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Abstract

This paper describes an information-theoretic approach for analyzing count out-
comes. It discusses extensions to the standard Poisson regression model that incorpo-
rate such real-world features as overdispersion, abnormally inflated counts, truncation
& censoring, and nesting with minimal reliance on distributional assumptions. At the
conference, several examples, using real-world data sets, will be used to demonstrate
the information-recovering potential of the framework.

1. INTRODUCTION

In applied work, researchers are often confronted with outcomes that appear as non-negative

integers. Such outcomes could be modeled in the standard linear framework either in their

manifest forms or after some transformation (e.g., logarithmic, freeman-tukey, etc.). Rec-

ognizing the discrete nature of the outcomes, their highly skewed nature, the presence of

one or more abnormally frequent outcomes, and other such peculiarities, such an approach
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is usually considered sub-optimal and researchers typically rely on Poisson based regres-

sions or some variants thereof.

Regression analysis of count data are an extensively researched and written about

topic in econometrics and several excellent reviews and texts exist (Cameroon and Trivedi,

1998; Winkelmann 2003). However, there are several features of count data models that

are currently subjects of ongoing research. These included the analysis of truncated counts

and censored samples, modeling the effects of endogenous regressors, the issue of unob-

served heterogeneity (nesting effects) as well as extensions of the modeling framework to

small samples. In addition, there are constant innovations to the modeling of extra-Poisson

variation (overdispersion) in count outcome models and models that account for the pre-

ponderence of some outcomes (e.g., zero inflated count outcome models or hurdle models).

In this paper, we approach all these models in an information-theoretic framework

and demonstrate the flexibility of the approach when an analyst is faced with one or more

of these real-world challenges.

This paper is organized as follows: In the next section (TO COME), we give an

overview of the count outcome setting and provide a concrete statement of the problem

an econometrician faces. In the section following that, we provide a detailed description of

how the information-theoretic approach can be applied to the count data setting. We begin

by make some simple assumptions that mimick the assumptions underlying the Poisson

distribution. Not surprisingly, it is seen there that these assumptions yield information-

theoretic solutions identical to those obtained under the Maximum Likelihood estimation

and inference framework applied to the Poisson model. That section, however, provides

a slightly different way of motivating and deriving Poisson models and therefore suggests

various places where assumptions could be relaxed and flexibility introduced. In the section

following that we explicitly deal with one extension at a time by relaxing some assumtions
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and/or adding futher structure. Each of these modifications yields a model that has one or

more of these real-world features that one may wish to permit.

At the conference, we will demonstrate the information-recovery potential of the

framework by applying it to several real-world data sets. We will also provide some (lim-

ited) comparisons with other familiar model. This paper does not provide any simulation

results. That work is ongoing.

2. BACKGROUND

(TO COME)

3. SETTING UP THE BASIC PROBLEM

Consider, as a point of departure, that a set of N signals (s1, . . . , sN) are emitted from

some source (nature, society, experimental apparatus, etc.) that we do not observe directly.

Instead, we only have available imperfect manifestations of these signals in the form of N

outcomes (y1, . . . , yN). Assume also that theory provides us only weak and partial guidance

about the possible predictors of the signals and we wish to utilize all this knowledge to

recover information about the signals.

In order to proceed, let us first convert all unknowns into proper probabilities. To do

so, let us define each signal as an expectation over a support space. That is, let

sn = z′pn =
∑

m

zm pmn ∀n, (3.1)

where z is an M dimensional signal support space and pn are a set of M proper probabilities

that, when applied to the support space, yield the expected outcome—the signal. For sig-
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nals yielding count outcomes, the support space is readily defined as a sequence of possible

counts z = (0, 1, 2, 3, . . . , zM)′ that encompasses the realm of possibility (i.e., we assume

zM is large enough). No assumptions are made about the probabilities of interest other than

that they are proper (i.e., pmn > 0 ∀n,m and
∑

m pmn = 1 ∀n).

