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Mis-specification in Phillips Curve regressions

Abstract
Phillips curve regressions have long been an integral part of empirical macroeconomic re-

search. Here we provide compelling evidence that previous models quantifying the dynamic
relationship between inflation and unemployment rates have been mis-specified in their assump-
tion that the coefficient on unemployment is a constant. Instead, we find that this coefficient
is frequency-dependent: the inflation impact of a fluctuation in the unemployment rate differs
for a fluctuation which is part of a smooth pattern of changes versus a fluctuation which is an
isolated event, just as Friedman’s “natural rate” hypothesis suggests.

In particular, we analyze a typical Phillips Curve regression model using using a newly de-
veloped econometric technique capable of consistently estimating the frequency dependence in a
feedback relationship. Explicitly allowing for feedback in such a relationship is essential because
the two-sided nature of the Fourier transformations necessary for any sort of frequency domain
analysis otherwise confounds the analysis, leading to inconsistent parameter estimates.Once the
feedback is properly allowed for by using one-sided filtering, we find statistically significant fre-
quency dependence in the Phillips curve relationship. In particular, using monthly US data from
1980 to 2003, we find an economically and statistically significant inverse relationship between
inflation and unemployment for high-frequency unemployment rate fluctuations — with periods
≤ 9 months — but no evidence for an effect of lower frequency unemployment rate fluctuations.
In contrast, a model ignoring frequency dependence finds no relationship whatever during this
sample period.
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Mis-specification in Phillips Curve regressions

1 Introduction

Few macroeconomic relationships have received as much attention as the Phillips curve, which

postulates an inverse relationship between inflation and the unemployment rate.2 This relationship

is central to the conduct of contemporary monetary policy. For the first several decades since

its introduction, the Phillips curve (augmented with a shifting intercept, and some additional

explanatory variables such as oil prices) appeared to be a reasonable approach to understanding

inflation dynamics.3 Even as late as the mid-1990s, some observers (Fuhrer 1995, Gordon 1997)

have suggested that such models had been quite successful in “explaining” or tracking inflation,

both within and outside of the sample. However, the inflation experience of the 1990s proved

more difficult to reconcile with standard Phillips curve models, and has resulted in attempts (e.g.,

Brayton, Roberts and Williams, 1999; Staiger, Stock and Watson, 2001) to “resurrect” the Phillips

curve.

One of the problematic issues involved in Phillips curve estimation involves the natural rate of

unemployment, often referred to as the “NAIRU”, or non-accelerating inflation rate of unemploy-

ment. In 1968, Milton Friedman postulated the existence of a “natural rate” of unemployment,

a notion which challenged the entire concept of the Phillips curve. Friedman suggested that the

normal dynamic processes of job destruction, search, and job creation would lead to a non-zero

equilibrium unemployment rate, and that, in response to macroeconomic conditions, the actual

unemployment rate would fluctuate around this natural rate. For example, surprise increases in

the money supply would temporarily increase output and reduce the unemployment rate. Over

longer horizons, however, Friedman argued that the inflation rate could have no impact on the

unemployment rate, since the public would over time adjust its inflation expectations to the new

steady-state level of inflation, and the unemployment rate would return to this natural rate irre-

spective of the new steady-state inflation rate. In particular, summarizing Friedman (1968) and

Phelps (1967, 1968), the Phillips curve must be reformulated to include the impact of the public’s

2Although credit for the discovery of this relationship generally goes to Phillips (1958), one could argue
that the original discovery was due to Fisher (1926).

3The distinctly positive correlation between the inflation rate and the unemployment rate in the 1970s
led many researchers (e.g., Lucas and Sargent, 1978) to cast grave doubt on the existence of a Phillips
curve. Indeed, in monthly data, a regression of the inflation rate on twelve lags of the inflation rate and
on the unemployment rate — a reasonable-looking specification — yields a statistically insignificant coefficient
estimate on the unemployment rate. Our results below yield a possible explanation for this phenomenon.
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Mis-specification in Phillips Curve regressions

inflationary expectations, and to take into account the natural rate of unemployment. A Phillips

curve thus reformulated is often referred to as an “expectations-augmented” Phillips curve. The

events of the 1970s largely bore out the predictions of Friedman and Phelps. The existence of a

natural rate, and the importance of inflationary expectations, are consequently no longer seriously

contested.

Empirical implementations of Phillips curve must thus come to terms with a natural rate —

indeed, changes in the natural rate are often blamed when a particular Phillips Curve specification

appears to be breaking down. Though there is no reason to expect that this natural rate is a

fixed constant, previous research has largely made this assumption. A number of recent studies

have taken the opposite extreme by estimating the relationship in differences, thus tacitly assuming

that the natural rate is an I(1) process. Recent studies attempt to model the time evolution of

an I(1) natural rate using a Kalman filter approach (e.g., King, Stock and Watson 1995; Debelle

and Vickery, 1997; Gordon, 1997, 1998; Gruen, Pagan and Thompson, 1999; Brayton, Roberts and

Williams, 1999; Staiger, Stock and Watson 2001), or extract an estimate of the time evolution of

the natural rate using splines or low-frequency bandpass filters, as in Staiger, Stock and Watson

(1997) and Ball and Mankiw (2001).

These approaches are likely to distort the estimation of the relationships between inflation

and unemployment, since they impose arbitrary assumptions as to which frequencies are impor-

tant. Futhermore — as discussed more explicitly below — the Kalman filter makes specific, most

likely counterfactual, assumptions about the manner in which the natural rate evolves over time.

Although pre-filtering approaches don’t suffer from this particular criticism, there is still no guar-

antee that splines or low-pass filtering accurately recover the time variation in the natural rate.

In particular, we demonstrate below that such two-sided filtering will induce parameter estimation

inconsistency in this context if there is any feedback from inflation to the unemployment rate.

Yet decomposing inflation and the unemployment rate by frequency is theoretically appealing.

In particular, the Friedman-Phelps hypothesis strongly suggests that the relationship between the

inflation rate and the unemployment rate is actually frequency-dependent ; that is, the relationship

between low-frequency movements in the inflation rate (corresponding to the prevailing steady-state

inflation rate) and low frequency movements in the unemployment rate (corresponding to changes in
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the natural rate4) will likely be quite different from the relationship of higher-frequency movements

in the inflation rate to higher-frequency movements in the unemployment rate. In essence, the

Friedman-Phelps formulation suggests that the high frequency movements in these two time series

may well have the inverse relationship suggested by Phillips, while the low frequency movements

will be unrelated. Clearly, if such frequency-dependence is empirically significant, then a standard

Phillips curve model which assumes that the same relationship obtains at all frequencies will yield

coefficient estimates that consistently characterize neither of these two distinct relationships.

Below we present a new approach for detecting and modeling frequency dependence in an

estimated regression model coefficient, and apply this approach to the Phillips curve relationship.

Our approach is formulated in the time domain, so it is easy to implement using ordinary regression

software. Moreover, since the new procedure does not require any specification of the dynamics

of the natural rate of unemployment, its validity does not hinge on the correctness of such a

specification. Indeed, our approach quantifies the frequency dependence in the relationship between

inflation and unemployment arising from all sources — natural rate dynamics, policy responses, labor

market frictions, etc.

We show below that all presently-available methods for detecting and modeling frequency de-

pendence fail when substantial feedback is present in the relationship, as is the case in the inflation-

unemployment relationship. This failure is due to the two-sided nature of the filtering — Hodrick-

Prescott, Baxter-King, or even ordinary X-11 seasonal adjustment — used in these approaches to

isolate a specific range of frequencies for analysis. Fundamentally, the two-sided filtering interacts

with the feedback in the relationship to induce correlations between the filtered series and the

relevant regression error terms, thus producing inconsistent parameter estimates.

In this paper we describe an extension to the Tan and Ashley (1999) frequency-dependence

modeling framework which overcomes this problem. Simulations using artificially generated data

demonstrate that the new technique is able to correctly detect frequency dependence in the presence

of feedback, and illustrates the distortions created when feedback is not properly handled.

Applying this new technique to allow for both frequency dependence and feedback in a stan-

4Hall (1999) and Cogley and Sargent (2001) argue that the low frequency trend component of the unem-
ployment rate is an estimate of the natural rate; Staiger, Stock and Watson (2001) adopt this argument.
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dard Phillips curve formulation, we find statistically significant frequency dependence in the Phillips

curve relationship, of a sort that is consistent with the Friedman-Phelps theory. In particular, when

we allow the data to select the optimal set of frequency bands based upon a BSIC criterion, we

find that a two-band model is chosen. In this model, there is a statistically significant inverse

relationship between inflation and unemployment, but it is restricted to unemployment rate fluctu-

ations in the high-frequency band, which includes frequencies corresponding to unemployment rate

fluctuations with periods less than 9 months. This frequency dependence is significant at the 5%

level, even accounting for the specification search involved in choosing the number, and extents, of

the bands.

