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Abstract

This paper develops a test for a nonparametric null against a nonparametric alter-

native that takes into account maintained assumptions on the model. Economic theory

may suggest that the functions in the model have certain properties but can be silent as

to whether they have other properties of interest. In this case the researcher is interested

in a procedure that takes the maintained assumptions of the model as given and can test

whether it possesses additional qualities.

We define the null to be the model that imposes the maintained assumptions and a set

of additional properties of interest on the functions. The alternative is a model where the

maintained assumptions hold but the additional properties are violated. Both the null

and the alternative are assumed to be nonparametric. Two sieve sequences are built to

approximate the null and the alternative. These sieves are based on the shape restricted

estimator developed in Beresteanu (2004).

JEL Classifications: C12 C14
Keywords: Testing, Shape restricted estimation, Sieve method.
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1 Introduction

Hypotheses testing is one of the most important tasks for empirical work. Economic theory

may suggest that the functions in the model have certain properties but can be silent as to

whether they have other properties of interest. In this case, the researcher is interested in a

procedure that takes the maintained assumptions of the model as given and can test whether

it possesses additional qualities. For example, Beresteanu (2002) estimates a cost function

imposing monotonicity with respect to outputs and concavity with respect to prices as the

maintained assumptions on the cost function. Cost complementarities (submodularity of the

cost function with respect to the vector of outputs) is the property being tested. In addition

to being able to maintain basic assumptions on the model, it is important to have as less

unnecessary assumptions as possible. Especially, functional form assumptions not dictated

by economic theory are undesirable. This paper develops a test for a nonparametric null

against a nonparametric alternative that takes into account the maintained assumptions of

the model.

The tests discussed in the literature can be divided into three groups. The first group

includes tests where both the null and the alternative hypotheses assume that the regression

function belongs to a finite dimensional family of functions. The null hypothesis includes

some restrictions on the parameters of the regression function. These testing problems are

called here P − P testing problems. The second category of tests includes test where the

null hypothesis is parametric but the alternative is nonparametric, or in other words that the

alternative is a infinite dimensional family of functions. These testing problems are called

here P − N testing problems. The idea behind the P − N tests is that in P − P we can

reject the null against one specification of the alternative but accept it against another. In

P −N problems this is solved by having a nonparametric alternative. This paper discusses

the third family of tests where both the null and the alternative are nonparametric. These

tests are called N −N tests. As mentioned above both the null and the alternative can be

constrained with respect to the general family of functions on the support of the covariates

but the null will include additional assumption.

The test proposed here is based on sieve estimators for both the null and the alternative.

The null being the model which imposes the maintained assumptions and a set of additional
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properties of interest. The alternative is a model where the maintained assumptions hold but

the additional properties are violated. Both the null and the alternative are assumed to be

nonparametric. Two sieve sequences are built to approximate the null and the alternative.

Although the method presented in this paper is very general, in this version I focus on a

specific case - restricting the signs of the regression function’s partial derivatives. The sieves

constructed in this case are based on the shape restricted estimator developed in Beresteanu

(2004). He employs a B-spline function basis where the coefficients assigned to the basis are

constrained to assure that the sieve members satisfy the required properties.

One important feature of the shape restrictions discussed in this paper are their asymp-

tomatic behavior. Beresteanu (2004) shows that shape restrictions do not affect the rate at

which the estimator converges to the true regression function. As a result, both the estimator

under the null and under the alternative has the same rate of convergence. In other words,

the expected value of the distance between the estimator and the true regression function

behaves as Cn−r, where r is the rate of convergence. The difference between the two esti-

mators will be in the constant C. Under the null, the estimator that takes into account the

additional restrictions that are included in the null will be more efficient. This feature of the

N − N case is different from what is true in the P − N case. In the last under the null it

is possible to achieve
√
n rate of convergence where under the alternative the rate is usually

slower. The literature on P −N testing includes three approaches. The first by Wooldridge

(1992) considers building a sequence of non-nested tests. The second approach is described

by Hong & White (1995) and uses nested testing. This is a simpler approach and allows

the sieve sequence under the alternative to nest the sieve sequence under the null. The test

statistic here is based on a comparison between the sum of squared errors under the null

and under the alternative. The third kind of tests uses sample splitting and the null and

the alternative are estimated each using only half of the sample (see Yatchew (1992)). This

procedure is very costly especially in a nonparametric framework.