Next we incorporate knowledge about the exogenous predictors by requiring the sig-

nals to satisfy certain constraints. In order to do so, consider defining certain features of

the signals. E.g., 1
N

∑
n xknsn is the covariance between the kth predictor and the expected

outcomes (the signals). A natural sample analogue to use for this feature would be the

covariance between the predictors and the observed outcomes. That is, if the signals are to

mimick the structure in the observed outcomes, then it is reasonable to assume that

∑

n

xknyn =
∑

n

xknz′pn ∀k (3.2)

This may exhaust all the knowledge we have about the process but it results in a

system of N × M unknowns with only K + N equations linking them—an ill-posed in-

version problem. As such, there are an infinite number of solutions that could satisfy the

constraints. Following the literature in information-theory, one way out of this seemingly

ill-defined problem is to maximize the incertainty implied by the probabilities while requir-

ing them to satisfy all known constraints (Jaynes 1957a; Jaynes 1957b).

Using Shannon’s (1948) Entropy as the criterion to quantify uncertainty, the informa-

tion recovery task gets mathematically formulated as the following constrained optimiza-

tion problem:

max
p

H(p) = −
∑

n

p′n log pn (3.3)

subject to the K moment constraints (3.2) and the adding-up constraint (
∑

m pmn = 1 ∀n).

If, in addition to the above pieces of information, we have some non-sample informa-
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tion in the form of prior probabilities, defined over the same space as the posteriors, then we

can formulate the information recovery task as a constrained minimization problem where,

subject to sample moment and adding up constraints, we minimize the cross entropy or

the Kullback-Leibler directed divergence between the posteriors and the priors. If we have

prior probabilities p0
mn then the problem is to

min
p

K (p; p0) =
∑

n

p′n log
(
pn/p

0
n
)

(3.4)

subject to (3.2) and the adding up constraints. This problem can be solved analytically (up

to a set of lagrange multipliers) by setting up the primal lagrangian function as

L =
∑

n

p′n log
(
pn/p

0
n
)

+
∑

n

ηn

{
1 − 1′pn

}

∑

k

λk

{∑

n

xknyn −
∑

n

xknz′pn

}
(3.5)

where {λk} and {ηn} are the sets of lagrange multipliers related to the moment and adding

up constraints, respectively. Solving the first order conditions, we obtain solutions for the

probabilities of interest in the form

p̂mn =
p0

m exp(zm
∑

k xknλ̂k)∑
m p0

m exp(zm
∑

k xknλ̂k)
=

p0
m exp(zmx′nλ̂)

Ω̂n
(3.6)

where non-zero priors and the exponential form of the probabilities ensure that they are

non-negative and the partition function Ωn ensures that the probabilities are proper (sum to

one).

Different assumtion about the prior probabilities, however, lead to very different mod-

els. As noted by Masaumi (1993), the cross entropy solution results in the ML Poisson

model if we assume that the prior probability for observing zm counts is exactly (zm!)−1. To
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see this, note that using prior probabilities of p0
m = 1

zm! ∀m and assuming a large enough zM,

the general solution of (3.6) can be written as

pmn =

1
zm! exp(zmx′nλ)

∑∞
m=0

1
zm! exp(zmx′nλ)

=

1
zm! exp(zmx′λ)

exp(exp(x′nλ))

=
exp(− exp(x′nλ)) exp(x′nλ)zm

zm!

=
exp(−αn)αzm

n

zm!
(3.7)

which is the Poisson distribution with a log link function, i.e., αn = exp(x′nλ) or logαn =

x′nλ.

Inserting the optimal solution (3.6) obtained above back into the primal constrained

minimization problem (3.4), we can solve for the unconstrained dual version of the problem

that is a function of the K lagrange multipliers λk. The dual objective function is

L∗ =
∑

nk

λkxknyn −
∑

n

log Ωn (3.8)

where Ωn is the partition function defined above. The dual objective function typically does

not have an analytical solution but a numeric one can be obtained in a variety of software

that permit non-linear unconstrained optimization. Not surprisingly, the resulting solutions

are identical to the parameters of the poisson model with a log link fuction if we permit zM

to be large enough.1.

1In empirical work, it turns out that setting zM to a value about twice as high as the largest value in the
observed sample is sufficient to obtain parameter estimates identical to the Maximum Likelihood Poisson
model
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4. SOME EXTENDED FORMULATIONS

In this section we discuss various extensions to the basic model described above that ad-

dress the various challenges that researchs typically face when analyzing real-world data.

