tmf cooperations

Mark Behrens*, Kyle Ormsby, Nathanial Stapleton, Vesna Stojanoska (MIT)

A.K.A. "Team B.O.S.S."

Goal: understand *tmf*_{*}*tmf* (The ring of *tmf* cooperations)

Goal: understand $tmf_*tmf_{(2)}$ (The ring of tmf cooperations)

[There is something interesting to say at every prime p]

Review: (co)homology (co)operations

- *E* = generalized cohomology theory (spectrum)
- $E^*E =$ graded endomorphisms of the functor $E^*(-):Spectra \rightarrow Graded Abelian Gps$

= ring of stable cohomology operations

• $E_*E =$ "cooperations"

Review: (co)homology (co)operations

 $E_*E =$ "cooperations"

Assume *E* is a ring spectrum $\Rightarrow E_*E$ is a ring

- E_{*}E and E^{*}E are dual if certain hypotheses are satisfied (most importantly E_{*}E is flat over E_{*})
- In this case E_*E is a Hopf algebroid, and there is an Adams spectral sequence:

 $Ext_{E_*E}(E_*X,E_*) \Rightarrow \pi_*(X_E^{\wedge})$

Review: (co)homology (co)operations

 $E_*E =$ "cooperations"

Assume E is a ring spectrum $\Rightarrow E_*E$ is a ring

• E_*E and E^*E are dual if certain hypotheses are satisfied (most importantly E_*E is flat over E_*)

• In this case E_*E is a Hopf algebroid, and there is an Adams spectral sequence:

Famous rings of cooperations

Computation

- $(H\mathbb{F}_2)_*H\mathbb{F}_2 = \mathbb{F}_2[\xi_{1,}\xi_2,...]$ [Milnor]
- $BP_*BP = BP_*[t_1, t_2, ...]$ [Quillen]
- $(E_n)_*E_n = Map^c(\mathbb{G}_n, \pi_*E_n)$ [Morava]

Algebro-Geometric interpretation (apply "spec(-)")

- automorphisms of the additive formal group law over \mathbb{F}_2
- Isomorphisms $f: F_1 \rightarrow F_2$ between p-typical formal grp laws

• $\mathbb{G}_n = \operatorname{nth} \operatorname{Morava} \operatorname{stabilizer} \operatorname{grp}$

K-theory cooperations

- $K_*K \subset K_*K_{\mathbb{Q}} = \mathbb{Q}[u^{\pm}, v^{\pm}]$ (since K_*K is torsion-free)
- $K_*K = K_* \otimes K_0K$ and $K_0K \subset K_0K_{\mathbb{Q}} = \mathbb{Q}[w^{\pm}]$ $(w := \frac{v}{u})$
- $K_0K_{(p)} = \{f(w) \mid f(x) \in \mathbb{Z}_p \text{ for all } x \in \mathbb{Z}_p^{\times}\}$ [Adams-Harris]
- $KO_*KO = KO_* \otimes KO_0KO$ and $KO_0KO \subset KO_0KO_{\mathbb{Q}} = \mathbb{Q}[w^{\pm 2}]$
- $KO_0KO_{(p)} = \{f(w^2) \mid f(x^2) \in \mathbb{Z}_p \text{ for all } x \in \mathbb{Z}_p^{\times}\}$ [Adams-Switzer]

<u>Connective K-theory cooperations</u> Numerical polynomial perspective

From this point on everything in the talk is 2-local $H_* = homology$ with mod 2 coefficients

 $bo_*bo \rightarrow KO_*KO$ (NOT injective, "kernel = wedge of $H\mathbb{F}_2$'s")

Image of the above map consists of $\{f(u^2, v^2) \in KO_*KO \mid f \in \mathbb{Q}[u^2, v^2], f \text{ has Adams filtration} \ge 0\}$ <u>Connective K-theory cooperations</u> Brown-Gitler spectrum perspective

• $H\mathbb{Z} = \bigcup_i B_i$ ($B_i = i^{th}$ integral Brown-Gitler spectrum)

•
$$H_*(B_i) \subset H_*(H\mathbb{Z}) = \mathbb{F}_2[\zeta_1^2, \zeta_2, \dots]$$

subspace spanned by monomials of weight $\leq 2i$ (weight(ζ_i) = 2^{i-1})