The literature on testing is vast. No attempt is being made to review all the literature

on this topic here. The reader is referred to Zheng (1996) for a nice literature review. This

paper differs from existing literature by assuming that both the null and the alternative are

nonparametric. A specific estimator that can handle restrictions on the regression’s partial

derivatives is employed here but the method is more general and can include many other
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situations.

The paper proceeds in the following way. Section 2 outlines the basic assumptions and

the testing problem discussed in this paper. Section 3 shortly describe the estimation of

regression functions under shape restrictions. Section 4 described a test that allows the null

to be nested in the alternative. The implications of shape restrictions to test power are

discussed in Section 5. A short Monte-Carlo simulation is given in Section ??. Section 6

concludes.

2 Statement of the Problem

This section outlines the assumptions made on the data generating process and on the esti-

mation and testing procedures. The notations used in this paper are also established. We

make the following assumptions.

Assumption 1: The data generating process. Let (Y,X, ε) be random variables in < ×
S ×< such that,
(i) S ⊂ <k is a compact set being the support of X.

(ii) E(Y |X = x) = θ(x) where θ is a finite Borel-measurable function on S and write the

model as

Y = θ(X) + ε.

(iii) Only Y and X are observed, their joint distribution is denoted by P and the marginal

distribution of X is denoted by PX .

(iv) ε and X are statistically independent. The marginal distribution of ε is denoted by Fε

and ε has 4 finite moments.

The test statistics described below are based on independent and identically distributed

observations {(xi, yi) : i = 1, 2, ...} taken from the joint distribution P. Next we state the

assumptions on the regression model.

Assumption 2: The functions space. The regression function θ ∈ Θ which is a family of
measurable functions on S. The functions in Θ are square integrable with respect to P, i.e.R
S [f(x)]

2 dP(x) <∞ for all f ∈ Θ.
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The purpose of this paper is to develop a test for the following hypotheses

H0 : θ ∈ Θ0
H1 : θ ∈ Θ1 (1)

where Θ0 ⊂ Θ and Θ1 = Θ\Θ0 are two subclasses of measurable functions on S. When both
Θ0 and Θ are finite dimensional parametric families and the null hypothesis involves linear

restrictions on the parameters of the functions in Θ, classical tests can be used. These tests

include, among others, Wald tests, likelihood ratio tests and Lagrange multiplier tests for

equality restrictions (see Amemiya (1985)). Analogous tests were developed by Gourieroux,

Holly & Monfort (1982), Kodde & Palm (1986), Wolak (1989), Andrews (1998) and Meyer

(2003) for linear inequality constraints. If Θ is nonparametric but Θ0 is parametric then

one of the various tests proposed for testing a parametric model against a nonparametric

alternative can be used (e.g. Wooldridge (1992), Hardle & Mammen (1993), Hong & White

(1995), Horowitz & Spokoiny (2001)). In this paper both Θ0 and Θ1 are nonparametric.