The outline of the remainder of the paper is as follows. Section 2 presents the underlying macro-

economic theory and briefly discusses prior empirical work. Section 3 describes the econometric

methodology proposed here, and in particular includes a critique of two-sided filtering in the pres-

ence of feedback. Section 4 presents simulation evidence which indicates that the new methodology

of Section 3 is both necessary and effective. Section 5 presents the empirical results on the Phillips

curve. Section 6 concludes the paper.

2 Theory and Prior Empirical Work

As noted above, the Phillips Curve has long been the focus of empirical work. The prototypical

expectations-augmented Phillips curve is the specification

πt = πet + β
¡
unt − unNt

¢
+ εt

where πt is actual inflation (in wages, or in an appropriate price index) during period t, πet is the

level of inflation that was expected to occur during period t, unt is the unemployment rate at time

t, and unNt is the natural rate of unemployment at t. Two difficulties arise, each relating to one of

the unobserved components in the above relationship: πet and un
N
t .

First consider the treatment of expected inflation, πe. The random-walk model of expectations,

which specifies that πet = πt−1, has been used extensively in the literature (e.g., Gordon 1990, 1998,

Fuhrer 1995, Staiger, Stock and Watson 2001). This assumption is reasonably consistent with the
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data but, because inflation is observed to have considerable inertia, a number of lags of inflation

are required in the specification to ensure that the resulting regression model errors are serially

uncorrelated. This has led to regression models of the following form:

πt = β
¡
unt − unNt

¢
+

mX
j=1

δjπt−j + θZt + εt (1)

where the condition
Pm
j=1 δj = 1 is often imposed.5 Since deterministic seasonal components

have frequently been observed in seasonally-unadjusted inflation data, monthly dummies are often

included as well. Finally, since the 1970s it has become common practice to also include in this

specification price control dummy variables and measures of “supply shocks,” such as the relative

price of energy. Shocks to such variables arguably create positive correlation between inflation and

unemployment, and would thus bias the estimate of β if omitted. All such control variables are

here collected in the vector Zt.

The second difficulty, the unobserved natural rate, has been handled in a variety of ways. Most

Phillips curve regression specifications implicitly assume that the natural rate is a constant, in

which case a regression of the following form is appropriate:

πt = eα+ βunt +
mX
j=1

δjπt−j + θZt + εt (2)

where the natural rate can be recovered from estimates of the coefficients eα and β. Occasional shifts
in an otherwise constant natural rate have been handled by allowing for shifts in the intercept.

Recently, several authors have explored more sophisticated methods to allow for a potentially

time-varying natural rate. For example, Staiger, Stock and Watson (1997) model the natural rate as

a flexible polynomial, estimating a time-varying constant in (2), from which a time-varying natural

rate estimate can be recovered. A variant of this method (e.g., Ball and Mankiw, 2002) involves

identifying a filtered version of the unemployment rate with the natural rate for use in equation

(1).
5This condition is related to a unit root in inflation; some authors (e.g., Gordon, 1997) assert that this

restriction is necessary for a natural rate that is consistent with a constant rate of inflation. However, the
existence of a unit root in inflation partly depends upon Fed policy: if the Fed stabilizes inflation around
a target, there will be no unit root in inflation, and forward-looking models will not generate a unit-sum
restriction.
Some authors (e.g., Stock and Watson, 1999) impose the restriction that inflation is I(1) by specifiying

the Phillips curve relation using first-differences of inflation. Since, as emphasized by Baxter 1995, first-
differencing removes most of the low- and medium-frequency components of the series, this will substantially
distort least-squares estimates of the coefficient β if the relationship is frequency-dependent.
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An alternative method uses the Kalman filter to estimate the natural rate as an unobserved

component. Typically, the natural rate is modeled as a unit root process in this framework, yielding

the two-equation system:

πt = α+ β
¡
unt − unNt

¢
+

mX
j=1

δjπt−j + θZt + εt (3)

unNt = unNt−1 + υt

where unNt is a latent or unobserved variable, and (εt,υt) are assumed to be jointly NIID. The

variance of υt is either imposed a priori, or — as in Gruen, Pagan and Thompson (1999)— is estimated

by suitably concentrating out the log-likelihood. In practice, the estimated natural rate closely

tracks the univariate trend in the unemployment rate, regardless of methodology — e.g., see Brayton,

Roberts and Williams (1999) or Staiger, Stock and Watson (2001). But this does not necessarily

imply accurate tracking of the natural rate dynamics. Furthermore, if the relationship between

inflation and
¡
unt − unNt

¢
is itself frequency dependent, the OLS estimate of β will be inconsistent

even if the natural rate dynamics are correct.

This paper presents a new approach to the specification of the Phillips curve relationship. We

begin with the standard Phillips curve relationship specification embodied in equation (2) (including

in Zt variables to model inflation expectations) and account for variation in the natural rate (and

remaining variation in inflation expectations) by allowing the coefficient β to vary across frequencies.

Since feedback from inflation to unemployment rates is an important element of the Phillips curve

relationship, we develop new econometric tools for quantifying frequency dependence in feedback

relationships.

3 Methodology

In this section we explain what frequency dependence is, what it is not, and why it makes a

difference. Subsections 3.3 and 3.4 discuss the Tan/Ashley approach to the detection and modeling

of frequency dependence in the absence of feedback and its straightforward implementation in the

time domain. Section 3.5 addresses the issue of how to select the number of frequency bands to

consider and the particular set of frequencies to be included in each band. Finally, Section 3.6
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discusses the problematic nature of two-sided filtering in the context of feedback relationships and

describes how we modify the Tan/Ashley methodology appropriately to deal with this problem.

It is best to be clear at the outset as to the meaning of the term “frequency dependence” in the

context of a regression coefficient. Consider the following aggregate consumption function:

ct = γ0 + γ1yt−1 + γ2yt−2 + γ3ct−1 + εt (4)

where ct is the log of aggregate consumption spending in period t, yt is the log of disposable

income in period t, and εt is a covariance-stationary error term. In this model γ1 is the “short-run

marginal propensity to consume,” characterizing how consumption spending (on average) responds

to fluctuations in yt−1. In contrast,
(γ1+γ2)
(1−γ3)

is the “long-run marginal propensity to consume,”

the change in steady-state consumption from a one unit change in steady-state income; it answers

the question, “How does average steady-state consumption spending vary across different steady-

state after-tax income levels?” The distinction between γ1 and
(γ1+γ2)
(1−γ3)

is not what we mean by

frequency-dependence.

What we do mean by frequency-dependence is that, according to the permanent-income hy-

pothesis, the value of γ1 itself depends upon frequency. In particular, this hypothesis asserts that

consumption should not change appreciably if the previous period’s fluctuation in income is highly

transitory (high-frequency), whereas consumption should change significantly if the previous pe-

riod’s fluctuation in income is part of a persistent (low-frequency) movement in income. γ1, then,

should be approximately equal to zero for high frequencies, and close to one for very low frequencies.

Equation (4), in contrast, incorrectly restricts γ1 to be the same across all frequencies.

This frequency dependence in γ1 implied by the permanent income hypothesis concomitantly

implies that γ1 varies over time. In the special case of adaptive expectations, for example, the im-

plication is that γ1 will be larger if yt−1 has the same sign as yt−2. Thus, this frequency dependence

in γ1 can be viewed as a symptom of unmodeled nonlinearity in the relationship between ct and

yt−1. This aspect of frequency dependence is discussed at some length in Tan and Ashley (1999).

Here, the essential point is that this frequency dependence in γ1 further implies that the value of

γ1 is not a fixed constant; rather, it varies over time, due to its dependence on yt−1, yt−2, yt−3, etc.
6

6Similarly, viewing equation (4) as part of an bivariate VAR model, the impulse response function for
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3.1 Consequences of frequency dependence

Now consider a simple bivariate time series model:

yt = βxt + εt εt ∼ NIID
£
0,σ2

¤
for t ∈ {1, ...T}. The parameter β can be interpreted as dE[yt|xt]/dxt; if β actually takes on

two values — β0 in the first half of the sample and β1 in the second half of the sample — then

this regression is clearly mis-specified. In that case, the usual statistical machinery for testing

hypotheses about β is invalid — indeed, the hypotheses themselves are essentially meaningless, since

β does not have a well-defined value to test. Similarly, the least-squares estimate of β cannot be a

consistent estimator for either β0 or β1. In particular, if the sign of the relationship is positive in

the first part of the sample and negative later on, then the least squares estimate of β might well

be close to zero, leading to the erroneous conclusion that yt and xt are unrelated.

One of the key implications of the spectral regression model of Engle (1974, 1978) — summarized

in section 3.3 below — is that β is stable across time if and only if it is stable across frequencies;

this was also discussed in the context of the consumption function in the previous section. Thus, if

the value of β is different at low frequencies than at high frequencies, then β varies over time also,

albeit in a manner which might be difficult to detect with time domain parameter stability tests.