• $bo \wedge bo \simeq \bigvee_i \Sigma^{4i} bo \wedge B_i$ [Mahowald-Milgram]

Bottom cell of $\Sigma^{4i}bo \wedge B_i$ corresponds to the function $2^{2i-\alpha(i)}u^{2i}f_i(w^2)$

$$f_i(w^2) := \frac{(w^2 - 9)(w^2 - 9^2)\cdots(w^2 - 9^{i-1})}{(9^i - 1)(9^i - 9)\cdots(9^i - 9^{i-1})}$$

Adams spectral sequence for $bo \land bo$

Mahowald's analysis of the *bo*-based Adams spectral sequence hinged on this understanding of $bo \wedge bo$.

It led to his proof of the telescope conjecture at chromatic level 1 at the prime 2. "bo resolutions"

tmf cooperations: bo-Brown-Gitler spectra

- $bo = \bigcup_i bo_i$ ($bo_i = i^{th}$ bo-Brown-Gitler spectrum)
- $H_*(bo_i) \subset H_*(bo) = \mathbb{F}_2[\zeta_1^4, \zeta_2^2, \zeta_3, ...]$

subspace spanned by monomials of weight $\leq 4i$

Note: $H^*(tmf) = A // A(2)$

• <u>Theorem[Mahowald]</u> There is a splitting of A(2)-modules

$$H^*(tmf) = \bigoplus_i H^*(\Sigma^{8i}bo_i)$$

tmf cooperations: bo-Brown-Gitler spectra

<u>Theorem</u>[Mahowald] There is a splitting of A(2)-modules

$$H^*(tmf) \cong \bigoplus_i H^*(\Sigma^{8i}bo_i)$$

<u>Corollary</u> There is a splitting of Adams spectral sequence E_2 -terms:

$$Ext_{A}(H^{*}(tmf \wedge tmf), \mathbb{F}_{2}) \cong \bigoplus_{i} Ext_{A(2)}(H^{*}(\Sigma^{8i}bo_{i}), \mathbb{F}_{2})$$

The Adams spectral sequence for $tmf \wedge tmf$

So, is there a splitting

$$tmf \wedge tmf \simeq V_i \Sigma^{8i} tmf \wedge bo_i$$
 ???

NO! [Davis-Mahowald-Rezk]

(we'll revisit this point at the end of the talk)

tmf cooperations: 2-variable modular forms

- $TMF_*TMF_{\mathbb{Q}} = \mathbb{Q}[c_4, c_6, \overline{c}_4, \overline{c}_6][\Delta^{-1}, \overline{\Delta}^{-1}]$
- <u>Theorem</u>[Laures]

 $TMF_*TMF[1/6] = \left\{ f \in TMF_*TMF_{\mathbb{Q}} \mid f(q,\bar{q}) \in \mathbb{Z}[1/6][[q^{\pm 1},\bar{q}^{\pm 1}]] \right\}$

• <u>Theorem[B.O.S.S]</u> There is an injection

$$\frac{tmf_*tmf_{(2)}}{tors} \hookrightarrow \{ f \in \mathbb{Q}[c_4, c_6, \overline{c}_4, \overline{c}_6] \mid f(q, \overline{q}) \in \mathbb{Z}_{(2)}[[q, \overline{q}]] \}$$

The Adams spectral sequence for $tmf \wedge tmf$

245,52 $\Sigma^{16} bo_2$ 451 28,82 256 8 16J 24 75 $\Sigma^8 bo_1$ 2452 • 259 34 C45 282 **さい**8 1624

 $f_{1} := (-\bar{c}_{4} + c_{4})/16$ $f_{2} := (-\bar{c}_{6} + c_{6})/8$ $f_{3} := (5f_{1}c_{6} + 21f_{2}c_{4})/8$ $f_{4} := (5f_{2}c_{6} + 21f_{1}c_{4}^{2})/8$ $f_{5} := (-f_{1}^{2}c_{4} + f_{2}^{2})/16$