In the literature on testing a parametric null against a nonparametric alternative a sieve

method is used to construct a sequence of tests each of which includes a parametric null

against a parametric alternative. I use the same method to construct a series of tests when

both the null and the alternative are nonparametric. Let {Θ0,m}m=1..∞ be a sieve sequence

for Θ0 and {Θ1,m}m=1..∞ be a sieve sequence for Θ1. For each n we choose m(n) such that

m(n)→∞ as n→∞ and perform the following test

H0,m(n) : θ ∈ Θ0,m(n)
H1,m(n) : θ ∈ Θ1,m(n). (2)

Definition 1 Define the empirical measure Pn = 1
n

Pn
i=1 δXi where δXi are the Dirac

measures at the observation points. Given a set of functions Θ the empirical measure in-

duces a map from Θ to < by Pnf =
R
fdPn. For any f ∈ Θ define mf = (Y − f(X))

and define the empirical criteria function to be the empirical process Mnf = Pnmf =

1
n

Pn
i=1 (Yi − f (Xi))

2 and the limit process to be Mf = Pmf = E (Y − f (X))2.

Using this definition we define the estimators and the best predictors in the following way

θ̂j,n = arg min
f∈Θj,m(n)

Mnf, j = 0, 1

θ∗j,n = arg min
f∈Θj,m(n)

Mf, j = 0, 1

ε̂ij,n = yi − θ̂j,n(xi).
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To simplify the discussion we assume that the minimums above exist and yield a measurable

functions. A generalization to cases where this is not true using outer limits and outer

expectation is in Van der Vaart & Wellner (1996).

Let the scalar r(=) denote the optimal rate of convergence that a nonparametric regression
estimator can achieve if E(Y |X) is known to be in = in the sense of Stone (1980). It is clear
that since Θ0 ⊂ Θ, we have that r(Θ0) ≥ r(Θ). In this version of the paper we focus

on the case where r(Θ0) = r(Θ) (and thus also r(Θ1) = r(Θ)). For simplicity we denote

r = r(Θ0) = r(Θ).

3 Estimation under restrictions on partial derivatives

Although the framework described above is very general, this paper focuses on a certain type

of shape restrictions - restrictions on partial derivatives of the regression function. These

restrictions are very common in economics and among them one can find monotonicity, con-

cavity and supermodularity. The sieve used here is based on a B-spline series estimator that

allows imposing shape restrictions on the regression function in a convenient way. Other

series estimators or sieves can be used. Therefore, some general conditions are stated and

then the specifics of the B-spline estimator are reviewed.

Consider a sieve which is a sequence of finite dimensional linear spaces. These spaces

include finite expansions using a base of functions such that the union of these spaces is dense

in Θ0 and in Θ. Assumption 3 bellow lists the basic requirements from the basis functions

on which the sieve is based. In what follows we use m instead of m(n) to simplify the

notations. Places where m indicates a constant not depending on n are indicated specifically.

Let Ψm =
©
ψm,0, ..., ψm,m

ª
be the m + 1 functions that span both Θ0,m and Θ1,m. The

following assumption list the conditions on these bases.

Assumption 3: Θj,m =
n
θ̃ : θ̃(x) =

Pm
k=0 akψm,k

o
∩ Θj for j = 0, 1. Let Ξn be the

n× (m+ 1) matrix whose enteries are the basis functions
©
ψm,0, ..., ψm,m

ª
evaluated at the

observation points (x1, ..., xn). We assume that

(a) Ξ0nΞn is nonsingular for all n sufficiently big a.s

(b) for each i, ψm,iΞ
0
nΞnψm,i → 0 a.s

(c) ∃©θ∗1,n ∈ Θ1,mª such that P ¡θ∗1,n − θ
¢2 → 0.
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These assumptions are similar to the assumptions that guaranty asymptotic normality of

series estimators as in Newey (1997).

Imposing shape restrictions on the regression function is discussed next. The sieve used

here is the shape-restricted estimator sieve suggested in Beresteanu (2004). For each m, both

Θ0,m and Θ1,m are based on a linear combination of a B-spline wavelet basis. For simplicity

assume that X is a one dimensional covariate with support [0, 1]. The basis functions are

constructed by dividing the interval [0, 1] into m equally spaced grid points and having each

element of the basis centered around one of the grid points. Beresteanu (2004) shows how to

impose restrictions on an estimator which is based on these basis functions.