Still, this result implies that frequency variation in β yields all of the same unhappy properties as

does time variation. In particular, the least squares estimator of β is an inconsistent estimator of

dE[yt|xt] with respect to x, and — since β does not have a unique value — hypothesis tests about β

are problematic to interpret.

Frequency dependence in the unemployment rate coefficient of equation (2) might arise from mis-

specified dynamics for the natural rate; or it could occur for other reasons. We take such frequency

dependence to be an empirical issue — one which is consequential for the foregoing reasons — and

below develop methods for detecting and correcting for it.

ct will be a linear function of past innovations in both equations. While ct may well depend differently on
different lags in the yt innovations, if there is no frequency dependence in the ct − yt relationship, then the
coefficients in this impulse response function will all be constants. In contrast, frequency dependence in the
relationship implies that a coefficient on one of the yt innovations in the ct impulse response function itself
depends on the value of previous innovations. Thus, for example, in that case the coefficient quantifying
the impact of a yt innovation on subsequent values of ct itself depends on whether this yt innovation was an
isolated event, or part of a pattern of similar previous yt innovations.
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3.2 Pseudo-frequency dependence

It is important to distinguish ‘true’ frequency dependence in a relationship from a superficially

similar concept in which the coefficients of the model quantifying the relationship are constant, but

the coherence (closely related to the magnitude of the cross-spectrum of the variates) is frequency-

dependent. This latter notion is used in Geweke (1982), Diebold, Ohanian and Berkowitz (1998),

and a host of other studies. These decompositions are mathematically sound, but we call what they

measure ‘pseudo-frequency dependence’ because such measures do not actually quantify frequency

variation in the relationship itself.

A simple example clarifies this distinction. Consider the following consumption relation,

ct = βyt−1 + ut + φut−1⎛⎝ ut

yt

⎞⎠ ∼ NIID

⎡⎣⎛⎝ 0

0

⎞⎠ ,
⎛⎝ σ2u 0

0 σ2y

⎞⎠⎤⎦
The marginal propensity to consume in this relationship is clearly a constant (β) and Fourier trans-

forming both sides of this equation will do nothing to change that — it merely yields a relationship

between the Fourier transform of ct and the Fourier transform of yt−1, still with a constant coef-

ficient β. (E.g., see Section 3.3 below.) But the cross-spectrum and coherence functions relating

ct and yt are not constants: by construction, they depend explicitly upon the frequency parameter

ω. In particular, Geweke (1982)’s measure of the strength of the linear dependence of ct on yt−1 (a

generalization of the coherence function) for this model is:

fy→c (ω) =
1

2
ln

(
σ2u
¡
1 + φ2 − 2φ cos (ω)

¢
+ β2σ2y£

σ2u
¡
1 + φ2 − 2φ cos (ω)

¢¤2
)

which clearly does depend upon frequency so long as the moving average parameter φ is not zero.

Evidently, this frequency dependence in Geweke’s measure (and in the other ‘strength of as-

sociation’ measures based upon the cross-spectrum and the coherence function) is not quantifying

the frequency variation in the c-y relationship itself, since there is none to quantify. So what is

it doing? These kinds of measures are usually interpreted as quantifying the degree to which the

overall R2 for the equation is due to sample variation at low frequencies versus high frequencies.
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Suppose that φ is positive, in which case Geweke’s measure indicates that low frequencies are

important to the R2 of the relationship. This says nothing about whether consumption and income

are differently related at low versus high frequencies — that depends upon the marginal propensity

to consume, which is constant. Rather, it says that this dynamic relationship transforms serially

uncorrelated fluctuations in yt−1 and ut into positively correlated fluctuations in ct. Alternatively,

one could observe that ct in that case has substantial spectral power at low frequencies, and interpret

this result, to paraphrase Geweke (1982, p. 312), as indicating that the white noise innovations in

yt−1 explain most of this low frequency portion of the variance in ct.7

3.3 Regression in the frequency domain in the absence of feedback

The most elegant way to assess the actual frequency dependence of a regression coefficient is to

estimate the regression equation in the frequency domain. Such spectral regression was originally

proposed by Hannan (1963) and most clearly exposited in Engle (1974, 1978). Following Engle,

spectral regression is based on the simple notion that a multiple regression model in the time

domain, such as

Y = Xβ + ε ε ∼ N
£
0,σ2I

¤
(5)

can be Fourier-transformed on both sides of the equation via multiplication by a complex-valued

matrix W , yielding

WY = WXβ +Wε (6)

eY = eXβ + eε eε ∼ N £0,σ2I¤ (7)

where eY =WY , etc., and where the (j, k)th element of W is given by wj,k = 1√
T
exp

³
2πijk
T

´
, with

T equal to the sample length. The variance of eε is still σ2I because W is an orthogonal matrix.

Note that the coefficient vector β is identical in both regression equations. What has changed,

however, is that the T sample observations in Y and in each column of X are replaced by T

‘observations’ on each variable, each of which now corresponds to a frequency in the interval
7Note also that both the coherence and gain functions are, by construction, non-negative at all frequencies.

Thus, neither of these concepts can possibly capture frequency dependence as discussed here, which can
readily involve a regression coefficient having one sign at low frequencies and the opposite sign at high
frequencies.
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[0, 2π (T − 1) /T ]. In particular, one can identify the jth ‘observation’ in this transformed regression

model as corresponding to frequency 2π (j − 1) /T .

Note, however, that consistent least squares estimation of β in equation (7) requires that

corr (exj,k,eεj) is zero for all values of j and k. Since W embodies a two-sided transformation —

i.e., exj,k depends upon all of x1,k, ..., xT,k and eεj depends upon all of ε1,k, ..., εT,k — this condition
requires that xt,k be uncorrelated with both past and future values of εt. This issue is taken up

more explicitly in Section 3.6 below; it is side-stepped here by restricting attention to relationships

in which there is no feedback between yt and x1,k, ..., xT,k.

This framework has unique advantages over regression in the time domain. For example, missing

observations and distributed lag expressions involving non-integer lags can be dealt with fairly

readily in the frequency domain. And — vital for the present context — detecting and modeling

frequency variation in a component of β corresponds precisely to testing for instability in this

component across the sample ‘observations’ in equation (6).

Prior to Tan and Ashley (1999), however, this framework also had some fairly intense drawbacks,

which severely limited its usefulness and acceptance. For one thing, eY and eX are complex-valued,

precluding the use of ordinary regression software to estimate β. An estimator for β can be expressed

in terms of the cross-periodograms of Y and the columns of X — e.g., equation 10 of Engle (1974) —

but the calculations still require specialized software. Consequently, Engle’s approach is really only

convenient for considering parameter variation over at most two frequency bands: in that special

case it is possible to finesse the problem so that ordinary regression software suffices.8

Another problem with Engle’s framework is really just cosmetic, but nevertheless effectively

limits the credibility of the results: one cannot drop a group of, say, the five lowest frequency

‘observations’ without also dropping the five observations at the highest five frequencies — otherwise,

the least squares estimate of β is no longer real-valued. These latter five observations, at what

appear to be the five highest frequencies, in fact actually do correspond to low frequencies because

of symmetries in the W matrix, but one is apt to lose one’s audience in trying to explain it.

Finally, Engle’s formulation does not deal with econometric complications such as simultaneity,

8Later work by Thoma (1992, 1994) pushes this idea a bit further by observing how the parameter estimate
varies as more frequencies are added to the low frequency band.
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cointegration, or, as noted above, feedback. Phillips (1991) provides a framework for estimating

cointegrated systems in the frequency domain based directly on Hannan’s formulation in terms of

the spectra and cross-spectra of the data. But this approach again requires specialized software,

and is sufficiently sophisticated as to severely limit the ability of most practitioners to modify it as

needed in order to deal with the particular problems posed by individual applications.

The net result is that spectral regression methods have been applied to the frequency dependence

problem for only a handful of macroeconomic relationships.

The approach developed in Tan and Ashley (1999) effectively eliminates the objections noted

above, at least for non-feedback systems. This formulation is similar in spirit to Engle’s except

that the complex-valued transformation matrix (W ) is replaced by an equivalent real -valued trans-

formation matrix (A) with (j, t)th element:

aj,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
T

j = 1q
2
T cos

h
πj(t−1)
T

i
j = 2, 4, ..., (T − 2) or (T − 1)q

2
T sin

h
π(j−1)(t−1)

T

i
j = 2, 4, ..., (T − 1) or T

1√
T
(−1)t+1 j = T and T is even, t = 1, ..., T

(8)

This transformation, which first appears in Harvey (1978), yields a real-valued frequency domain

regression equation

AY = AXβ +Aε Aε ∼ N
£
0,σ2I

¤
or

Y ∗ = X∗β + ε∗ ε∗ ∼ N
£
0,σ2I

¤
(9)

with Y ∗ = AY , etc. In fact, each row of A is just a linear combination of two rows in theW matrix,

based on the usual exponential expressions of the sine and cosine — e.g., cos (x) = 1
2e
ix + 1

2e
−ix.

