tmf cooperations

Mark Behrens*, Kyle Ormsby, Nathanial Stapleton, Vesna Stojanoska (MIT)
A.K.A. "Team B.O.S.S."

Goal: understand $\operatorname{tm} f_{*} t m f$
(The ring of tmf cooperations)

Goal: understand $t m f_{*} t m f_{(2)}$
(The ring of tmf cooperations)

$$
2-\text { local }
$$

[There is something interesting to say at every prime p]

Review: (co)homology (co)operations

- $E=$ generalized cohomology theory (spectrum)
- $E^{*} E=$ graded endomorphisms of the functor

$$
E^{*}(-): \text { Spectra } \rightarrow \text { Graded Abelian Gps }
$$

$=$ ring of stable cohomology operations

- $E_{*} E=$ "cooperations"

Review: (co)homology (co)operations

$E_{*} E=$ "cooperations"

Assume E is a ring spectrum $\Rightarrow E_{*} E$ is a ring

- $E_{*} E$ and $E^{*} E$ are dual if certain hypotheses are satisfied (most importantly $E_{*} E$ is flat over E_{*})
- In this case $E_{*} E$ is a Hopf algebroid, and there is an Adams spectral sequence:

$$
E x t_{E_{*} E}\left(E_{*} X, E_{*}\right) \Rightarrow \pi_{*}\left(X_{E}^{\wedge}\right)
$$

Review: (co)homology (co)operations

$E_{*} E=$ "cooperation"

Assume E is a ring spectrum $\Rightarrow E_{*} E$ is a ring

- $E_{*} E$ and $E^{*} E$ are dual if certain hypotheses are satisfied (most importantly $E_{*} E$ is flat over E_{*})
- In this case $E_{*} E$ is a Hopf algebroid, and there is an Adams spectral sequence:

$$
E x t_{E_{*} E}\left(E_{*} X, E_{*}\right) \Rightarrow \pi_{*}\left(X_{E}^{\wedge}\right)
$$ slat/tinf re is an Adams spectral

Famous rings of cooperations

Computation

- $\left(H \mathbb{F}_{2}\right)_{*} H \mathbb{F}_{2}=\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]$
[Milnor]
- $B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \ldots\right]$
[Quillen]
- $\left(E_{n}\right)_{*} E_{n}=\operatorname{Map}^{c}\left(\mathbb{G}_{n}, \pi_{*} E_{n}\right)$
[Morava]

Algebro-Geometric interpretation (apply "spec(-)")

- automorphisms of the additive formal group law over \mathbb{F}_{2}
- Isomorphisms

$$
f: F_{1} \rightarrow F_{2}
$$

between p -typical formal grp laws

- $\mathbb{G}_{n}=$ nth Morava stabilizer grp

K-theory cooperations

- $K_{*} K \subset K_{*} K_{\mathbb{Q}}=\mathbb{Q}\left[u^{ \pm}, v^{ \pm}\right]$(since $K_{*} K$ is torsion-free)
- $K_{*} K=K_{*} \otimes K_{0} K$ and $K_{0} K \subset K_{0} K_{\mathbb{Q}}=\mathbb{Q}\left[w^{ \pm}\right] \quad\left(w:=\frac{v}{u}\right)$
- $K_{0} K_{(p)}=\left\{f(w) \mid f(x) \in \mathbb{Z}_{p}\right.$ for all $\left.x \in \mathbb{Z}_{p}^{\times}\right\} \quad$ [Adams-Harris]
- $K O_{*} K O=K O_{*} \otimes K O_{0} K O$ and $K O_{0} K O \subset K O_{0} K O_{\mathbb{Q}}=\mathbb{Q}\left[w^{ \pm 2}\right]$
- $K O_{0} K O_{(p)}=\left\{f\left(w^{2}\right) \mid f\left(x^{2}\right) \in \mathbb{Z}_{p}\right.$ for all $\left.x \in \mathbb{Z}_{p}^{\times}\right\} \quad$ [Adams-Switzer]

Connective K-theory cooperations Numerical polynomial perspective

From this point on everything in the talk is 2-local
$H_{*}=$ homology with mod 2 coefficients
$b o_{*} b o \rightarrow K O_{*} K O$ (NOT injective, "kernel = wedge of $H \mathbb{F}_{2}{ }^{\prime}{ }^{\prime}$ ")

Image of the above map consists of
$\left\{f\left(u^{2}, v^{2}\right) \in K O_{*} K O \mid f \in \mathbb{Q}\left[u^{2}, v^{2}\right], f\right.$ has Adams filtration $\left.\geq 0\right\}$