Let Ψl
m =

©
ψl
m,0, ..., ψ

l
m,m

ª
be the basis of B-spline functions of order l centered around

the equidistant grid Γm = (0,
1
m , ..., 1). The set of splines defined by the basis Ψl

m is

S(Ψl
m) =

(
f : f(x) =

mX
i=0

βiψ
l
m,i(x), |θi| ≤ ∆

)
(3)

where ∆ is some very big and known constant. Beresteanu (2004) shows that imposing

restrictions on partial derivatives amounts to imposing linear inequality constraints on the

coefficients {βi}mi=0. If we denote by β the vector of coefficients then he shows how to build a
matrix AM such that if we impose AMβ ≤ 0 the estimator is monotone another matrix which
we denote by AC can be used to impose convexity by imposing ACβ ≤ 0. Close form formula
is given for the restriction matrix for any restriction involving signing the partial derivative

of the regression function. To see this we make the following definitions.

Definition 2 A differentiation matrix of size p is a p× (p+1) matrix and is denoted by
Dp and defined as

Dp =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

...

0 · · · 0 1 −1 0
0 · · · 0 0 1 −1


p×(p+1)

A function f is monotone increasing on the grid vector Γm if f(0) ≤ f( 1m ) ≤ ... ≤ f (1) or

in vector notations Dmf(Γm)
0 ≤ 0 where f(Γm) is interpreted as the vector of the values of

the function f evaluated at the coordinates of the vector Γm. For concavity of the function f
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on the grid vector Γm it needs to satisfy Dm−1Dmf(Γm)0 ≤ 0. This can be easily generalized
to restrictions on any partial derivative and to a multi-dimensional setting as well using tensor

product of B-splines.

The least squares estimator based on the function basis Ψl
m is:

s.t.

min
β

1
N

PN
i=1

¡
yi −Ψl

m(xi)β
0¢2

A
p
mΨm(Γm)β

0 ≥ 0
(4)

where A
p
m is the appropriate restriction matrix to impose non-negative pth partial derivative

on the expansion of B-spline function on the equidistant grid Γm. Theorem 1 in Beresteanu

(2004) shows that for an appropriate choice of B-spline basis, β̂
0
Ψm(x) satisfies the shape

restrictions over [0, 1] and not only on the grid points. To avoid certain difficulties we assume

the following on rank of A
p
m.

Assumption 4: The constraint in (4) is such that the rank(Ap
m) ≤ m+ 1.

4 Testing

Testing is based on the following property of the sieve sequence:
R ¡

θ∗j,n(x)− θ(x)
¢2
dµ(x)→ 0

as n → ∞ for both j = 0 and j = 1 under the null. Under the alternative this is true only

for j = 1 where as for j = 0 the distance between θ∗0,n and θ converges to some positive

number. An ideal test can include a situation where the alternative is shape restricted and

the null contains additional restrictions which we want to test. For example, consider the

case where we want to test whether the regression function is concave while maintaining the

assumption that it is monotone. Under the null we solve min
β

1
n

Pn
i=1

¡
yi −Ψl

m(xi)β
0¢2 subject

to A1mβ
0 ≥ 0 and A2mβ

0 ≥ 0. Under the alternative we minimize the same criteria function

but only under the constraint that A1mβ
0 ≥ 0. In this version of the paper we consider only

the case where the alternative is unconstrained and only the null hypothesis includes shape

restrictions on the regression function.

4.1 Normally distributed errors

We start by looking at a simple problem and build from it. Consider testingH0,m againstH1,m

when m is a fixed number and the number of observations may tend to infinity. In addition
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we assume that the error term ε is identically distributed normal with know variance σ2 > 0.

Consider the following test statistic

Fn =Mnθ̂0,n −Mnθ̂1,n. (5)

The assumption that the alternative is unconstrained means that only estimation under the

null hypothesis involves linear inequality restrictions. For short notation let Am be the matrix

representing the linear inequality constraints and let Cm = {β|Amβ ≥ 0} . Several algorithms
have been suggested for finding the minimum of a least squares problem in a close convex

polyhedral like Cm (see Fraser & Massam (1989) and Meyer (1999)).