Again, V ar (ε∗) = V ar (ε) bacause A is an orthogonal matrix.

Since the elements of the A matrix are all real-valued, equation (9) can be estimated using

ordinary regression software. Moreover, the effect of the transformation on a column vector (e.g.,

Y ) is now plain to see. The second and third rows of the A matrix (j = 2 and 3) correspond to the

two ‘observations’ at the lowest non-zero frequency. The weights in these rows make one complete

oscillation over the T periods in the actual sample, so any fluctuation in Yt that is sufficiently brief
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as to average out to essentially zero over a period of length T/2 will have little impact on either

Y ∗2 or Y
∗
3 . In contrast, suppose that T is even and consider the highest frequency row of A. This

row simply averages T/2 changes in the data; clearly, it is ignoring any slowly-varying components

of the data vector and extracting the most quickly-varying component.

The “observations” in this regression model thus do correspond to frequencies. Consequently,

frequency variation in, say, βk — the k
th component of β — can be assessed by applying any of

the variety of procedures in the literature for examining the variation in an estimated regression

coefficient across the sample observations: e.g., Chow (1960), Brown, Durbin and Evans (1975),

Ashley (1984), or Bai (1997) and Bai and Perron (1998, 2003). We will return to this issue in

Section 3.5; for now, we observe that Tan and Ashley (1999) use the procedure given in Ashley

(1984) and simply partition the T ‘observations’ in equation (9) into m equal frequency bands and

estimate how βk varies by replacing the k
th column of X∗, X∗k , with m appropriately constructed

dummy variables:9

Y ∗ = X∗{k}β{k} +D
∗γ∗ + υ∗ (10)

where X∗{k} is X
∗ omitting the kth column, and β{k} is β omitting the kth component. The

columns
£
D∗1...D∗m

¤
composing the D∗ matrix consist of m new explanatory variables, one for

each frequency band — D∗sj , the j
th component of the new explanatory variable for frequency band

s, is zero for each component outside the frequency band, and equal to the corresponding component

of X∗k (the k
th column of X∗) for each component inside the frequency band.

3.4 Time domain version of the Tan/Ashley approach

It is both helpful and instructive to re-cast the Tan-Ashley formulation in the time domain. Since

A is an orthogonal matrix, A−1 is just its transpose, AT . Multiplying the regression model of (10)

through by AT yields

ATY ∗ = ATX∗{k}β{k} +A
TD∗γ∗ +ATυ∗ (11)

and hence

Y = X{k}β{k} +Dγ + υ (12)
9Simulations in Ashley (1984) indicate that this modest generalization of the Chow test performs at least

as well as more sophisticated alternatives with samples of moderate length.
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Here Y is the original dependent variable data vector and X{k} is the original data matrix, omitting

the kth column.

The matrix D =
£
D1...Dm

¤
thus has as its columns the back-transforms of the frequency-

domain explanatory variables
£
D∗1...D∗m

¤
corresponding to each of the m frequency bands being

considered. Note that, since the columns
£
D∗1...D∗m

¤
are orthogonal and add up to X∗k = AXk,

the column vectors comprising
£
D1...Dm

¤
are orthogonal also and add up to Xk, the original data

vector for the kth explanatory variable;10 consequently, the error vector υ is identical to the original

error term in (5) if the m components of γ are all equal to βk.

Thus, the column vectors
£
D1...Dm

¤
are in essence bandpass filtered versions of Xk which par-

tition this variable into m orthogonal components, one for each frequency band. For example,

suppose that one were to partition the monthly US unemployment rate into three frequency com-

ponents: D1t , comprising the fluctuations corresponding to low frequencies (periods greather than

72 months); D2t , a medium-frequency (“business cycle”) component, corresponding to periods be-

tween 18 and 72 months; and D3t , a high-frequency component, corresponding to periods less than

18 months. Figure 1 plots the monthly US unemployment rate, along with D1t and D
2
t — the first

and second of these components — using data from 1980 through 2003.

Note than no one of these implied bandpass filters is an optimal bandpass filter — one might

choose a Baxter-King (1999) or Christiano-Fitzgerald (2003) bandpass filter for that purpose —

but
£
D1...Dm

¤
have the desirable property of slicing up Xk in an intuitively appealing way into

m orthogonal components that add up exactly to Xk. Therefore, replacing βkXk by Dγ in the

regression equation allows one to conveniently test for, and model, frequency dependence in βk,

with frequency stability corresponding to the null hypothesis that all m components of γ are equal.

Figure 1: Time Plot of the US Unemployment Rate and its Low- and Medium-Frequency

Components (D1t and D2t )

10Tan and Ashley (1999) give an explicit example of this with m = 3 frequency bands. Given their partic-
ular partitioning , they show how D∗1 is zero except for the first third of the ‘observations’ (corresponding to
the lowest frequencies) — yielding a smooth D1 time domain series — whereas D∗3 is zero except for the last
third of the ‘observations’ (corresponding to the highest frequencies), and yields a rapidly varying D3 time
domain series. They do not, however, point out that the m filtered components

£
D1...Dm

¤
are orthogonal.
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Note that failing to replace βk by Dγ when the m components of γ are not equal yields a

mis-specified regression model for Y : bβOLSk cannot possibly be consistent for βk in this model

since βk does not have a unique value to estimate.

Moreover, note also that there is nothing essential about the simple form of the original model

(Y = Xβ+ ε) in the analysis above. One could just as easily investigate the frequency dependence

of the coefficient on Xk by replacing it with the weighted sum Dγ regardless of how Xk enters the

analysis - linearly or nonlinearly, instrumented or not, etc. — using essentially the same techniques

and software one was already employing.

Finally, note that, since Xk = D1 + ...+Dm, using the D1...Dm instead of Xk in a regression

model leaves the properties of the error term unaffected under the null hypothesis of no frequency

dependence. No sample information is lost; the only statistical cost is a loss of m − 1 degrees of

freedom, since more coefficients are being estimated.

The frequency decomposition proposed here has important advantages over a typical bandpass-
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filtering approach in which Xk is bandpass-filtered in m different ways so as to obtain m frequency

components F 1, ..., Fm. The F j thus obtained are not in general orthogonal to one another. More

importantly, however, they do not add up to the original data vector Xk. Thus, even under the null

hypothesis that these components enter the model with equal coefficients, this kind of decomposition

fails to preserve the model error distribution. Moreover, since F 1, ..., Fm do not sum up to Xk,

an indeterminate amount of the actual sample variation in Xk is lost due to the decomposition,

rendering any interpretation of the results problematic.

3.5 Frequency Band Specification

Selecting the number of frequency bands, and the particular set of frequencies to be included in

each band, is an important issue in implementing the analysis described above.

One alternative is to simply specify these bands on a priori grounds; this is analogous to

common practice in empirical macroeconomics, where attention is often restricted to “business

cycle” frequencies. In the present context, this “calendar-based” approach might suggest a three-

band formulation — one band containing all frequencies corresponding to periods of less than 18

months, a second band containing frequencies corresponding to periods between one and a half

and six years, and a third containing frequencies corresponding to longer periods. This choice

seems reasonable, but it is somewhat ad hoc — one might equally well choose one of many other

calendar-based frequency band structures.

An alternative approach, adopted here, is to allow the data to choose the frequency band

structures. Since each band structure corresponds precisely to assuming that the relevant regression

coefficients are constant over the analogous sets of “observations” in equation (12) above, this

amounts to a problem which has received a good deal of attention in the literature recently — e.g.,

Bai (1997), Bai and Perron (1998, 2003).

It is computationally feasible to search over all possible band structures with the number of

bands less than some maximum value, and to choose the one which minimizes some adjusted

goodness-of-fit criterion, such as the Bayes-Schwarz Information Criterion (BSIC). Of course, one

must then estimate the sampling distribution of the F statistic for testing the null hypothesis
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of equal coefficients on all m bands — using the bootstrap, for example — so as to prevent the

size distortion which this extensive specification search will surely induce. The resulting test will

have unnecessarily low power, however. Instead, exploiting the fact that we expect the parameter

variation in this case to be relatively smooth, the extent of the specification search is substantially

reduced by using a variation of the “regression tree” approach. In particular, the search is restricted

in two ways:

(1) We constrain both “observations” corresponding to a given frequency to remain

in the same frequency band. (Recall from equation (8) that each non-zero frequency

corresponds to both a sine and a cosine in the A matrix.)11

(2) The procedure begins by assuming that there is just one band, and searches for a

single sample split which improves the BSIC. If none is found, the search is over. If such

a sample split is found, then this “breakpoint” is no longer modified. Instead, each of

the two bands implied by this breakpoint is examined to see if it can be split in two

so as to improve the BSIC. This process continues until either the maximum number

of bands to be considered is reached, or no BSIC-improving split of the existing bands

can be found.