4.1. Extra-Poisson Variation

A problem that is typically encountered in applied work with count outcomes is that of

overdispersion. Poisson models have the restrictive assumption that the first two moments

of a signal are identical. In most applied work, and for a host of reasons, this assump-

tion can be violated and researchers have invented an impressive array of approaches to

test for and account for this real-world feature. Basically, these solutions all boil down

to the introduction of an overdispersing random variable inside the link function and var-

ious assumptions about this random variable (or its exponent) yield different models. For

example, assuming that the exponent of this variable follows a gamma distribution yields

the negative binomial model for count outcomes. Among the various Negative Binomial

models, various parameterizations linking the variance of the overdispersed count outcome

to its mean exist. The choice among these options is typically a matter of mathematical

convenience and/or software availability. Reaserchers have also proposed finite mixture

models that replace the assumption of a continuous random disturbance term with that of a

discrete disturbance term with several (empirically determined) points of support.

In this paper, we take a slightly different approach. Noting that under the informatio-

theoretic formulation, as described in the previous section, the introduction of the prior

probability of p0
m = 1

zm! was somewhat arbitrary, we proceed by questioning this restrictive

assumption.

The solution for the Poisson regression model as obtained in (3.6) may be written in
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a slightly different way, by taking the priors inside the exponent, as follows:

pmn = Ω−1
n exp(zmx′nλ − log(zm!)) (4.1)

which immediately suggests that setting the priors to 1
zm! results in a model that places a

restriction of −1 on the term log(zm!). Why not relax this restriction by parameterizing the

dependence of the probability on the log(zm!) term directly and by letting the data determine

the magnitude of this dependence?

As noted by Zellner and Highfield (1988), Ryu (1993), and Golan, Judge, and Miller

(1996), among others, Maximum (and Cross) Entropy distributions are solutions to par-

ticular kinds of constrained optimization problems where the constraints are suitable mo-

ment restrictions. Therefore, to obtain a solution that includes a parameter on the term

log(zm!) we need only introduce appropriately constructed moment constraints. It is easy

to see that the moment we need to constrain in order to obtain this parameterization is
∑

n
∑

m log(zm!)pmn and the natural quantity to set this moment equal to is its sample ana-

logue. Therefore, in addition to the moment constraints of the previous section, if we

introduce the constraint

−
∑

n

log(yn!) = −
∑

n

∑

m

log(zm!)pmn, (4.2)

then the solution we obtain is

pmn = Ω−1
n p0

m exp(zmx′nλ − δ log(zm!)) (4.3)

where the new set of priors are assumed to be uniform (i.e., p0
m = 1

M ∀m). Now, we may test

the restriction underlying the Poisson model—that the parameter δ be set to 1. In effect, this
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extension allows us to model overdispersion without assuming any specific overdispersing

random variable but rather by relaxing a restrictive assumptions we had made to derive the

Poisson model in the first place.

To see the similarity of the Cross Entropy problem (3.8) and a more flexible one with

a restriction of δ = 1, note that this restricted dual would be written as

L∗ =
∑

kn

λkxknyn − 1 ·
∑

n

log(yn!) −
∑

n

[∑

m

p0
m exp(zmx′nλ − 1 · log(zm!))

]
. (4.4)

Since addition of a term not involving any of the parameters with respect to which a func-

tion is being optimized does not alter the optimum solutions, the solutions resulting from

optimizing (4.4) will be identical to those obtained by optimizing (3.8).

4.2. Systematic Extra-Poisson Variation

It is evident that the flexibility allowed in the last section can be futher extended to allow

systematic variation in the δ parameter. That is, we may think of the added constraint

as using only the first column of the design matrix to impose constraints on the observed

values of − log(yn!). A natural extention to this flexibility is to impose (and explicitly test)

moment constraint utilizing covariance structures between the xkn and − log(yn!). To do that

we can include, in the constrained optimization formulation, the following set of constraints

−
∑

n

xkn log(yn!) = −
∑

n

xkn

∑

m

log(zm!)pmn ∀k (4.5)

so that the optimum solutions are now

pmn = Ω−1
n p0

m exp(zmx′nλ − log(zm!)x′nδ) (4.6)
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4.3. Preponderence of zero counts

In many applied setting the outcome variable has a pre-ponderence of 0 counts. There may

be theoretical (or empirical) reason to expect that the mechanism resulting in some counts

versus none is quantitatively or qualitatively different from the mechanism resulting in the

number of counts. For example, in the literature on criminal activity, it is argued that what

motivates people to commit some crime (versus none) may be different, qualitatively and

quantitatively, from the behavioral model explaining the number of crimes they commit.

