
1

Testing for and Correcting for Missing Data in Survey Responses:
A Survey of Downtown Businesses in Minneapolis

Shelley S. Baxter   and    Lawrence C. Marsh
    Baxter Econometrics           University of Notre Dame

Introduction

Business and government agencies often use surveys to obtain information about
consumers or other groups.  The individuals who fill out these surveys are not always willing or
able to answer all questions.  Often such missing data are assumed to be missing-at-random.
If the data are not missing-at-random, statistical  analyses may be distorted and generate reports
that are misleading.

We provide a test to determine if survey data are missing-at-random.  For data that are not
missing-at-random, we provide a method of correcting the probability distribution of the response
variables for the systematic pattern in the missing data.  Previous studies used time-series, panel
data or the ordinal nature of responses to provide the structure for handling systematically missing
data (see Fitzmaurice et al.(1996)).  Davis(1993) presented useful methods for the case when all
of the independent variables are categorical.  Our method uses cross-sectional data with nominal
responses and both nominal and continuous independent variables.  This methodology simply
uses a joint probability distribution framework.  It can be extended to incorporate both detailed and
aggregated  responses so that all observations can be used without sacrificing any of the detail.
We require the response outcomes  to be mutually exclusive and exhaustive in the form of a
composite variable.1   Specifically, this paper provides a methodology using SAS  2 CATMOD,
REG, NLIN and IML to produce distributions of the missing variable probabilities and GPLOT to
produce graphs of the difference between the probability distributions with and without adjusting
for the missing data, thereby providing a visual check of the nature of the missing responses.

We examine a survey of different types of businesses in downtown Minneapolis
measuring their satisfaction with downtown conditions, services, etc.  This survey was in
conjunction with the first author's dissertation (see Baxter(1994)).  One question on the survey
required self-reporting of the type of business as a check on the Dun's database categorization
used to acquire addresses.  Coders later transformed  the responses to standard industrial
classification  (SIC) codes.  Fourteen percent of these responses were left blank. The authors
faced the all-too-common research dilemma of either throwing away the observations when the
SIC code was missing or ignoring this check all together and trusting that the current designation
according to Dun's database was correct.  Preliminary investigation had indicated a fairly large
discrepancy between the two.

The Problem of Missing Survey Data

Missing data can pose a significant problem when the goal is to understand the behavior
of all subjects rather than just the ones with complete data.  Often researchers have simply
ignored missing data with the hope that they are missing-at-random.  Unfortunately, data are fre-
quently systematically missing in a non-ignorable manner that can lead to substantial distortions
when only complete data are used.  Some researchers have estimated models with the complete
data and then used the estimated model to fill in the missing data.   Using predicted values for the
missing data simply covers up rather than explains the systematic nature of the missing data.
A more constructive approach in this context has been to hypothesize a model for the complete
data,  Yi1 = f(Xi1,β1) + εi1 , a model for the missing data, Yi0 = f(Xi0,β0) + εi0, and a latent variable
model explaining the difference between missing and nonmissing status, Ii1 = f(Zi,δ) + νi.

It is important to note that even in the special case where the X's and the β's are the
same, the distribution of the errors may be quite different.  Therefore, econometricians have

                                                
1  For a more extensive discussion of using a composite variable in statistical  analysis  in place of a set of
characteristic dummy variables, see  Marsh  and Wells (1995).  We have benefited from the helpful
comments of Yuichi Kitamura on a related paper (see Marsh and Wells(1996)).
2 SAS    is a registered trademark of SAS Institute, Inc., Cary, NC.
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focused on determining the distribution of the triple {εi0, εi1,νi}.  On the other hand, statisticians
have viewed this problem as one involving a mixture of the error distributions.