Connective K-theory cooperations
 Brown-Gitler spectrum perspective

- $H \mathbb{Z}=\mathrm{U}_{i} B_{i} \quad\left(B_{i}=i^{\text {th }}\right.$ integral Brown-Gitler spectrum $)$
- $H_{*}\left(B_{i}\right) \subset H_{*}(H \mathbb{Z})=\mathbb{F}_{2}\left[\zeta_{1}^{2}, \zeta_{2}, \ldots\right]$
subspace spanned by monomials of weight $\leq 2 i\left(\right.$ weight $\left.\left(\zeta_{i}\right)=2^{i-1}\right)$
-bo $\wedge b o \simeq \bigvee_{i} \Sigma^{4 i}$ bo $\wedge B_{i} \quad$ [Mahowald-Milgram]
Bottom cell of $\Sigma^{4 i}$ bo $\wedge B_{i}$ corresponds to the function $2^{2 i-\alpha(i)} u^{2 i} f_{i}\left(w^{2}\right)$
$f_{i}\left(w^{2}\right):=\frac{\left(w^{2}-9\right)\left(w^{2}-9^{2}\right) \cdots\left(w^{2}-9^{i-1}\right)}{\left(9^{i}-1\right)\left(9^{i}-9\right) \cdots\left(9^{i}-9^{i-1}\right)}$

Adams spectral sequence for bo $\wedge b o$

Mahowald's analysis of the bo-based Adams spectral sequence hinged on this understanding of $b o \wedge b o$.

It led to his proof of the telescope conjecture at chromatic level 1 at the prime 2. "bo resolutions"

tmf cooperations: bo-Brown-Gitler spectra

- $b o=U_{i} b o_{i} \quad\left(b o_{i}=i^{\text {th }}\right.$ bo-Brown-Gitler spectrum $)$
- $H_{*}\left(b o_{i}\right) \subset H_{*}(b o)=\mathbb{F}_{2}\left[\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}, \ldots\right]$
subspace spanned by monomials of weight $\leq 4 i$

Note: $H^{*}(\operatorname{tmf})=A / / A(2)$

- Theorem[Mahowald] There is a splitting of A(2)-modules

$$
H^{*}(t m f)=\bigoplus_{i} H^{*}\left(\Sigma^{8 i} b o_{i}\right)
$$

tmf cooperations: bo-Brown-Gitler spectra

Theorem[Mahowald] There is a splitting of A(2)-modules

$$
H^{*}(t m f) \cong \bigoplus_{i} H^{*}\left(\Sigma^{8 i} b o_{i}\right)
$$

Corollary There is a splitting of Adams spectral sequence E_{2}-terms:

$$
E x t_{A}\left(H^{*}(t m f \wedge t m f), \mathbb{F}_{2}\right) \cong \bigoplus_{i} E x t_{A(2)}\left(H^{*}\left(\Sigma^{8 i} b o_{i}\right), \mathbb{F}_{2}\right)
$$

The Adams spectral sequence for $t m f \wedge t m f$

So, is there a splitting

$$
t m f \wedge t m f \simeq \vee_{i} \Sigma^{8 i} t m f \wedge b o_{i} \quad ? ? ?
$$

NO! [Davis-Mahowald-Rezk]
(we'll revisit this point at the end of the talk)

tmf cooperations: 2-variable modular forms

- $T M F_{*} T M F_{\mathbb{Q}}=\mathbb{Q}\left[c_{4}, c_{6}, \bar{c}_{4}, \bar{c}_{6}\right]\left[\Delta^{-1}, \bar{\Delta}^{-1}\right]$
- Theorem[Laures]

$$
T M F_{*} T M F[1 / 6]=\left\{f \in T M F_{*} T M F_{\mathbb{Q}} \mid f(q, \bar{q}) \in \mathbb{Z}[1 / 6]\left[\left[q^{ \pm 1}, \bar{q}^{ \pm 1}\right]\right]\right\}
$$

- Theorem[B.O.S.S] There is an injection

$$
\frac{t m f_{*} \operatorname{tmf} f_{(2)}}{\text { tors }} \hookrightarrow\left\{f \in \mathbb{Q}\left[c_{4}, c_{6}, \bar{c}_{4}, \bar{c}_{6}\right] \mid f(q, \bar{q}) \in \mathbb{Z}_{(2)}[[q, \bar{q}]]\right\}
$$

The Adams spectral sequence for $t m f \wedge t m f$

```
f
f}:=(-\mp@subsup{\overline{c}}{6}{}+\mp@subsup{c}{6}{})/
f
f
f
f
```