 $f_6 := \left(-c_4^2 c_6 + c_4^2 c_6 + 544 f_2 c_4^2 + 768 f_3 c_4 + 1792 f_1 f_2 c_4\right)/2048$

tmf cooperations: isogenies of elliptic curves

TMF \leftrightarrow moduli space of elliptic curves *C*

 $TMF \wedge TMF \iff \text{moduli space of tuples } (C_1, C_2, \alpha)$ $C_i = \text{elliptic curves}$ $\alpha: \hat{C}_1 \rightarrow \hat{C}_2 \text{ [iso of FGL's]}$

Unfortunately, the above perspective seems rather impractical for computations.

tmf cooperations: isogenies of elliptic curves

TMF \leftrightarrow moduli space of elliptic curves *C*

 $TMF \wedge TMF \iff \text{moduli space of tuples } (C_1, C_2, \alpha)$ $C_i = \text{elliptic curves}$ $\alpha: \hat{C}_1 \rightarrow \hat{C}_2 \text{ [iso of FGL's]}$

$$\begin{split} \prod_{\substack{i \in \mathbb{Z} \\ j \ge 0}} TMF_0(\ell^j) &\leftrightarrow \text{moduli space of tuples } (C_1, C_2, \phi) \\ C_i &= \text{elliptic curves} \\ \phi : C_1 \to C_2 \text{ [quasi-isogeny of deg } \ell^k] \end{split}$$

<u>tmf cooperations: isogenies of elliptic curves</u> {moduli space of tuples (C_1, C_2, ϕ) } \rightarrow {moduli space of tuples (C_1, C_2, α) } $\phi \mapsto \hat{\phi}$

<u>Theorem</u> [B.O.S.S.] For primes $\ell \neq 2$ the maps of moduli spaces above induce maps of ring spectra:

$$TMF \wedge TMF_{(2)} \to \prod_{\substack{i \in \mathbb{Z} \\ j \ge 0}} TMF_0(\ell^j)$$

The product map

$$TMF \wedge TMF_{(2)} \to \prod_{\substack{i \in \mathbb{Z} \\ j \ge 0}} TMF_0(3^j) \times TMF_0(5^j)$$

induces a monomorphism on homotopy groups.

Application: connective covers

<u>Theorem</u> [Davis-Mahowald-Rezk]

• There is a subcomplex

 $\Sigma^8 tmf \wedge bo_1 \cup \Sigma^{16} tmf \wedge bo_2 \subset tmf \wedge tmf$

- There is a cofiber sequence $\Sigma^{32}tmf \rightarrow \Sigma^{16}tmf \wedge bo_2 \rightarrow \Sigma^{16}\overline{tmf} \wedge bo_2$
- There is a factorization $\Sigma^8 tmf \wedge bo_1 \cup \Sigma^{16} tmf \wedge bo_2 \rightarrow tmf \wedge tmf \rightarrow TMF \wedge TMF$

$$\Sigma^8 tmf \wedge bo_1 \cup \Sigma^{16} \overline{tmf \wedge bo_2} \longrightarrow TMF_0(3)$$

such that the bottom arrow is a connective cover of $TMF_0(3)$

The Adams Spectral Sequence for $\Sigma^8 tmf \wedge bo_1 \cup \Sigma^{16} \overline{tmf \wedge bo_2}$

Theorem [B.O.S.S.]

• There is a map

$$\Sigma^{64} tmf \rightarrow \Sigma^{32} tmf \wedge bo_4$$

• There are subcomplexes

$$\begin{split} \Sigma^{32}tmf \cup \Sigma^{24}tmf \wedge bo_3 \cup \Sigma^{64}tmf \\ \cap \\ \hookrightarrow \Sigma^8tmf \wedge bo_1 \cup \Sigma^{16}tmf \wedge bo_2 \cup \Sigma^{24}tmf \wedge bo_3 \cup \Sigma^{64}tmf \\ \cap \\ \hookrightarrow tmf \wedge tmf \end{split}$$

• The following composite is a connective cover

 $\Sigma^{32}tmf \cup \Sigma^{24}tmf \wedge bo_3 \cup \Sigma^{64}tmf \rightarrow tmf \wedge tmf \rightarrow TMF \wedge TMF \rightarrow TMF_0(5)$

Thank You!