In this paper, the problem is a special case where outcomes are discrete random
variables and multinomial probabilities form the basis of  the data generating process.
Consequently, we are able to bypass the latent variable approach and focus directly on the joint
probability structure.  In this case, the joint probabilities are broken down into two sets.  One set
of joint probabilities is observed and the second set is unobserved (missing).  If we were just
interested in behavior of those with observed observations and if group membership was deter-
mined strictly by exogenous variables, then we would be content with knowing the joint proba-
bility structure for the observed observations alone.  This would also be satisfactory if group
differences were ignorable and the missing data were truly missing-at-random.  Since we know
which observations have missing data, we have a censored rather than a truncated distribution.
Since we test for data to be missing-at-random (MAR) and not missing-completely-at random
(MCAR), we have to control for whatever independent variables are needed to ensure that the
model errors have mean zero.  For further discussion of this issue see Rubin(1976).

An Analysis of the Joint Multinomial Density

The probability of an observation being missing may be viewed as the sum of the
probabilities of the unobserved outcomes.  In other words, the probability of being missing is
simply the marginal probability corresponding to the outcome designated "missing" for a discrete
random variable representing "missing" versus "observed" status.

Figure 1.   Multinomial Probabilities for Observed Outcomes Only
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Figure 2. Joint Multinomial Probabilities for Observed/Unobserved
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The objects of interest here are the marginal probabilities on the bottom line of Figure 2
which are obtained by summing over the corresponding observed and missing joint probabilities.
If the missing data are missing-at-random, then for each observation the missing joint probabilities
will just be some constant multiple, Ci of the observed joint probabilities (i.e. constant over the



3

alternatives).  However, if the missing data are not missing-at-random, then separate Cji's must
be estimated for each of the  j = 1, . . . ,7 alternatives as shown in Figure 3.

Figure 3.   Joint Multinomial Distribution of Observed Probabilities3
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In the context of this framework the problem becomes one of appropriately estimating the
Cji terms.     For example, a simple structure for this problem would be   Cji  =  Cj ηi.
The Cj provides weights appropriate for the j = 1, ...,  J   outcomes while the ηi  provides the
necessary observation specific adjustment to ensure the condition:

C1 ηi P1oi + C2 ηi P2oi + C3 ηi P3oi + C4 ηi P4oi + C5 ηi P5oi  + C6 ηi P6oi + C7 ηi P7oi =  Pmi                       (1)

Our procedure in this case is straightforward.  Since for each observation the original data
generates a value of one for the outcome that occurs and a zero for each of the other outcomes,
it is easy to estimate the corresponding multinomial logistic probabilities corresponding to those in
Figure 1.  Applying a least squares regression of Pmi onto all of the other probabilities in equation
(1) with no intercept term produces estimates of the Cj's.  The fitted equation for the predicted
values for Pmi  are then multiplied by the appropriate ηi  value necessary to ensure the equality
in equation (1) and, thus, to fully restore the original Pmi  value for each of the i=1,...,n observa-
tions.  Thus, the ηi value serves as the sample realization of the population error, or, in other
words, a residual term.  The null hypothesis,  Ho:  C1 = C2 = C3 = C4 = C5 = C6 = C7  can be
used to test the missing-at-random assumption.   A rejection of this hypothesis supports the claim
that the data are not randomly missing and, therefore, in that case, imposing the missing-at-
random assumption could produce misleading estimates of the corresponding marginal
probabilities.

Analyzing the Minneapolis Survey Data

Because we are dealing with a polychotomous dependent variable and both continuous
and nominal independent variables, we utilize the multinomial logit response function in PROC
CATMOD.  We chose a large number of control variables (thirty in all) in an effort to satisfy the
zero mean assumption in the error term.  These variables, indicated in Figure 4, included number

                                                
3  The corresponding likelihood function for this situation is given as follows:
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Notice that each probability occurs twice: once when it makes a direct contribution and a second time
when its contribution is indirect as a component of the missing value.  The yij's take on the value one when
the ith observation has the jth outcome and zero otherwise.
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of employees as a continuous variable, location of primary market  as four independent dummy
variables, and the importance of various downtown characteristics  such as cost of space and
access to parking ramps as 26 independent variables each with four response levels/magnitudes
which we treated as continuous for this study. The SIC's were grouped into seven industry
sectors which with the missing response category provided eight possible responses to serve
as the dependent variable for our multinomial logistic model.  This model was then estimated using
PROC CATMOD which produced the following analysis of variance table:

Figure 4.   Analysis of Variance Table from PROC CATMOD

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source Source DF Chi-Square   Prob

CONSTANT intercept  7  10.42  0.1658
Q018A1 primary mkt in Minneapolis  7  34.91  0.0000
Q018A2 in twin cites outside Mpls  7  10.83  0.1463
Q018A3 in MN but outside of TC's  7  12.36  0.0892
Q018A4 outside of Minnesota (MN)  7  20.32  0.0049
Q004A number of employees  7   8.24  0.3120
Q025A parking ramps  7  17.60  0.0139
Q025B freeway access  7   1.04  0.9941
Q025C public transportation  7  49.95  0.0000
Q025D communications facilities  7  32.23  0.0000
Q025E face to face communication  7   5.45  0.6050
Q025F private research & develop  7   8.86  0.2630
Q025G proximity to suppliers  7  33.99  0.0000
Q025H proximity to customers  7   6.94  0.4356
Q025I cultural activities  7  19.65  0.0064
Q025J restaurants and shops  7  21.51  0.0031
Q025K employee residences  7   8.27  0.3097
Q025L owner residence  7   8.71  0.2743
Q025M employee preference  7   9.30  0.2319
Q025N management preference  7  10.24  0.1752
Q025O costs of space  7  23.02  0.0017
Q025P quality of office space  7  22.71  0.0019
Q025Q central location metro  7   4.98  0.6630
Q025R labor market access  7  18.74  0.0091
Q025S business regulation climate  7  12.85  0.0759
Q025T property taxes  7  14.82  0.0383
Q025U city help with financing  7  19.40  0.0070
Q025V employee education opportns  7  24.22  0.0010
Q025W near to university research  7  22.50  0.0021
Q025X near to city libraries  7  16.84  0.0184
Q025Y prestige  7  24.84  0.0008
Q025Z easy location recognition  7  11.77  0.1083

  LIKELIHOOD RATIO: 5796       chi-square: 2737.03

Since the focus of this paper is on the probability distributions and not on the regression
coefficients, we will not present the details of each of the seven logistic equations that were pro-
duced here.  Rather, Figure 5 presents the results of regressing the probability of falling into the
missing data cell onto the other seven probabilities: OP1, OP2, OP3, OP4, OP5, OP6 and OP7.
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Figure 5.   PROC REG of Probability of Missing onto the Other Seven Probabilities

        Sum of         Mean
   Source    DF      Squares       Square      F Value       Prob>F   
Model      7     23.08677      3.29811      116.156       0.0001
Error    853     24.21998      0.02839
U Total  860     47.30675

Root MSE          0.16850     R-square       0.4880
Dep Mean          0.18140     Adj R-sq       0.4838
                              C.V.          92.89369
                               Parameter     Standard  T for H0:
   Group   Variable Parameter DF  Estimate      Error     Parameter=0  Prob > |T|   
Group1:   OP1       C1     1   0.290663    0.06714980    4.329        0.0001
Group2:   OP2       C2     1   0.205629    0.04876047    4.217        0.0001
Group3:   OP3       C3     1   0.269572    0.06617726    4.073        0.0001
Group4:   OP4       C4     1   0.520265    0.04241483   12.266        0.0001
Group5:   OP5       C5     1   0.042962    0.03278431    1.310        0.1904
Group6:   OP6       C6     1  -0.016225    0.04004514   -0.405        0.6855
Group7:   OP7       C7     1   0.091259    0.02875196    3.174        0.0016

Notice that no intercept was used in this regression since it would be inappropriate given
the statistical theory discussed in the previous section. The estimated regression coefficients are
all positive and statistically significantly greater than zero as expected except for the fifth one
which is positive but not significantly greater than zero and the sixth one which has a negative
sign but is not statistically significant.

