v₂³² periodicity at the prime 2

Mark Behrens (MIT)

Joint with: Mike Hill Mike Hopkins Mark Mahowald

htpy gps of spheres $\pi_*(s) = style$ Chromatic theory p= prime a filtration $\pi_{\star}(s)_{(p)}$ curries nth layer <> "Vn-periodic" IVn1 = 2(pⁿ-1) homotopy elts live in periodic finilies Stable

Vn-self maps

 $K(i) = F_{p}[v_{i}^{\pm 1}]$

$$X = type n complex$$

$$K(i)_{+}X = 0 \quad i < n$$

$$K(n)_{+}X \neq 0$$

Generalized Moore spectra S ____ S ___ M(io) p^{io} S ____ type 1 $\sum_{v,i}^{|v_i|} M(i_o) \xrightarrow{} M(i_o) \xrightarrow{} M(i_o, i_i) \xrightarrow{}_{v_i} M(i_o) \xrightarrow{}_{v_i} M(i_o) \xrightarrow{}_{v_i} M(i_o, i_i)$ é etc.

Minimal sequences (io, ---, in) If, induting, ix is minimal s.t. $M(i_0, ..., i_{k-1})$ has a $V_k^{i_k}$ -self map $(o \leq k \leq n)$ Hen (io, --, in) is a mining cequere. i.e. $p \ge 5$, (1,1,1) is a minimal (smith) = $p \ge 5$, (1,1,1) is a minimal (smith) segure (toda) but for p=2 (1,4) is minimal (Adms) (Since $\sum_{i=1}^{\infty} M(1) \xrightarrow{i}_{i} M(1)$ is minimal)

P=3: (1,1,9) is mininal [B-Bemmaraju]

This talk will discuss the proof of the following theoremin

 $\frac{1}{2} \frac{1}{2} \frac{1}$

ice, The is s

= self map

(mininal)

 $\sum_{V_{n}}^{192} \mathcal{M}(l,4) \xrightarrow{V_{n}^{32}} \mathcal{M}(l,4)$

Vn-self maps mis Vn-privatic families xGTmS a factorization Given $S^{m} \xrightarrow{\chi} \\ \chi' \\ \chi' \\ \chi''$ $\sum_{i=1}^{\lfloor |v_n^k|} \times \xrightarrow{V_n^k} X$ type n compux Vn-self map We get a family:

 $\chi_{j}: S^{m+j|v_{n}^{k}|} \xrightarrow{} \Sigma_{j}^{j} \sum_{(v_{n}^{k})}^{j} \chi_{j} \xrightarrow{} \chi_{j}^{m+j} \xrightarrow{} \chi_{j}^$

 $\pi_{s}(S)_{(p)}$ =5 19 🚄 18 🦾 🛁 15/4 15/315 14 20/5 🏒 13 🕰 12 • 10/410/3g. 15/5 🦯 🛁 5/4 / 5/35/2• 79 119 159 199 239 719 759 799 839 959 999 39 279 319 399 439 519 559 599 639 679 879 919 359 479 pictur! Hytcher computition, Ravenel $\alpha_{i}: S^{8_{i}-1}$ $5_{1}^{8_{j}-1}M(i)$ — \rightarrow Z(M(i))-->5 top bottom cel cell

Stable Homotopy Groups of Spheres at the prime 2

Pooof of main the breaks up into / 2 similar steps: Ve'll focus (on this today Step 1: 7 V2³² E R 192 (M(1.4))

 $S^{192} \xrightarrow{V_2^{32}} M(1,4)$ extends $\Sigma^{192} M(1,4) \longrightarrow M(1,4)$ Step 2! 10 $S'^{92} \longrightarrow M(1,4) \wedge D(M(1,4))$ $\langle \Rightarrow$

Proof Stategy

~2³² ∈ T, M(1,4) ',

Use

Side remark:

ASS = Modified Admi spectral Segure

Accounts for. \cong $H^{\dagger}M(I) \oplus H^{\dagger}\Sigma^{2}_{I}M(I)$ $H^{*}M(1,4)$ as an Kjoined by a A-module joined by a "Quadrary" opentron V, Y hus Alms filt 4 i.e.