$\Sigma^{16} b o_{2}$

tmf cooperations: isogenies of elliptic curves

TMF \leftrightarrow moduli space of elliptic curves C

$T M F \wedge T M F \leftrightarrow$ moduli space of tuples $\left(C_{1}, C_{2}, \alpha\right)$ $C_{i}=$ elliptic curves $\alpha: \hat{C}_{1} \rightarrow \hat{C}_{2}$ [iso of FGL's]

Unfortunately, the above perspective seems rather impractical for computations.

tmf cooperations: isogenies of elliptic curves

TMF \leftrightarrow moduli space of elliptic curves C
$T M F \wedge T M F \leftrightarrow$ moduli space of tuples $\left(C_{1}, C_{2}, \alpha\right)$ $C_{i}=$ elliptic curves
$\alpha: \hat{C}_{1} \rightarrow \hat{C}_{2}$ [iso of FGL's]

$$
\begin{gathered}
\prod_{\substack{i \in \mathbb{Z} \\
j \geq 0}} T M F_{0}\left(\ell^{j}\right) \leftrightarrow \text { moduli space of tuples }\left(C_{1}, C_{2}, \phi\right) \\
\left.\phi: C_{1} \rightarrow C_{2} \text { [quasi-isogeny of deg } \ell^{k}\right]
\end{gathered}
$$

tmf cooperations: isogenies of elliptic curves

$\left\{\right.$ moduli space of tuples $\left.\left(C_{1}, C_{2}, \phi\right)\right\} \rightarrow\left\{\right.$ moduli space of tuples $\left.\left(C_{1}, C_{2}, \alpha\right)\right\}$ $\phi \mapsto \hat{\phi}$

Theorem [B.O.S.S.] For primes $\ell \neq 2$ the maps of moduli spaces above induce maps of ring spectra:

$$
T M F \wedge T M F_{(2)} \rightarrow \prod_{\substack{i \in \mathbb{Z} \\ j \geq 0}} T M F_{0}\left(\ell^{j}\right)
$$

The product map

$$
T M F \wedge T M F_{(2)} \rightarrow \prod_{\substack{i \in \mathbb{Z} \\ j \geq 0}} T M F_{0}\left(3^{j}\right) \times T M F_{0}\left(5^{j}\right)
$$

induces a monomorphism on homotopy groups.

Application: connective covers

Theorem [Davis-Mahowald-Rezk]

- There is a subcomplex

$$
\Sigma^{8} t m f \wedge b o_{1} \cup \Sigma^{16} t m f \wedge b o_{2} \subset t m f \wedge t m f
$$

- There is a cofiber sequence

$$
\Sigma^{32} t m f \rightarrow \Sigma^{16} t m f \wedge b o_{2} \rightarrow \Sigma^{16} \overline{t m f \wedge b o_{2}}
$$

- There is a factorization $\Sigma^{8} t m f \wedge b o_{1} \cup \Sigma^{16} t m f \wedge b o_{2} \rightarrow t m f \wedge t m f \rightarrow T M F \wedge T M F$

$$
\Sigma^{8} t m f \wedge b o_{1} \cup \Sigma^{16} \overline{t m f \wedge b o_{2}} \longrightarrow T M F_{0}(3)
$$

such that the bottom arrow is a connective cover of $T M F_{0}$ (3)

The Adams Spectral Sequence for $\Sigma^{8} t m f \wedge b o_{1} \cup \Sigma^{16} \overline{t m f \wedge b o_{2}}$

Theorem [B.O.S.S.]

- There is a map

$$
\Sigma^{64} t m f \rightarrow \Sigma^{32} t m f \wedge b o_{4}
$$

- There are subcomplexes

$$
\begin{gathered}
\Sigma^{32} t m f \cup \Sigma^{24} t m f \wedge b o_{3} \cup \Sigma^{64} t m f \\
\mapsto \Sigma^{8} t m f \wedge b o_{1} \cup \Sigma^{16} t m f \wedge b o_{2} \cup \Sigma^{24} t m f \wedge b o_{3} \cup \Sigma^{64} t m f \\
\cap \\
\leftrightarrow t m f \wedge t m f
\end{gathered}
$$

- The following composite is a connective cover
$\Sigma^{32} t m f \cup \Sigma^{24} t m f \wedge b o_{3} \cup \Sigma^{64} t m f \rightarrow t m f \wedge t m f \rightarrow T M F \wedge T M F \rightarrow T M F_{0}(5)$

The Adams spectral sequence for
$\Sigma^{32} t m f \cup \Sigma^{24} t m f \wedge b o_{3} \cup \Sigma^{64} t m f$

Thank You!