In order to determine whether the marginal probabilities implied by the above regression
results indicate that the missing data are missing-at-random or not, we ran a regression that
restricted the coefficients in the above model to all be equal (still with no intercept) where
PCOMBINE = (OP1 + OP2 + OP3 + OP4 + OP5 + OP6 + OP7).  This enabled us to run the
restricted regression where the fitted value of Pmi  is equal to an estimate of the common coefficient
C times PCOMBINE:     fitted Pmi = C (P1oi+P2oi+P3oi+P4oi+P5oi+P6oi+P7oi).

Figure 6.  Restricted PROC REG of Probability of Missing
                   onto the Combined Probability Variable

                        Sum of     Mean
   Source          DF      Squares    Square     F Value       Prob>F   
Model            1     19.84560   19.84560    620.782       0.0001
Error          859     27.46115    0.03197
U Total        860     47.30675

Root MSE       0.17880     R-square       0.4195
Dep Mean       0.18140     Adj R-sq       0.4188
                           C.V.          98.56815

                  Parameter     Standard    T for H0:
   Variable  DF      Estimate        Error   Parameter=0   Prob > |T|   
PCOMBINE C 1      0.182584    0.00732812      24.915      0.0001

Figures 5 and 6 provide the information necessary to carry out a conditional test of the null
hypothesis that the missing data are missing-at-random.  A conditional F-statistic can be
computed treating the nonmissing probability variables as exogenous (independent) variables in
the regressions reported in Figures 5 and 6.  This ignores the first stage which was the logistic
(PROC CATMOD) stage of the analysis so it does not qualify as a legitimate unconditional test
for randomness.  This conditional or pseudo F-statistic can be calculated using the standard F
value for testing a linear restriction on a "linear" model using error sums of squares (SSE) from the
restricted , R, and unrestricted, U, regressions and corresponding degrees of freedom (df) as
follows:
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Conditional F
SSE SSE df df

SSE df
R U R U

U U
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With 6 numerator degrees of freedom and 853 denominator degrees of freedom, at a 0.01
level of significance the Table-F value is approximately 2.80, and, therefore, the missing-at-
random hypothesis is rejected.  This confirms our suspicion that missing-at-random was not a
good assumption here.  However, one disturbing aspect of the results in Figure 5 is the negative
sign for C6.  Even though in this case this negative value is not even close to being statistically
significant at any of the usual levels of significance, clearly negative values for these parameters
are inappropriate.  Instead of dealing with these negative values on an ad hoc basis, it would be
better to impose the restriction that the Cj's must be positive.  A simple way of imposing this
restriction is to define a new parameter  αj = ln(Cj)  for j = 1, . . . , J.

This simply means replacing the Cj's in the least squares regression above with exp(αj)
and estimating the resulting regression using nonlinear least squares.  The starting values for the
αj's   are the natural logs of the corresponding Cj's.  In the cases where negative values were
initially obtained for any of the Cj's, the OLS regression was first rerun with the negative Cj
values set to zero (dropped out those variables) to obtain new starting values more consistent
with the nonnegative restriction before running the nonlinear least squares regression for that
group.  The nonlinear least squares results are presented in Figure 7.

Figure 7.   The Results of the PROC NLIN

Non-Linear Least Squares Iterative Phase
Dependent Variable OPZ999       Method: Marquardt

NOTE: Convergence criterion met.

Non-Linear Least Squares Summary Statistics
Dependent Variable  PMISS

Source                DF Sum of Squares     Mean Square

Regression             6   23.082111446     3.847018574
Residual             854   24.224640659     0.028366090
Uncorrected Total    860   47.306752106
(Corrected Total)    859   19.009077722

NOTE: The Jacobian is singular.