The extension to allow for a preponderence of zero counts can be easily incorporated in the

above framework by creating additional constraints on individual elements of the probabil-

ity vector pn.

One can define, for example, a new binary choice outcome y2n = 1[yn = 0] where 1[·]
is an indicator function yielding 1 if the condition [·] is satisfied and 0 otherwise. Since

p1n is the probability associated with the proposition zm = 0, i.e., that no counts will be

recorded, and since
∑M

m=2 pmn is therefore the probability that some counts will be observed,

we can create a new set of constraints using the new outcome y2n. Defining a new support

space, z2 = (1, 0, 0, . . . , 0)′ we can define the signal that results in the new outcome y2n as

z′2pn. Note that both sets of signals (z′pn and z′2pn) are constructed from the same set of

probababilities and, therefore, the source of uncertainty in the model remains fixed. We are

simply formulating an additional set of constraints on the same set of probabilities. These

additional constraints can be written as

∑

n

xk2ny2n =
∑

n

xk2nz2pn ∀k2 = 1, . . . ,K2 (4.7)
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so that the solution for the probabilities of interest are obtained as

pmn = Ω−1
n p0

m exp(zmx′nλ + z2mx′2nλ2 − δ log(zm!)) ∀m, n. (4.8)

Note that, by definition of the problem, when zm = 0 then z2m = 1 and when zm > 0 then

z2m = 0. Hence, there are two sets of lagrange multipliers operate over two different regions

of the original support space z. Moreover, the set of characteristics xk2n can be the same or

different from the orginal set of covariates xkn.

In addition to accomodating a pre-ponderence of 0 counts, nothing precludes re-

searchers from specifying a preponderence of any other count. For example, when mod-

eling the number of months (count of months) that defendants are senteced to prison for,

judges typically impose sanctions at rounded-off months (eg., 12 months, 18 months, 60

months, etc.). Hence, there may be a preponderence of zero counts (when defendants are

not sentenced to any prison) or a preponderence of other points in the support space. This

setting may require specification of models that allow abnormally high counts at various

other points on the support space.

4.4. Truncated counts and censored samples

In several real-world setting the data may be sampled from only a truncated part of the

true realm of possibility. In order to deal with such truncated counts in the information-

theoretic setting, it is trivial to restrict the support space to that region where we know the

outcomes were sampled from. For example, if the outcomes were truncated between the

counts of 0 and 9, then all we need do is define the support space as z− = (0, 1, . . . , 9)′ and

create moment constraints using these truncated signals. Another example where truncated

count models would be applicable is if only positive counts were observed (e.g., surveys
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of prisoners that may ascertain fro them for the number of crimes they have committed in

the past). Clearly, any variation in the observed outcome is subject to this truncation and,

therefore, we need only ensure that the variation we allow in the expected outcome (the

signal) is subject to the same truncation. In other words, having defined the signal support

as above, we can create moment constraints of the form

∑

n

xknyn =
∑

n

xknz′−pn ∀k (4.9)

where the objective function is now defined only over probabilities corresponding to the

truncated regions of the support space (i.e., p′−n log(p−n/p0
−n)). Once we recover the largange

multipliers from this problem, we can then recover the complete untruncated signals by ap-

plying these lagrange multipliers to the complete untruncated region.2

In addition to the problem of truncated outcomes, sometimes researchers face cen-

sored samples whereby the outcomes for some portion of the sample are not observed or

are incorrectly recorded. For example, it is not uncommon to see surveys that allow a single

digit response to a question like “how many times did you experiece event E?” and “check

this box if more then 9.” This would indicate that for a part of the sample we have outcomes

truncated in the region 0 through 9 and for the remaining part of the sample we only know

that the count was above 9.