This latter search restriction is conservative in that the fully-optimalm band specification might

never be examined because the best (m− 1) band structure is not nested within it. However, since

the parameter variation test is bootstrapped to appropriately account for the amount of specification

search, on balance the substantial reduction in (mostly irrelevant) search activity provided by this

restriction notably increases the power of the procedure to detect parameter variation.

3.6 Dealing with feedback

Note that bγOLS will be a consistent estimate of γ in equation (12) if and only if the error term in

this equation is uncorrelated with each of the regressors D1...Dm. Since the tth observation on each

of these regressors is the result of what amounts to a two-sided nonlinear bandpass filter applied

11Except in the case where the number of observations is even, for the highest frequency.

19



Mis-specification in Phillips Curve regressions

to Xk,t, this will be the case only if Xk is strongly exogenous, that is, only if every observation

on Xk is uncorrelated with every observation on the error term in the original regression model.

(This is, of course, equally the case for any methodology which applies a two-sided bandpass filter

to the kth regressor.) Unfortunately, feedback in the relation between Yt and Xk,t induces exactly

this kind of correlation.

For example, consider the analysis of possible frequency dependence in the parameter λ2 of the

following bivariate equation system:

yt = λ1yt−1 + λ2xt−1 + εt (13)

xt = α1xt−1 + α2yt−1 + ηt

Clearly, feedback exists if and only if α2 is nonzero. Any two-sided filter — one based on the A

matrix discussed above, or bandpass filters such as those given by Baxter and King (1999) or

Christiano and Fitzgerald (2003), or the Hodrick-Prescott filter — applied to xt−1 in equation (13)

will yield a transformed value x∗t−1 which depends upon xt, xt+1, xt+2,...xT . But note that equation

(13) implies that

xt+1 = α1xt + α2yt + ηt+1

= α1xt + α2 (λ1yt−1 + λ2xt−1 + εt) + ηt+1

= α1xt + α2λ1yt−1 + α2λ2xt−1 + α2εt + ηt+1

which is clearly correlated with the regression error term εt unless α2 is zero, in which case there

is no feedback. Thus, in the presence of feedback, any transformation of xt−1 which depends upon

xt+1 will be correlated with the model error term, yielding inconsistent least-squares parameter

estimates.

To eliminate this problem, we exploit the fact that the Tan/Ashley formulation is easily adapted

to use only one-sided filtering. The only cost is a modest amount of additional computation and the

loss of the use of the first τ sample observations in estimating equation (12), where τ is the period

corresponding to the lowest frequency separately distinguished in the analysis. The calculation

steps through the sample using blocks of length τ . In the first step, observations one through τ

on Xk (i.e, X1,k, ...,Xτ ,k) are used to compute the τ -dimensional column vectors D1...Dm, one for
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each of the m frequency bands. The last (period τ) element in each of these vectors becomes the

period τ observation on D1...Dm for use in estimating equation (12). Next one uses the τ sample

observations X2,k, ...,Xτ+1,k to re-compute the τ -dimensional column vectors D1...Dm. Again the

last (τ th) element in each of these vectors becomes the period τ+1 observation on D1...Dm for use

in estimating equation (12). And so forth.12 Thus, one could characterize D1...Dm as being the

result of a set of m one-sided bandpass filters obtained using a moving block of τ observations.

The resulting D1...Dm columns still add up precisely to Xk over its last T − τ elements. These

m columns are no longer precisely orthogonal to one another, but in practice they are quite close

to being orthogonal. In any case, the orthogonality is of modest importance: what is essential is

that D1...Dm still partition (sum up to) Xk and are now the product of a one-sided filter.

It is unfortunate that one must lose the use of the τ − 1 start-up observations in estimating

equation (12) in this way, but this is necessary in order to avoid spurious results when feedback is

present. This loss is analogous to the start-up observations “lost” in using lagged variables in an

equation. Indeed, this loss is noticeable in the Phillips curve application given in Section 5 below:

60 observations out of 288 are sacrificed so as to be able to consider frequencies corresponding to

periods as large as sixty months.

Lastly, it must be mentioned that bandpass filters like the ones used here generically have

problems near the endpoints of the sample. This is not surprising. As Christiano and Fitzgerald

(2003) put it, “it is hard to say without the benefit of hindsight whether a given change in a variable

is temporary ... or more persistent.” The standard method for addressing this shortcoming — as, for

example, in Stock and Watson (1999) — is to augment the sample using projected values obtained

from univariate autoregressive models. Here, we adopt an essentially identical procedure: an AR(4)

model (plus seasonal dummy variables) is estimated using observations from the beginning of the

sample through the last of the τ observations in the window, and used to forecast the series for

another twelve months. The resulting τ+12 observations are then decomposed into them frequency

components, and the τ thobservation on each component is used to produce the values of D1...Dm

from this window. The D1...Dm column vectors produced in this way still (by construction) add

12Windows-based, and RATS, software implementing this partitioning of a given input column vector is
available from the authors.
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up precisely to Xk; they are still each the product of an entirely one-sided bandpass filter; and

(since their values are now no longer close to the endpoint of each window) they produce quite

satisfactory decompositions.13

4 Detecting andmodeling frequency dependence in simulated data

In Section 3 above, existing approaches for detecting and modeling frequency-dependence were

reviewed, and it was shown that the usual (two-sided) pre-filtering approaches to the detection

of frequency dependence will yield misleading results in the presence of feedback. Finally, in

Section 3.6 we proposed a one-sided extension to the Tan/Ashley approach for analyzing frequency

dependence in the presence of feedback. In this section, we summarize the results from a small

simulation study which provides evidence for the efficacy of this proposed methodology. This

simulation study is intended to be suggestive rather than exhaustive; consideration is limited to

two rather simple data generating processes; these are intended primarily to demonstrate that the

procedure can in fact correctly detect the presence and form of frequency dependence even when

feedback is present, and only partially to illustrate possible sources for the frequency dependence

observed below in the relationship between inflation and unemployment in U.S. data.

The simulation results reported below address three questions relating to data-generating processes

which feature feedback. First, in the presence of such feedback, does two-sided filtering actually lead

to a spurious finding of frequency-dependence when none actually exists? Second, does the one-

sided procedure proposed in Section 3.6 avoid such spurious findings? Finally, does the one-sided

procedure correctly detect, and appropriately model, frequency-dependence when such dependence

is present?

13We note that it is also necessary to detrend the Xt data in each window, since a somewhat persistent time
series can appear quite trended in each of the sequence of windows, even though it is not trended overall.
Thus, a linear trend is estimated over the τ + 12 observations in each window, and subtracted from the Xk
values prior to decomposing it into the m frequency components. After the decomposition is performed,
observation τ ’s estimated trend value is then added back into observation τ of the lowest frequency band,
D1. In this way, D1...Dm still sum to Xk.
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4.1 Spurious frequency dependence detection using two-sided filtering in the

presence of feedback

The data-generating process considered here is a particular bivariate VAR, given by:

yt = λ1xt−1 + λ2yt−1 + εy,t (14)

xt = α1xt−1 + α2yt−1 + εx,t

where λ1 = 0.25, λ2 = 0.55, α1 = 0.65, and α2 = 0.3; qualitatively similar results were obtained

using numerous bivariate VAR specifications, however. Since α2 6= 0, this bivariate system exhibits

feedback; since both equations are linear, there is no actual frequency dependence in these coeffi-

cients. 1000 bootstrap simulations were conducted. For each simulation, both the one-sided and

two-sided approaches were used to test for the presence of frequency dependence across three fre-

quency bands. The frequency bands used were set such that the lowest frequency band coresponded

to fluctuations with period greater than 6, the medium frequency band corresponded to fluctuations

with periods between 4.5 and 6, and the highest frequency band corresponded to fluctuations with

period less than 4.5.14

In each simulation run, the series xt was decomposed by frequency using both the one-sided and

two-sided procedures, yielding
n
D1,1−sidedt ,D2,1−sidedt ,D3,1−sidedt

o
and

n
D1,2−sidedt ,D2,2−sidedt ,D3,2−sidedt

o
,

with t = 1, ..., 300.

Following this, yt was regressed on yt−1 and D
1,k
t ,D2,kt , and D3,kt first for k = 1-sided, and then

for k = 2-sided. In each case, an F -test testing equality of the coefficients on the three Dt variables

was performed. The resultant p-value was then recorded for each simulation. Since there is in fact

no frequency dependence in this linear model, the null hypothesis of equal coefficients on the three

components D1t ,D
2
t , and D

3
t should be rejected (at the 5% level) in only about 5% of the cases.