Parameter Estimate Asymptotic       Asymptotic 95 %    corresponding
                   Std. Error     Confidence Interval      C-value
                                  Lower         Upper

A1    -1.2466842 0.231858449   -1.70177097   -0.79159746  0.287456
A2    -1.5816872 0.237013610   -2.04689244   -1.11648204  0.205628
A3    -1.3081609 0.244599426   -1.78825537   -0.82806642  0.270317
A4    -0.6622891 0.079217914   -0.81777627   -0.50680184  0.515670
A5    -3.2798392 0.797587280   -4.84532630   -1.71435210  0.037634
A6  -372.2241151 0.000000000 -372.22411509 -372.22411509  0.000000
A7    -2.4047374 0.317181541   -3.02729452   -1.78218035  0.090289
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                 Asymptotic Correlation Matrix

Corr   A1       A2       A3        A4       A5     A6     A7
 -----------------------------------------------------------------
A1        1  -0.0929  -0.5683   -0.3208  -0.1073    .   0.0935
A2  -0.0929        1  -0.0796   -0.0946  -0.1420    .  -0.1380
A3  -0.5683  -0.0796        1    0.0635  -0.1581    .  -0.1366
A4  -0.3208  -0.0946  0.06351         1  -0.2568    .  -0.2838
A5  -0.1073  -0.1420 -0.15815   -0.2568        1    .  -0.0126
A6        .        .        .         .        .    .        .
A7  0.09355  -0.1380  -0.1366   -0.2838  -0.0126    .        1

The Jacobian was singular for the asymptotic variance-covariance matrix so a conditional Wald
test statistic could not be calculated to test the hypothesis that all seven coefficients are equal
because of the A6 coefficient.  However, it is possible to generate a conditional Wald statistic to
test the hypothesis that the other six groups all have the same population coefficient value.

Figure 8.   PROC IML Code for Conditional Wald Test for Missing-at-Random

354  proc iml;
IML Ready
355  a1= -1.2466842;
356  a2= -1.5816872;
357  a3= -1.3081609;
358  a4= -0.6622891;
359  a5= -3.2798392;
360  a7= -2.4047374;
361  first= a1||a2||a3||a4||a5;
362  second= a2||a3||a4||a5||a7;
363  pre=first - second;
364  v={0.231858449  0.237013610  0.244599426  0.079217914  

    0.797587280  0.317181541};
365  D=diag(v);
366  CORR={ 1  -0.0929  -0.5683  -0.3208  -0.1073    0.0935,
367    -0.0929       1  -0.0796  -0.0946  -0.1420   -0.1380,
368    -0.5683  -0.0796       1   0.0635  -0.1581   -0.1366,
369    -0.3208  -0.0946  0.0635        1  -0.2568   -0.2838,
370    -0.1073  -0.1420 -0.1582  -0.2568        1   -0.0126,
371     0.0936  -0.1380 -0.1366  -0.2838  -0.0126        1};
372   cov=D*CORR*D;
373  AU={1 -1 0 0 0 0, 0 1 -1 0 0 0, 0 0 1 -1 0 0,

 0 0 0 1 -1 0, 0 0 0 0 1 -1};
374  w=pre*inv(au*cov*aù )*prè ;
374                                 prob=1-probchi(w,5);
375  print first second pre v d corr cov au; print w; print prob;

The Wald Test Statistic value is 51.777303 for the null hypothesis Ho: A1 = A2 = A3 = A4
= A5 = A7.    With  five degrees of freedom the table value for the chi-square is 11.07 at the 0.05
level of significance and 15.086 at the 0.01 level.  Again, as in the case of the linear model, the
null hypothesis that the data were missing-at-random is rejected.

The calculations above have enabled us to distribute the missing data probability to
probabilities associated with the other outcome categories.  Having done this we were then able to
combine the observed and missing probabilities to get rid of the observed and missing data
categories altogether.   By this method, we recover the marginal distribution with probabilities that
represent the full population and not just its observed members.



8

Figure 9.   Adjustments to the Original Probabilities (plot of diff = final minus original)

Group 1: Transportation-Utilities-Wholesale Group 2:    Non-profit Organizations

Group 3:     Mining and Manufacturing           Group 4:  Finance, Insurance, Real Estate

Group 5:          Business Services                    Group 6:                Engineering
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Group 7:   Education and Social Services

Interpreting PROC GPLOT Graphs of Probability Differences (Final minus Original)

Figure 9 on the next page shows the adjustments that were made to the original proba-
bilities.  The horizontal line at 0.00 represents the base line before adjustment. The monotonically
increasing line represents the change in the probability of a firm being in a particular industrial
classification that occurs when taking into account the effects of the missing data.4  Note that these
are plots of the conditional means and not plots of the error distribution.  The amount of the
adjustment varies from observation to observation so the data were ordered by the amount of the
needed adjustment before the data were plotted.  Since the measurement is final probability minus
original probability, values above the 0.00 line represent upward adjustments while those below
the 0.00 line are downward adjustments.