In addition to the fact that the signals from the uncensored part of the sample need to

be truncated, we now have fewer outcomes observed than we have signals emitted. That

is, from the total sample of N units, we observe an uncensored outcome for only N1 < N

units. Hence we can set up two sets of constraints—one as described above for the case of

truncated counts and another that models the probability of censoring. If censoring is at a

2The truncated setting discussed here applies only to exogenous truncation and not to incedental trunca-
tion.
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certain point on the support space, then it is easy to define the probability of being selected

in the uncensored sample as some function of all the probabilities corresponding to the

truncated part of the support. Let us denote the probabilities over the truncated part of the

support space by p−n. Let the fact that an observation is not censored be defined as a second

outcome (say y2n) and let us define a new support space z2 = (1, 1, . . . , 1, 0, 0, . . . , 0)′ that is

set to 1 for all points that fall within the truncated region of the support space and 0 for all

points that fall outside that truncated region. Then we have the following set of constraints

∑

n∈N1

xknyn =
∑

n∈N1

xknz′−p−n ∀k (4.10)

∑

n

xk2ny2n =
∑

n

xk2nz2pn ∀k2 (4.11)

where uncertainty is defined over the entire untruncated realm of possibility. We are now

introducing the additional requirements that the process determining the count outcome is

different from the process that determines the censoring outcome (while acknolwedging

that the former can only be observed within a truncated region of the support space). Note

that there is no reason for the two sets of constraints to have different sets of covariates—

they are identified because the support spaces are distinct.

Once again, as wih the case of the truncated count model, once we have recovered

the set of Lagrange multipliers we are after, we may then apply those to the entire realm

of possible outcomes and recover complete untruncated signals for all units in the sample

(censored and uncensored).

4.5. Endogenous switching

Unlike the sample selection case (above) where the binary endogenous choice is one of

selection into and out of the truncated region, sometimes researchers are confronted with
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the need to analyze count outcome models with binary choices as predictors where the bi-

nary choice may be endogenous. Rather than treat this as a selection process in and out

of the truncated region of the support space, Terza (1998) uses the endogenous switching

model that treats the binary endogenous choice as one of switching between two regimes.

Under the Information-theoretic setting this means we only observe one outcome per ob-

servational unit. But, this outcome could be a result of a signal emitted from one of two

independent sources. Let these signsl from the two distince sources be denoted by s1n and

s2n. The probability that any given observation was a result of a signal emitted from one or

the other of these two (mutually exclusive and exhaustive) sources may be defined as w1n

and w2n. Then, if we define a new support space as z2 = (0, 1)′ and write wn = (w1n,w2n)′

we obtain the following system of signal/outcome approximations.

yn ≈ w1nz′p1n + w2nz′p2n ∀n (4.12)

y2n ≈ z′2wn ∀n (4.13)

where p1n and p2n are now the conditional probabilities used to re-parameterize the signals

form the two sources and y2n is the endogenous binary choice.

We can now create two sets of moment constraints in order to convert the above in-

equalities to equalities. However, there are identifying restrictions that must be met. That

is, the sets of covariates used in the two constraints may overlap but may not be identical.

Also, since the model includes conditional probabilities, we will need to acknowledge this

explicitly in the objective function when optimizing the KL directed divergence measure.

The new objective function is defined as

min
p1,p2,w

∑

n, j=1,2

w jn log(w jn/w0
jn) +

∑

n, j=1,2

w jn

{
p′jn log(p jn/p

0
jn)

}
(4.14)
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In order to proceed we can define a composite probability measure q jnm = w jn · p jnm

such that w jn and p jnm are marginal and conditional probabilities of this measure. That is,

we can write

1 =
∑

jm

q jmn ∀n (4.15)

w jn =
∑

m

q jmn ∀n, j = 1, 2 (4.16)

p jmn =
q jmn

w jn
=

q jmn∑
m q jmn

∀n,m, j = 1, 2 (4.17)

Using these definitions in the objective function, and letting q0
mn j = p0

mn j · w0
n j, we obtain a

new objective function defined solely in terms of q as

min
q

K (q : q0) =
∑

n

∑

j=1,2

q′jn log(q jn/q
0
jn) (4.18)

and the new sets of constraints can be defined over the support spaces z1 = (z′, z′)′ and

z2 = (0, 0, . . . , 0, 1, 1, . . . , 1)′ which are both 2M dimensional vectors of support spaces.