Our computational tool: tmf H^{*} tmf = A/(A(2)) = A @ F₂ A(2) F₂
"Can compte tmf_{*} anything "^h₂ S₂', S₁², S₉th $E_{xt}_{A(2)}(H^{*}(X)) \Longrightarrow t_{m}f_{*}X$ π, TMF is 192-periodic

Brown - Giltler spectra Refresher on --- MZZ HZZ ~ HZZ ~ HZZ ~

500 -> bo, -> bo2 -> -> bo $S = \Sigma'^{4} H Z, \qquad \Sigma'^{8} H Z_{2}$

-> tmf Conjectual $tmf_{0} \longrightarrow tmf_{1} \longrightarrow tmf_{2} \longrightarrow$ $I_{1} \qquad J \qquad J$ $S \qquad \Sigma_{1}^{18}b_{0}, \qquad \Sigma_{1}^{16}b_{0}z$

X - Xnbo - Xnbo² - -L J J bonx bonk bonk honx

 $bontoo \simeq \sqrt{\Sigma_{i}^{4j} b_{0}^{4j} MZ_{j}}$ Key うっし

tmf resolutions

 $t_{n}f_{x}^{2} \leftarrow ---$ X e tuf n X e tur tmf^tmf ^2 X Emf~Emf~X tmfrx

Enfring ~ V Z.⁸i tofo boj (Mabual) izi Mope,

tre on the level However, it is of Ext $H^{*}(t_{m}f_{n}t_{m}f) \cong \bigoplus A_{A(2)} H^{*}\Sigma_{i}^{g_{i}}b_{g_{j}}$ $j \ge 0$ Algebraic touf resolution: (our TOOL for compting Ext) Spectral segure! $E_{Xt}(b_{0i},\dots,b_{0i},\lambda) \Longrightarrow E_{Xt}(X)$

Remainder of talk'. Proof of main th

Non-Nilpotent phenomenai

ho-multiplication (multiplication by 2) (slope a)

Non-Nilpotent phenomenai

Non-Nilpotent phenomena

$$h_{21}$$
 - multiplication $(h_{21}^{4} = \overline{X})$
Slope 1/5

Non-Nilpotent phenomenai

V2 - periodicity (Slope 1/6)

 E_{Xt} (M(1,4))

 E_{Xt} (M(1,4))

ho - multiplication No V,4- multiple. M $\mathcal{N}_{\mathcal{O}}$

 $P_{rop} \quad v_z^{\mathcal{B}} \in E_{\mathcal{X}t}_{\mathcal{A}(z)}(F_z)$

lifts to an elt

 $V_2^8 \in E_{Xt} \left(M(1,4) \land DM(1,4) \right)$

Cor. In MASS $\mathbb{E}_{Xt} \left(M(l, 4) \wedge DM(l, 4) \right) \Longrightarrow \left[M(l, 4), M(l, 4) \right]_{\mathcal{X}}$ $d_2 \begin{pmatrix} 1^6 \\ V_2 \end{pmatrix} = 0$

 $\int_{3} \left(\sqrt{\frac{3^2}{2}} \right) = 0$

we shall see Note, $d_z(v_z^8) \neq 0$ $\mathcal{A}_3\left(\sqrt{2}^{16}\right)\neq 0$

consider may of ASS's $\pi_{\star} M(l,4) \longrightarrow t_{m} f_{\star} M(l,4)$ hurenicz $d_2(v_2^8) \neq 0$, $d_3(v_2^6) \neq 0$ HERE !

 $\operatorname{Ext}_{A(2)}(M(l,4)) \Longrightarrow \operatorname{tm}_{f_{\mathsf{X}}} M(l,4)$

MASS for $tmf_*M(1,4)$, p2:

 $\operatorname{Ext}_{A(2)}(M(l,4)) \Longrightarrow \operatorname{tmf}_{*}M(l,4)$

MASS for $tmf_*M(1, 4)$, p3:

 $E_{Xt}(M(l,4)) \longrightarrow E_{Xt}(M(l,4))$ ψ V_{z}^{32} V_{z}^{32} V_{z}^{32} Permanent Cycle

Iden, use Algebraic tonf-resolution to interpolate

 $F_{xt}(m(1,4)) \ll E_{xt}(m(1,4))$

Permanent Cycle

Alg tmf-vesolution!