Although the procedures differed only in the method of decomposition, the results were starkly

different. When filtered using the two-sided methodology, the null of frequency dependence was

rejected, at the 5% level, in nearly 40% of the cases (and for other specifications investigated,

this rejection rate was even greater). Evidently, two-sided filtering can readily lead to a spurious
14Since Section 4 features artificial examples, this band structure (used throughout the section) was chosen

arbitrarily. See the Appendix for an example of the relationship between frequencies and periods.
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detection of frequency dependence in the presence of feedback; the issues we raise in Section 3.6 are

not merely a theoretical detail. Conversely, when filtered using the one-sided methodology (and

regarded as a test of frequency-dependence), the “size” of the one-sided procedure was correct: the

null was rejected at the 5% level of significance in ca. 5% of the cases.

4.2 Detection andmodeling of frequency dependence due to unmodeledMarkov-

switching

We now turn to our final question: does the one-sided procedure correctly detect, and appro-

priately model, frequency-dependence when such dependence is actually present? Two distinct

data-generating processes are considered, each of which generates frequency dependence in the co-

efficients of a (mis-specified) linear model one might actually estimate. The generating mechanism

examined in this section is a Markov-switching process; in this case, the frequency dependence

in the coefficients of the approximating linear model arises because of unmodeled nonlinearity in

the relationship. A second generating mechanism is considered in Section 4.3 below. There the

frequency dependence in the coefficients of a linear model arises from unmodeled heterogeneity due

to aggregation.

In this section we examine a Markov-switching process which is a bivariate VAR alternating

between two regimes:

yt = Bxt−1 + λyt−1 + σεy,t (15)

xt = Axt−1 + γyt−1 + Sεx,t

whereA,B, and S are random variables whose values are regime-dependent: in regime 1, (A,B, S) =

(a1, b1, s1), while in regime 2, (A,B,S) = (a2, b2, s2). The process switches between regime 1 and

regime 2 according to a Markov process with switching probability q. If γ > 0, this system exhibits

positive feedback.

By construction, within each regime the parameter B is a fixed constant. However, if the

Markov-switching is unmodeled, i.e. if one estimates a (mis-specified) regression equation which

fails to account for regime switching, then the coefficient on xt−1 in a model for yt is frequency

(and time) dependent unless a1 = a2 and b1 = b2. For example, suppose that a1 = 0.8, b1 = 0.5,
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and s1 = 0.5, whilst a2 = 0.0, b2 = −0.5, and s2 = 1.0. In this case, when the process is in regime

1, xt is highly persistent and yt is positively related to past xt. In contrast, when the economy is in

regime 2, xt is not persistent and yt is inversely related to xt. This cross-regime coefficient disparity

can generate substantial frequency dependence in the relationship between yt and xt−1. To see why,

note that yt will be positively related to xt−1 when xt is in the “low-frequency” (persistent) regime,

whereas yt will be inversely related to xt−1 when xt is in the “high-frequency” (non-persistent)

regime. Over the course of the sample, the low-frequency variation in xt will be dominated by

periods during which xt was in phase 1, and the high-frequency variation in xt will be dominated

by periods during which xt was in phase 2.15 Note that if the values of A, B and S were the same

in both regimes, then the system would be an ordinary bivariate VAR whose coefficients do not

exhibit frequency dependence.

T = 300 observations on this process were generated using the following parameter values:

Parameter Regime 1 Regime 2
A 0.8 0.0
B 0.5 −0.5
λ 0.2 0.2
γ 0.3 0.3
S 0.5 1.0
σ 0.6 0.6
q 0.02 0.02

The series xt was decomposed by frequency using the one-sided procedure, yielding
©
D1t ,D

2
t ,D

3
t

ª
.

In this case, the three frequency bands chosen were set such that the lowest frequency band core-

sponded to fluctuations with period greater than 6, the medium frequency band corresponded to

fluctuations with periods between 4.5 and 6, and the highest frequency band corresponded to fluc-

tuations with period less than 4.5.16 The dependent variable yt was then regressed on a constant,

yt−1, and D1t ,D
2
t , and D

3
t .

Regression results, with and without the allowance for frequency dependence, were as follows

15Crudely speaking, one might think of the high-frequency part of xt as the part of the time series of
xt which “survives” first-differencing; conversely,the low-frequency part of xt is essentially its stochastic
trend. During regime 2, the stochastic trend is near zero, and the first-difference of xt is large in magnitude.
Conversely, during regime 1, the stochastic trend diverges from zero, while the first-difference of xt is generally
small in magnitude. Thus, the low frequency part of xt substantially differs from zero only during regime 1,
while the high frequency part of xt substantially differs from zero only during regime 2.
16See footnote 14.
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(coefficient estimates appear below the coefficients, with t-statistics in parentheses):

yt = bα
−0.17
(3.41)

+ bb
0.04
(0.96)

xt−1 + bλ
0.51
(9.51)

yt−1 + ut

yt = bα
−0.09
(−1.97)

+ bb1
0.16
(3.82)

D1t−1 + bb2
−0.16
(−0.81)

D2t−1 + bb3
−0.55
(−6.15)

D3t−1 + bλ
0.52
(10.94)

yt−1 + ut

The F-test of no frequency dependence (i.e., H0 : b1 = b2 = b3) = 24.8, with p-value = 0.000000.

The pattern of frequency-dependence in the data is clearly captured by our procedure.

4.3 Detection and modeling of frequency dependence due to aggregation

The second data-generating process considered is a trivariate VAR:

yt = λ1z1,t−1 + λ2z2,t−1 + λ3yt−1 + σεy,t (16)

z1,t = ρ1z1,t−1 + γyt−1 + sεx1,t

z2,t = ρ2z2,t−1 + γyt−1 + εx2,t

If γ > 0, this system exhibits positive feedback. Suppose that the econometrician is unable to

observe z1,t and z2,t, but can only observe their sum zt, defined as (z1,t + z2,t). Unless λ1 = λ2 or

ρ1 = ρ2, such aggregation will induce frequency-dependence in the resultant bivariate VAR: the

coefficient on zt−1 in a model for the {yt, zt} process will be frequency-dependent. For example,

suppose that ρ1 = 0.8 and λ1 = 0.5, whilst ρ2 = −0.1 and λ2 = −0.5. In this case, yt is positively

related to the persistent variable z1,t, and inversely related to the noisy variable z2,t. This implies

that the relationship between yt and zt−1 is frequency-dependent: yt is positively related to low-

frequency variations in zt−1 (which are dominated by z1,t−1), and inversely related to high-frequency

variations in zt−1 (which are dominated by z2,t−1). Of course, the system is still misspecified if if

λ1 equals λ2, but the coefficient on zt does not in that case exhibit frequency-dependence.
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T = 300 observations on this process were generated using the following parameter values:

Parameter Value
λ1 0.5
λ2 −0.5
λ3 0.2
σ 0.6
α1 0.8
α2 −0.1
s 0.5
γ 0.3

The series xt was decomposed by frequency using the one-sided procedure, yielding
©
D1t ,D

2
t ,D

3
t

ª
.

The three frequency bands chosen were set such that the lowest frequency band coresponded to

fluctuations with period greater than 6, the medium frequency band corresponded to fluctuations

with periods between 4.5 and 6, and the highest frequency band corresponded to fluctuations with

period less than 4.5.;17 then yt was regressed on a constant, yt−1, and D1t ,D
2
t , and D

3
t .

Regression results, with and without the allowance for frequency dependence, were as follows

(coefficient estimates appear below the coefficients, with t-statistics in parentheses):

yt = bα
−0.21
(−4.06)

+ bb
−0.02
(−0.53)

xt−1 + bλ
0.46
(8.48)

yt−1 + ut

yt = bα
−0.11
(−2.18)

+ bb1
0.14
(4.02)

D1t−1 + bb2
0.23
(1.51)

D2t−1 + bb3
−0.41
(−6.19)

D3t−1 + bλ
0.42
(8.42)

yt−1 + ut

The F-test of no frequency dependence (i.e., H0 : b1 = b2 = b3) = 24.7, with p-value = 0.000000.

Again, the pattern of frequency-dependence in the data is clearly captured by our procedure.

One final remark on the simulation results for both of these processes: we find that the presence

of unmodeled frequency-dependence in the relationship frequently leads to an initial linear model for

yt which includes multiple lags of xt, even though only xt−1 is actually influencing yt; furthermore

the estimate of the coefficient on xt−1 is frequently statistically insignificant. This latter observation

is not surprising, since the OLS coefficient estimate on xt−1 is in both cases an admixture of two

different relationships, a positive one at low frequencies, and a negative one at high frequencies.

17See footnote 14.
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This finding suggests that analysts may be missing some significant empirical relationships because

of unmodeled frquency dependence.

We conclude that the procedure described in Section 3.6 is both necessary and effective in the

presence of feedback.