These constraints can be written as

∑

n

xk1nyn =
∑

n

xk1nz′1qn (4.19)

∑

n

xk2ny2n =
∑

n

xk2nz′2qn (4.20)

with the adding up constraints 1′qn = 1 ∀n.

If there is reason to believe that some of the predictors have the same impact under the

two regimes, then this would require setting the corresponding lagrange multipliers equal

to zero in the regime selection constraints.

If the endogenous switching is between more than two regimes and we have knowl-
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dge about the units that were observed in specific regimes, then we can model this in an

analogous manner (to that defined above) with J > 2.

4.6. Nested Data Generating Structures

In several setting, researchers are confronted with mico-level units that are embedded

within larger macro-level units. Two of the typical examples confronted in practice in-

clude Heirarchical models–where micro units are nested in one of several mutually exclu-

sive macro units–and Repeated Measure models (also known as panel data sets)—where

the same units are measured repeatedly over time thereby nesting temporal observations

within individuals (persons, firms, etc.). In each of these setting, there may be a reason to

be skeptical of any findings that ignores the nesting in the data because systematic varia-

tions are the macro level may be mistakenly attributed to the micro level simply because

the structure was ignored. The basic idea in such setting seems to involve the recognition

and incorporation of some unobserved commonality or stickiness among all units within a

given macro unit. A simple way to proceed would be to introduce separate dummy vari-

ables capturing each of the macro units (less one). To do so under the information-theoretic

approach would mean specifying some moment constraints only within a macro unit and

some across macro units. Nothing precludes us from applying this approach under the

current setting. However, there is the usual curse of dimensionality where the number of

macro level intercepts may be very large (specially in panel data sets where we typically

have large number of individuals followed for a finite number of repeated time periods). In

this paper, we approach this propblem by directly allowing for within-macro-unit stickiness

in the recovered signals.

In the previous sections, one of the implicit assumptions that was introduced in all the

extensions discussed was that of
∑

m pmn = 1 ∀n. In this section, we relax this constraint
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somewhat to obtain the desired stickiness thereby re-formulating the information-recovery

problem. Let us first write the generic multi-level signals and their manifestations as sn j

and yn j respectively (where one may replace j by t to denote time). The approximation now

becomes:

yn j ≈ sn j ∀n = 1, . . . ,N j; j = 1, . . . , J (4.21)

and with theory providing us with a set of K exogenous predictors for each of the micro-

units, we could create simple moment constraints of the form

∑

n j

xkn jyn j =
∑

n j

xkn j

∑

m

zm pmn j ∀k (4.22)

along with any of the extended constraints discussed above. Additionally, the objective

function to be optimized in the simple setting would be

max
p

K (p; p0) =
∑

n j

p′n j log
(
pn j/p

0
n j
)

(4.23)

The last set of constraints we would need to impose in order to complete the problem

would be the adding up constraints on the probabilities of interest. That is,
∑

m pmn j = 1

∀n, j. However, if impose that constraint we explicitly rule out the stickiness we desire.

In order to introduce the possibility of something unobserved but common to all micro-

units within a macro-units we need to impose less restrictive constraints. Consider the less

restrictive adding-up constraints

∑

mn

pmn j = N j ∀ j (4.24)

These constraints are implied by the more restrictive
∑

m pmn j = 1 but not the converese.

