is to relate all of these patterns to patterns in number theory.

Some patterns for the prime 5