Wolak (1989) develops the distribution of the test in (5).1 To understand Wolak’s result

we first state the following result.

Theorem 1 (Wolak (1989, Corollary 1)) Let µ̂ = µ+ v where µ is a P -dimensional vector

and v˜N(0,Ω) where Ω is a P × P covariance matrix. Let H0 : µ ≥ 0 and H1 : µ ∈ <P be a

test. If µ̃ is the solution for the quadratic programing

min
β
(µ̂− β)0Ω−1 (µ̂− β) (6)

s.t β ≥ 0

then

a) µ = 0 is the least favorable value of µ under the null hypothesis.

b) the test statistic (µ̂− µ̃)0Ω−1 (µ̂− µ̃) is distributed
PP

k=0 χ
2
kw(P,P−k,Ω) where χ20 is zero

with probability 1 and w(P, k,Ω) is probability that µ̃ has exactly k positive elements when

µ = 0.

The constraints cone Cm, can be divided into sub-cones each corresponding to a different

set of constraints being binding and other nonbinding. The distribution of the test statistic

above depends on the probabilities of each subset of constraints to be binding in a given

sample. Next we use Theorem 1 to state the following result for constrained regressions.

1Robertson, Wright & Dykstra (1988) consideres Fn = Mnθ̂0,n −Mnθ̂1,n /Mnθ̂0,n. They show that the

distribution of Fn is a mixture of Beta distributions. Let Bα,β be a random variable having a Beta distrib-

ution with parameters α and β. Then Robertson et al. (1988) show that Pr (Fn ≤ a) = k
d=0 Pr(Bk−d

2
,d
2
≤

a) Pr (D = d) where k is the number of independent lines in A and D is a random variable indicating the

number of independent binding constraints and Bα,0 ≡ 1 and B0,β ≡ 0.
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Consider the quadratic programing problem in (4). Let l = rank(Am) and let Bm be such

that Tm = (A
0
m B0m)0 is of full rank m+ 1. This is possible in light of Assumption 4. Define

the following statistics

F̄ = min
³
Tb− Tb̂

´0 ¡
T 0−1(X 0Ω−1X)T−1

¢ ³
Tb− T b̂

´
(7)

s.t. Amb ≥ 0

where b̂ is the unconstrained minimizer. This quadratic programing problem can be rewritten

as
³
f − f̂

´0
V −1(f − f̂) where f = Tb, f̂ = T b̂ and V =

¡
T 0−1(X 0Ω−1X)T−1

¢
.

Theorem 2 (Wolak (1989, Theorem 2)) In the quadratic programing problem (4)

a) any β∗ such that Amβ
∗0 = 0 can serve as the least favorable for the constrained hypothesis

b)Let W = minf

³
f − f̂

´0
V −1(f − f̂) such that f1 ≥ 0 where f1 is the vector of the first

lcoordinates of f . Then W (and therefore also F̄ ) is distributed
Pl

k=0 χ
2
kw(l, l − k,Σ) where

Σ = A0m(X 0Ω−1X)Am.

The weights in Theorems (1) and (2) require knowing the weights w(·, ·, ·) for any number
of restrictions and any covariance matrix. Several close form expressions are available in case

the number of restrictions is not big. See for example the references in Wolak (1989, Theorem

2). Has he suggest these weights can be also computed using a Monte-Carlo method.

Let µm =
Pl

k=1 kw(l, l−k,Σ) be the expectation of the random variable
Pl

k=0 χ
2
kw(l, l−

k,Σ) and 2µm be its variance. The test statistic we consider in this paper is

F̃ =
F̄ − µm

(2µm)
1/2

.