5 Phillips Curve Estimation Results

5.1 Regression model specification

From (2), a standard Phillips curve specification is of the form

πt = α+ βunt +
12X
j=1

δjπt−j + θZt + εt (17)

where Zt includes seasonal dummies and a measure of the change in the relative price of energy,

Oilt (as in, e.g., Staiger, Stock and Watson 2001). We consider the period 1980:1-2003:12. As

Benati and Kapetanios (2003) find compelling evidence for the existence of structural breaks in

the US CPI inflation process, we estimate (17) assuming that inflation had one structural break

(in mean) in early 1990, using the date these researchers identify: 1990:4.18 Since the behavior

Oilt appears to markedly change in character during this interval, we defined two dummy variables

(Oil1t and Oil
2
t ), allowing the coefficients on these regressors to differ in periods 1980:1-1986:01

and 1986:02-2001:12.19 The measure of inflation used in constructing πt is the growth rate of non-

seasonally-adjusted CPI-U-RS;20 unt is the non-seasonally-adjusted total civilian unemployment

rate.
18Benati and Kapetanios (2003) also find a break in 1981:4. However, we don’t find subtantial evidence

for this break in our data, likely because this break occurs so early in our sample.
19The energy series used was “energy commodities,” which is then divided by the CPI-U-RS. The coef-

ficients on Oil1 and Oil2 are allowed to vary over these subperiods because the time-series properties of
Oilt (in particular, its variance) display two distinct regimes over the sample. We therefore did not want to
constrain the relationship between inflation and the relative price of energy to be the same over the entire
sample.
20The Bureau of Labor Statistics (BLS) has made numerous improvements to the CPI over the past

quarter-century. For example, in 1983 the BLS adopted a rental-equivalence approach to the measurement
of homeownership costs in the CPI-U; other methodological improvements have subsequently occurred.
While these improvements make the present and future CPI more accurate, historical price index series have
not been adjusted to consistently reflect all of these improvements. The CPI-U-RS (or CPI-U “Research
Series,” described in Stewart and Reed (1999)) comes closest to this ideal; it consistently corrects the CPI-U
for all changes in methodology from 1978 onwards. Researchers seeking a (mostly) consistent series from
1967 onwards can append the CPI-U-RS to the CPI-U-X1 series, a series which at least incorporates rental-
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Using the one-sided filtering methodology described in Section 3.6 above, the series unt was

decomposed into frequency bands un1...unk, where the number of bands, and the frequencies in

each band, are selected as described below. Equation (17) was then re-estimated using OLS in the

form:21

πt = α+
kX
j=1

βjun
j
t +

12X
j=1

δjπt−j + θZt + εt (18)

We performed two alternative tests of frequency dependence based on equation (18): one using

“calendar-based” frequency bands, and one in which the frequency bands were data-selected using

the regression tree specification search procedure described in Section 3.5 above. The calendar-

based approach has the advantage that the sampling distribution of the F -statistic for testing the

equality of β1...βk is not distorted by a specification search, so that it is not necessary to estimate

this sampling distribution using bootstrap simulations. On the other hand, the calendar-based

bands are necessarily somewhat ad hoc.

If the chosen calendar-based bands are consistent with the actual pattern of frequency depen-

dence present in the data, then this procedure will have high power to detect that pattern. If not,

then the calendar-based test could have relatively low power, even though appropriately accounting

for the specification search in the procedure in which bands are data-selected substantially lowers

the apparent power of that procedure. Thus, one might unnecessarily fail to uncover an existing

pattern of frequency dependence in a particular regression coefficient through a maladroit selection

of a calendar-based frequency band structure. Moreover, even if one does still detect frequency

dependence in spite of such a maladroit choice, the pattern of frequency dependence thus observed

will surely be distored to some degree. Consequently, unless one has a specific and strongly-held

prior opinion as to what frequency band structure is consistent with any actual frequency depen-

dence, then the specification search procedure described in Section 3.5 will be more appropriate.22

Here, for illustrative purposes, results are given using both approaches.

equivalence homeownership costs. Note that other researchers, notably Crone, Nakamura and Voith (2001)
suggest that still other adjustments may be worthwhile.
21A residual outlier was detected in February of 1986; consequently, the regression was run with and

without a dummy variable corresponding to this outlier. Upon inclusion of this dummy, the Jarque-Bera
test no longer rejects normality of the residuals; however, conclusions regarding frequency-dependence are
identical. Additional lags of the unemployment rate were not significant; it is possible that the additional
lags found by other researchers are a by-product of ignoring frequency-dependence in this relationship, as
suggested by the simulation study in Section 4.
22And, of course, basing one’s calendar-based bands upon the results of a specification search and pretend-

ing it didn’t take place is self-delusional.
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Since “business cycle frequencies” are ordinarily taken to comprise fluctuations with periods

between one and five years, our initial impulse for a calendar-based frequency band structure was

to decompose the unemployment rate data into three bands corresponding to periods of 2 to 18

months, periods of 18 to 72 months, and periods in excess of 72 months. However, setting τ to

a number larger than 60 — corresponding to using more than five years of data for each window

— seemed unreasonable, given that we are using post-1975 data on unt. Consequently, each un
j
t

observation is based on the data unt−59...unt. An implication of this filtering window is that

fluctuations with periods larger than 72 months cannot be distinguished from fluctuations with

periods of 72 months. For that reason the low frequency band in our calendar-based model was

modified to include the frequency corresponding to a period of 72 months.23

In the second approach we allowed the data itself to choose the frequency band structures,

using the regression tree procedure described in Section 3.5 above. Since this search procedure

substantially distorts the sampling distribution of the F -statistic for testing the equality of the

coefficients on the k bands, the actual sampling distribution for this statistic was estimated using

2000 bootstrap simulations. In particular, we simulated T observations on πt from our estimate

of equation (18), drawing errors (with replacement) from the residuals of this equation. For each

set of T observations we repeated the search procedure, re-estimated equation (18), and stored the

resulting p-value corresponding to the F -statistic for testing the equality of β1...βk. The empirical

p-value at which the null hypothesis of no frequency dependence can be rejected was then calculated

as the fraction of these p-values which exceed the value obtained when equation (18) is estimated

using the actual sample data.24

23The Appendix lists the frequencies and periods associated with a 72-observation rolling window. Recall
from the discussion at the close of Section 3.6 that the sixty months of actual data (unt−59...unt) are
augmented by twelve months of projected data, so that the filtered value for each frequency band is twelve
months prior to the end of a 72-month filtering window.
24We thus bootstrap the distribution of the p-values rather than that of the F-statistic values. This was

necessary since the procedure potentially searches over both one-band, two-band, and three-band specifica-
tions, as well as considering the composition of the bands. Thus, the null hypothesis sometimes involved
one parameter restriction, and sometimes involved two parameter restrictions, rendering the F-statistics
themselves non-comparable.
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5.2 Empirical results

Estimating the standard Phillips curve specification of equation (17) over the sample period 1980:1-

2003:12 yielded:25

πt = α
−0.354
(−0.72)

+ β
−0.05
(−0.92)

unt +
12X
j=1

δjπt−j

F−test: p=0.000

+ θ1
0.10
(8.14)

Oil1t + θ2
−0.03
(−2.30)

Oil1t−1

+ θ3
0.04
(16.22)

Oil2t + θ4
−0.01
(−2.13)

Oil +
11X
i=1

θi+5month
i
t

F−test: p=0.000

+ θ17
−0.76
(−3.68)

BKt + εt (19)

For selected coefficients, we present coefficient estimates, with their estimated t-statistics in paren-

theses; for others, we simply present the F -test of the null hypothesis that all the coefficients in the

distributed lag structure are zero. The variables Oil1t and Oil
2
t , month

1
t ...month

11
t , and BKt are the

relative price of energy, seasonal dummy variables, and inflation break dummy variable described

in Section 5.1. Unlike many researchers (e.g., Gordon 1997; Brayton, Roberts and Williams 1999),

we find that longer lags in πt are not necessary to account for serial correlation. This is partly

due to our estimation period — we avoid the problematic 1970s — and partly due to the inclusion of

the inflation-break dummy variable. Estimating an analogous model for unt, we find evidence for

significant feedback in the π − un relationship; in particular, the null hypothesis that the lagged

inflation rate πt−1 is unrelated to movements in unt is rejected at the 2% level. Consequently, it is

necessary to use the one-sided filtering methodology described in Section 3.6 above.

Note that the coefficient bβOLS is not statistically significant. The estimation of a standard
linear formulation of the Phillips curve over this time period suggests that, in fact, there is no

Phillips curve. As the simulation results in Sections 4.2 and 4.3 suggest, however, a statistically

insignificant β estimate does not necessarily imply the lack of a statistically significant Phillips

curve relationship since any frequency dependence in this relationship renders bβOLSan inconsistent
estimate.