The first three industry groups which include Transportation, Utilities, Wholesale, Mining,
Manufacturing and Non-profit Organizations (Groups 1, 2 and 3) show rather minor adjustments
with most in the middle range showing that virtually no adjustment was needed but with a few at
either end (especially the upper end) showing some, but still relatively small, adjustments were
needed.

However, the industrial group (Group 4) consisting of Finance, Insurance and Real Estate
required consistently positive adjustments which were large in some cases.  This suggests that
this group was underrepresented in the observed data by virtue of being overrepresented in the
missing data.  In fact, the statistics reported in Figure 10 confirm that all of the adjustments for this
group were positive with at least one adjustment as high as 0.27.

One the other hand, the last three graphs in Figure 9 representing Business Services,
Engineering, Education and Social Services (Groups 5, 6 and 7) show that predominantly
negative adjustments were needed (as much as -0.25 in Engineering) with a few barely visable
exceptions as confirmed by the last column in Figure 10.  This suggests that the proportion of
these types of businesses was overstated by the originally observed (nonmissing) data.

Figure 10.   Adjustments to the Original Probabilities (PROC MEANS)

Variable    N      Mean       Std Dev     Minimum       Maximum
--------------------------------------------------------------------
GROUP1    860   0.0076355    0.0113956  -0.0300980     0.0612586
GROUP2    860  -0.0001481    0.0077354  -0.0860430     0.0311354
GROUP3    860   0.0055269    0.0096257  -0.0383066     0.0678353
GROUP4    860   0.0470900    0.0458737   0.0001259     0.2719392
GROUP5    860  -0.0224777    0.0250306  -0.1600833     0.0016888
GROUP6    860  -0.0251142    0.0297314  -0.2514728  -5.903096E-6
GROUP7    860  -0.0125124    0.0187359  -0.1338352     0.0070185
--------------------------------------------------------------------

                                                
4  For an explanation of this method of plotting and interpreting nonlinear models, see Marsh et al.(1994)
and Chilko (1983).
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The danger inherent in summary statistics such as those in Figure 10 (PROC MEANS) is in
missing the intrinsically nonlinear nature of the data distribution which can be seen so clearly in
the ordered (PROC SORT) data graphs (PROC GPLOT).  Researchers are tempted to try to
interpret a nonlinear model by looking at the average effect of a variable when all other variables
are held at their means (or medians).  The problem with this approach is that the group implied by
this averaging process may not even approximately exist.  Such an approach runs the danger of
developing policy recommendations  that turn out to benefit no one and ignore individual
differences that reflect the real behavioral patterns inherent in the data.

Summary and Conclusions

In this paper we have demonstrated a method of testing and correcting for distortions in
the probability distribution of categorical response data that have some missing values when the
data include both continuous and categorical independent variables.  In particular, we have
applied these methods to survey data of businesses in downtown Minneapolis to correct for
distortions in the observed (nonmissing) frequency data for seven types of business categories
that were based on SIC codes.  We have determined through the use of conditional F and Wald
tests that the missing data are not missing-at-random.  We then corrected the probability
distribution for the distortions caused by the nonrandom nature of the missing data.  PROCs
CATMOD, NLIN and IML serve as useful tools for applying this method of analysis.

Moreover, we has also demonstrated a graphical way of displaying the differences in
conditional group membership probabilities that more fully takes advantage of the nonlinear
information inherent in this analysis.  While PROC MEANS provides a useful but limited summary
of the data, PROC SORT and PROC GPLOT give us additional important information when
interpreting the results of nonlinear statistical analysis.
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