 $E_{Xt}\left(b_{0,\Lambda},\dots,b_{0,\Lambda},M(1,4)\right) \Longrightarrow E_{Xt}\left(M(1,4)\right)$ A(2)

Problem

Compute

 $E_{XE}(bo_{i_1}, \dots, b_{o_{i_s}}, M(1, 4))$

We computed - $E_{X} + A(2) \left(b_{0}, \wedge M(1, 4) \right)$ - Ext A(2) (60, M(1,4)) - ExtA(2) (60,3 M(1,4))

 $E_{xt}A(z)(b_{0}, M(1, 4))$

 $\operatorname{Ext}_{A(2)_*}(M_2(1)\otimes H(1,4))$

when thing is Vz-perodic

 $Lh_{2,1}$

 $E_{xt}A(z)$ (bo, M(1, 4))

 $\Box = P[h_{2,1}]$

$\operatorname{Ext}_{A(2)_*}(M_2(1)^{\otimes 2} \otimes H(1,4))$

when thing is Vz-perodic

 $E_{xt}A(z)(b_{0,}^{3} \wedge M(l, 4))$

 $\Box = P[h_{2,1}]$

 $\operatorname{Ext}_{A(2)_*}(M_2(1)^{\otimes 3} \otimes H(1,4))$

when thing is Vz-periodic

How we made these computations:

- Computation of Ext_{A(2)}(bo₁) done by Davis-Mahowald
- Inductively get Ext_{A(2)}(bo₁^s) by the cellular decomposition:

bo,

Then use cellular decomposition of M(1,4) to get $Ext_{A(2)}(bo_1^{s} \wedge M(1,4))$

"4-cell complex

Double check everything with Bob Bruner's ext software!

Vanishing Lemma The only terms in the E,-term of $E_{Xt}\left(b_{0}, \dots, b_{0}, M(1,4)\right) \Longrightarrow E_{Xt}\left(M(1,4)\right)$ which could yield potential targets of $\int_{V} \left(\sqrt{\frac{3^2}{2}} \right) \qquad r \ge 4$

are

 $E_{A(2)}\left(b_{0}^{NS} \wedge M(1,4)\right), \quad s \leq 3$

Sketch proof of "Vanishing lemma" Establish vanishing polysons for $E_{xt} f_{A(2)} (b_0 n^s n M(1,4)) s \leq 3$ Ext^{s,t} slope 1/5 slope 1/2 slope 1/2 JUULTUUN

1/5

 $\stackrel{
m o}{v_2^8}$

Sketch proof of "vanishing lemma", cont'd Step 2: Inductively establish vanishing polygons for Ext AC23 (bois a M(4,4)) Using exact sequences! $0 \longrightarrow \operatorname{Emf}_{j-1} \otimes \left(\frac{A(z)}{A(\iota)} \right)_{\sharp} \longrightarrow b_{2j+\iota} \longrightarrow \Sigma_{i}^{i} b_{0} \otimes b_{0} \longrightarrow 0$ $0 \rightarrow \sum_{j=1}^{8j} b_{0j} \longrightarrow b_{0j} \longrightarrow t_{m} f_{j-1} \otimes \begin{pmatrix} A(2) \\ A(1) \end{pmatrix}_{*} \longrightarrow \sum_{j=1}^{8j+9} b_{0j} \longrightarrow 0$ The vanishing lemma follows from these Vanishing polygous.

ZOOM in on this area...

Multiply everything by V2".

Multiply everything by V2" 32 NO POSSIBLE OBSERVE : TARGETS of $d_r(v_3^{32}), r \ge 4$ 1

So, we're done, right?!

NO!! We ignored the terms coming from $h_{2,1}$ multiplication!

CAVEAT: tmf tmf # VZ^s tmf ~ bo; Differentials amongst hz, - multiples in $E_{X} + (M(L, Y)) \implies \pi_* M(L, Y)$ diff's in fren $E_{X}(A(z)) = \int t_{M}(l, 4) = \int t_{M}(l, 4) = \int t_{M}(l, 4)$

Instead, to complete the proof that

$$V_2^{32}$$
 is a permanent cycle in
 $E_{XL_A}(M(l_1,4)) \Longrightarrow T_{l_A}M(l_1,4)$
We explicitly deduce adams diff's
amongst hz, -multiples using: $h_{21}^4 = \overline{X}$
 P_{rop} : (1) $\overline{X} \in \pi_{20}(S)$ lifts to $\overline{X} : \overline{E_1}^2 n(l_1,4) \rightarrow M(l_1,4)$
(2) In ASS for $M(l_1,4) \wedge DM(l_1,4)$
 \overline{X}^6 is killed by $r d_3 - diff'st_1$