In other words, by imposing the adding up constraints as above, we would be reducing the
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total number of constraints in the primal optimization problem. The problem we face with

these less restrictive constraints is that they do not bind the probabilities pmn j to be proper

(i.e., ∈ (0, 1)). Therefore, we first define an auxiliary probability measure N jqmn j = pmn j

so that we obtain a new adding up constraint of the form
∑

mn qmn j = 1 ∀ j. In addition, we

can create comparable prior probabilities be setting q0
mn j = (1/N j)p0

mn j. Finally, we replace

pmn j in the entire primal problem with qmn jN j. This yields the following primal Lagrange

function

L =
∑

j

∑

mn

N jqmn j log
(
qmn j/q0

mn j
)

+
∑

j

η j

{
1 −

∑

mn

qmn j

}

∑

k

λk

{∑

n j

xkn jyn j −
∑

n j

xkn j

∑

m

zmN jqmn j

}
(4.25)

Solving the first order condition of this optimization problem, we obtain the solutions

qmn j =
q0

mn j exp(zmx′n jλ)
∑

mn q0
mn j exp(zmx′n jλ)

=
q0

mn j exp(zmx′n jλ)

Ω j
(4.26)

and, inserting this optimum solution into the primal problem of (4.25), we obtain the cor-

responding unconstrained dual objective as a function of the Lagrange multipliers

L∗ =
∑

kn j

xkn jyn jλk −
∑

j

N j log Ω j (4.27)

Note that, given the assymetry in the implication of the adding up constraints, i.e.,

that
∑

m pmn j = 1 ∀n, j implies
∑

mn pmn j − N j ∀ j but not the converse, we cannot recover

our probabilities of interest (pmn j) by scaling the estimated qnm j by the factor N j. We must

compute these as conditional probabilities. That is, we can recover the probabilities pmn j
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by

pmn j =
qmn j∑
m qmn j

=
p0

m exp(zmx′n jλ)
∑

m p0
m exp(zmx′n jλ)

(4.28)

5. ASSESSING THE SAMPLING VARIABILITY OF THE LAGRANGE MULTI-

PLIERS

If the information-theoretic framework is employed for recovering a set of Lagrange mul-

tiplers pertaining to a particular problem from one specific sample, then it is of obvious

interest to study how these recovered Lagrange multipliers may vary across different sam-

ples, i.e., to study their sampling variability. In this section we provide a brief discussion

of the sensitivity of the Lagrange multipliers to sampling variability.

To keep the discussion and derivations below as generic as possible, we re-write the

Cross Entropy dual objective function (3.8) as

L∗ =
∑

k

λkµk − fs(λ) (5.1)

where µk =
∑

n xknyn are the sample statistics. The Poisson dual objective functions may be

obtained by appropriately specifying fs =
∑

n ln Ωn.

The optimal solutions for this unconstrained maximization problem is found by si-

multaneously solving the K first order conditions

∂L∗
∂λk

= µk − ∂ fs(λ)
∂λk

= 0 ∀k (5.2)

and ensuring that, at the optimal solutions, the Hessian matrix, computed as

∂2L∗
∂λ̂k∂λ̂k′

= − ∂
2 fs(λ)
∂λk∂λk′

∀k, k′, (5.3)
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is negative definite. Given the logrithmic forms of the function fs, the dual objective func-

tion is strictly concave thereby ensuring a unique global maximum if a maximum exists.

We can study variations in the optimal Lagrange multipliers that can be expected due

to fluctuations in the sample statistics µk (from one sample to another) by taking the total

derivative of the K first order conditions (5.2) with respect to each {µk} and {λ̂k}. In matrix

notation, this may be written as the following system of K differential equations

dµ − ∂
2 fs(λ̂)

∂λ̂∂λ̂
′ dλ̂ = 0. (5.4)

Using the definition of the Hessian from (5.3) and rearranging terms we obtain the desired

relationship between variations in the optimal Lagrange multipliers and variations in the

sample statistics as
dλ̂
dµ′

=

{
− ∂2L∗

∂λ̂∂λ̂
′

}−1

(5.5)

This relationship implies that if we can make certain assumptions about how the sam-

ple statistics (µk) vary across repeated samples then we can make claims about the implied

distribution of the Lagrange mulipliers across these samples. For the former, we can rely on

the Central Limit Theorem according to which, irrespective of the population distribution

of a random variable, computed sample statistics (such as sums or means) of this random

variable taken across several samples of a given size will be normaly distributed even if

these samples are as small as 30 to 40 units. Here the µk are one such sample statistic. Con-

sequently, we may assume that the optimal Lagrange multipliers are normally distributed

as well with an asymptotic covariance given by the RHS of (5.5)
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6. SOME EMPIRICAL APPLICATION

(TO COME)
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