Notice that this is a modification of the test statistic used in Hong & White (1995). The

difference is that the expectation of F̄ are no longer m and 2m respectively but µm and

2µm since F̄ is distributed as a mixture of chi-square distributions rather than a unique chi-

square as is the case in Hong & White (1995). The advantage of this test statistic that it is

symptomatically pivotal as the following theorem suggest.

Theorem 3 Under assumptions 1− 4 above and for a fixed m,
√
nF̃

D→ N(0, 1).

Further results including rates of convergence and the rate at which m(n) should go to

infinity are under development.
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4.2 Non-normal distribution of errors - bootstrap test

This section deals with the case where εi’s are not necessarily normally distributed. The

course of action will be to show that a bootstrap procedure will work for this case. This

development is useful also for the part where the errors are known to be normally distributed.

The distribution of the test statistic in (7) is hard to compute and thus a bootstrap procedure

is going to be useful in that case as well.

The following Monte-Carlo experiment was carried out. The model Y = (12 + 2X)
2 + ε

with ε ∼ N(0, 1) was employed. First, a null hypotheses which is correct was assumed and

the Monte-Carlo experiment using 2000 repetitions computed the rejection probability which

corresponds to the size of the test. The results are described in Table 1. Second a null

hypotheses which is wrong was tested for the same samples and the rejection rate which

corresponds to the power was computed. The results for the power of the test are described

in table 2. In both cases the sieve mesh was 6 for N = 400 and 8 for N = 800.

Table 1: Rejection rates
Model and Hypotheses N = 400 N = 800

DGP: Y = (0.5 + 2X)2 + ε

H0: θ is convex and monotone

H1: θ is non-convex and monotone

5.18 4.60

Table 2: Rejection rates
Model and Hypotheses N = 400 N = 800

DGP: Y = (0.5 + 2X)2 + ε

H0: θ is concave and monotone

H1: θ is non-concave and monotone

81.25 89.015

5 Do shape restrictions increase power

In the introduction I was arguing that maintaining some assumptions on the model even on

the alternative is interesting from economic perspective. Here I ask the question whether this

has any statistical justification. To illustrate the question consider the following example.

The researcher is interested in testing whether the regression function is concave. She is

certain, however, that the regression function is monotone increasing. Two courses of actions
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are possible. In the first we define Θ0 are the set of monotone and concave functions and Θ1

as the set of the concave functions. The other option is to define Θ0 as the set of concave

functions and leave Θ1 to be unrestricted. In other words, the monotonicity assumption is

not being tested and the question is whether imposing it on the null and alternative assist in

testing the assumption of interest.

6 Discussion and further research

The approach in this paper is very general. The null hypothesis is assumed to be nonpara-

metric and represents the basic model plus some additional assumptions on the functions

that need to be tested. Few interesting cases can be investigated. First, the null can be a

space of functions of the same dimension as the alternative. For example the case discussed

in the previous section. The set of functions which are both monotonic and convex is a subset

of the set of monotonic functions but is of the same dimension. In this case it is plausible to

assume that the sieves built for the null and the alternative will converge at the same rate to

their respective spaces. Another interesting case is when both hypotheses belong to a non-

parametric spaces but the null is of lower dimension. For example, the set of monotone and

homogeneous of degree one functions (with more then one variable now) is included in the set

of monotone functions but now the homogeneity assumption reduces the dimensionality of

the null. In this case it would be reasonable to use different rates for the two sieve sequences.

Another interesting question is whether including additional information improves the small

sample power of the test. For example if we want to test whether the regression function

is convex but we know that it is also monotone. We can set the test such that both the

null and the alternative will satisfy monotonicity and test for convexity. We can also ignore

monotonicity and just compare an estimator which is convex with an estimator which is un-

restricted. Beresteanu (2004) shows that using prior information is valuable in small samples

but not asymptotically. He also constructed a measure of information for these cases. It will

be interesting to investigate whether these results follow to the testing question.

The small simulations done are very encouraging. I used the asymptotic properties of the

test but it will be interesting to see whether a bootstrap test will preform better in small

samples.
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