Table 1 presents the coefficients of interest for the analysis of frequency-dependence in the

Phillips curve equation. Three Phillips curve specifications are considered:
25Here and following, we quote results pertaining to the specification which included the inflation-regime

dummy, BKt, using an estimation procedure which produced White heteroskedasticity-corrected standard
errors. Neither of these choices is consequential regarding inference.
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• the “classical” Phillips curve (i.e., equation (17) above, which ignores frequency dependence)

• the “a priori calendar-based bands” model (which partitions the unemployment rate into

bands with periods less than 18 months, between 18 and 72 months, and greater than or

equal to 72 months),

and

• the “data-selected” model (which turns out to partition the unemployment rate into two

components: fluctuations with periods greater than 9 months, and fluctuations with periods

less or equal to 9 months).

Table 1 quotes both estimated t-statistics and estimated standard errors for the coefficient

estimates. For the calendar-based model, we also report the p-value of the F -test whose null

hypothesis is that coefficients β1,β2, and β3 are all equal. And for the data-selected model we also

report the bootstrapped p-value of the F -test whose null hypothesis is that coefficients β1 and β2 are

equal; this bootstrapping procedure accounts for the specification search involved in obtaining this

frequency band formulation. In either case, a rejection of the null hypothesis indicates statistically

significant frequency dependence.
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Table 1: Frequency Dependence in the Phillips Curve π − un Relationship

Classical A priori calendar-based bands Data-selected bands

untbβOLS = −0.05± 0.06
(−0.92)

un1t (≥ 72 months)bβOLS1 = −0.04± 0.06
(−0.67)

un2t (18 to 72 months)bβOLS2 = −0.03± 0.32
(−0.09)

un3t (< 18 months)bβOLS3 = −1.88± 0.92
(−2.05)

un1t (> 9 months)bβOLS1 = 0.003± 0.06
(0.04)

un2t (2 to 9 months)bβOLS2 = −4.16± 1.42
(−2.92)

F−test

p-value

— 0.131 0.0502

1. Asymptotic p-value, H0: β1= β2= β3

2. Bootstrapped p-value, H0: β1= β2

Three things are worth noting. First, the model using the data-selected frequency bands rejects

the null of frequency-dependence at the 5% level: the bootstrapped p-value for the testH0 : β1 = β2

is 0.05. Second, decomposing the unemployment rate using a priori calendar-based bands does not

yield statistically-significant evidence for frequency-dependence. This negative result highlights the

importance of avoiding strong priors and allowing the data to speak to the nature, and form, of

the frequency dependence. These two results are robust to modifications in a variety of modeling

choices.

Third, we find that the inflation impact of higher-frequency fluctuations in the unemployment

rate is economically, as well as statistically, significant. To quantify and display this impact, we

constructed the time series impactt as follows:

impactt := bβOLS2 ∗ un2t

Impact t quantifies the estimated impact of fluctuations in un2t on the inflation rate. Since un
2
t is

the high-frequency component of unt, we plot the smoothed absolute value of impactt against time

in Figure 2:
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Figure 2: Smoothed estimates of impact of high-frequency fluctuations in unemployment

rate upon inflation
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Figure 2 indicates that high-frequency fluctuations in the unemployment rate altered the infla-

tion rate by approximately 1.5% in the early 1980’s, and this impact declined to something less

than 1% by the end of our sample. In contrast, lower-frequency fluctuations in the unemployment

rate had no detectable impact upon inflation.

The existence of this frequency dependence indicates that much of the Phillips curve literature

suffers from mis-specification: since the coefficient on unt in a standard Phillips curve model is

frequency dependent, estimates of this coefficient previously reported in the literature are actually

an admixture of several different coefficients. In particular, the data indicate that fluctuations in

unemployment that persist less than or equal to approximately 9 months are significantly associ-

ated with a contemporaneous fluctuation (of opposite sign) in inflation. In contrast, fluctuations in

unemployment which persist longer than about 9 months are not significantly associated with con-
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temporaneous fluctuations in inflation. These results are quite consistent with the Friedman-Phelps

formulation: one might interpret transitory unt fluctuations, i.e. those with periods less than about

9 months, as deviations from the natural rate (thus negatively associated with contemporaneous

inflation); and more persistent unt fluctuations (with periods larger than about 9 months) might

be interpreted as movements in the natural rate — with the implication that such unemployment

fluctuations are not associated with significant inflation co-movements.

In summary, then, there is a Phillips curve relation — but it applies only to unemployment

fluctuations with periods less than or equal to approximately 9 months. Consequently, econometric

formulations of this relationship which fail to distinguish unemployment fluctuations within this

range from those outside it are mis-specified. This may help explain the apparent instability of

estimated Phillips curve models across disparate time periods; for example, the Phillips curve will

appear to be non-existent during periods in which unt fluctuations are quite persistent.

6 Conclusion

This paper makes two contributions. First, we present new econometric methodology which allows

one to consistently decompose a regression parameter across frequency bands, even when this

regressor is in a feedback relationship with the dependent variable in the model. This technique

is easy to apply and is applicable to a wide range of macroeconomic relationships.26 We also

demonstrate that two-sided filtering leads to inconsistent parameter estimates and yields unreliable

inferences about the existence of frequency-dependence when feedback is present in the relationship.

The second contribution of this paper is the application of this new technique to a standard

Phillips curve model using monthly US data from 1980-2003. Assuming that the relationship is not

frequency dependent, the estimate of the coefficient characterizing this relationship is essentially

zero. Allowing for the possibility of frequency dependence in this relationship, however, we find

that such frequency dependence is a significant feature of this relationship. In particular, our

26 Implementing RATS and FORTRAN code are available from the authors. Both of these programs use
1-sided filtering to decompose a given time series into components consisting of variation only over specified
frequency bands; as noted in Section 3, these components are only moderately correlated, and sum precisely
to the input time series.
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results show that there is a significant negative relationship for high-frequency fluctuations in the

unemployment rate —fluctuations whose periods range less than or equal to about 9 months — and an

insignificant relationship for unemployment fluctuations outside this frequency range. A standard

hypothesis test — bootstrapped to account for the specification search used in obtaining the BSIC-

minimizing band structure — confirms that this pattern is significant at the 5% level. Our results in

Figure 2 displaying the economic impact of these high-frequency fluctuations in the unemployment

rate upon inflation show that this impact, which is on the order of 1− 112%, is far from trivial.

What do these results mean? We draw three conclusions. First, our finding of statistically

significant frequency dependence in this relationship implies that nearly all previously estimated

Phillips curve coefficients are an admixture of two different frequency-specific coefficients — one

negative and the other zero. Thus, one implication of our results is that the apparent Phillips curve

relationship can be expected to weaken or disappear in time periods when the unemployment rate

fluctuates very smoothly.

Second, our results are supportive of the Friedman-Phelps theory. Fluctuations in the unem-

ployment rate whose period is less than around 9 months have an inverse relationship with inflation.

In contrast, fluctuations in the unemployment rate which persist for more than about 9 months have

no relationship with inflation; the Friedman-Phelps theory would identify these with fluctuations

in the natural rate.

Third, our work poses interesting challenges for forecasting and policy. The standard Phillips

curve relationship has often been viewed as at least useful for the purposes of forecasting; yet our

results indicate that only the high frequency components of unemployment rate fluctuations are

related to the inflation rate. This result strongly suggests decomposing the unemployment rate

into its various frequency components for use as an input to an empirical Phillips curve model for

forecasting use. Furthermore, our work has implications for Taylor-type monetary policy rules; in

particular, it implies that only transitory fluctuations in the unemployment rate impact inflation

rates, suggesting that these linear rules need to be re-thought.
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7 Appendix: Frequencies and periods associated with a 72-month

rolling filtering window

The Table below indicates explicitly which frequencies (and periods, in months) will correspond to

rows of the A matrix discussed in Section 3 with a rolling filtering window 72 months in length. A

sinusoidal fluctuation in xt with period equal to one of those listed here will appear entirely in the

filtered series (Djt ) containing that period; all other fluctuations will, to some degree, “leak” into

the filtered series corresponding to adjacent frequency bands. Passband filters with a smaller degree

of leakage can be formulated (e.g., Baxter and King (1999)), but do not yield filtered components

which add up to the unfiltered series value.

allowed frequency allowed period allowed frequency allowed period
0.014 72.00 0.264 3.79
0.028 36.00 0.278 3.60
0.042 24.00 0.292 3.43
0.056 18.00 0.306 3.27
0.069 14.40 0.319 3.13
0.083 12.00 0.333 3.00
0.097 10.29 0.347 2.88
0.111 9.00 0.361 2.77
0.125 8.00 0.375 2.67
0.139 7.20 0.389 2.57
0.153 6.55 0.403 2.48
0.167 6.00 0.417 2.40
0.181 5.54 0.431 2.32
0.194 5.14 0.444 2.25
0.208 4.80 0.458 2.18
0.222 4.50 0.472 2.12
0.236 4.24 0.486 2.06
0.250 4.00 0.500 2.00
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