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Abstract

A large number of papers have been written by physicists document-
ing an alleged signature of imminent financial crashes involving so-called
log-periodic oscillations—oscillations which are periodic with respect to
the logarithm of the time to the crash. In addition to the obvious prac-
tical implications of such a signature, log-periodicity has been taken as
evidence that financial markets can be modeled as complex statistical-
mechanics systems. However, while many log-periodic precursors have
been identified, the statistical significance of these precursors and their
predictive power remain controversial in part because log-periodicity is
ill-suited for study with classical methods. This paper is the first effort to
apply Bayesian methods in the testing of log-periodicity. Specifically, we
focus on the Johansen-Ledoit-Sornette (JLS) model of log periodicity. Us-
ing data from the S&P 500 prior to the October 1987 stock market crash,
we find that, if we do not consider crash probabilities, a null hypothe-
sis model without log-periodicity outperforms the JLS model in terms of
marginal likelihood. If we do account for crash probabilities, which has
not been done in the previous literature, the JLS model outperforms the
null hypothesis, but only if we ignore the information obtained by standard
classical methods. If the JLS model is true, then parameter estimates
obtained by curve fitting have small posterior probability. Furthermore,
the data set contains negligible information about the oscillation parame-
ters, such as the frequency parameter that has received the most attention
in the previous literature.
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An analogy has often been drawn between crashes in financial markets
and other disruptive events like earthquakes. Recently, a number of physicists
have pursued this qualitative analogy in a more quantitative fashion, suggesting
that such complex “rupture” events can be modeled like phase transitions in
statistical mechanical systems. A physical system can exist in different phases
when the optimal, energy-minimizing structure of the system is different for
different values of the exogenous parameters. The parameter space can then
be partitioned into regions with different optimal structure. A phase transition
occurs when the parameters are adjusted in such a way as to cross the bound-
ary between two such regions. If z is the distance to the boundary, then an
observable M that varies with x will typically exhibit a power law relationship
M ~ z=¢ for some «. If the underlying scaling symmetries of the system are
discrete rather than continuous, the exponent of this power law can be complex
(Sornette (1998)). In that case,

M (z) ~ Re[z~*"%] = Re[z~ %" %] = 27 cos(wIn ),

and such a periodic relationship with respect to Inx has come to be known as
a log-periodic relationship.

In modeling complex rupture events as phase transitions, physicists have
supposed that whatever exogenous parameter x that corresponds to the distance
to the phase boundary varies at a constant rate over time, and so the time
remaining until the critical time ¢, when the boundary will be crossed can stand
as a proxy for . In that case, an observable M (t) of this complex system should
exhibit a time-series relationship of the form

M) ~ (t. —t) " cos(wn(t. — t) + ¢),

where the phase ¢ is introduced to compensate for the change in units between
x and t. —t. This idea of viewing rupture events as phase transitions gained
momentum after such a log-periodic relationship was discovered in historical
data of ion concentrations within well water near Kobe, Japan prior to the
1995 earthquake there (Johansen et al (1996)). Soon afterwards, two groups
independently discovered such a relationship in the S&P 500 prior to the famous
October 1987 crash (Feigenbaum and Freund (1996), and Sornette, Johansen,
and Bouchaud (1996)) as can be seen in Fig. 1, where the S&P 500 index s(t)
is fitted to the specification

qt) =Ins(t) = A— B(t. — t)? [1 4+ Ccos(wn(t. — t) + ¢)] . (1)

This finding sparked an intensive search of time series data on financial prices,
and several examples of such log-periodic precursors to financial crashes were
soon identified.! In addition to the scientific question of whether financial

IFor a review of log-periodic research and other examples of how physicists have applied
their methods to problems of economic interest, see Feigenbaum (2003). For a more thorough
discussion of the evidence in favor of log-periodicity, see Sornette (2003).
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Figure 1: The S&P 500 from 1980 to 1987 and a fit according to Eq. (1) with
A =6.74, B = 0.155, C = 2.546, t. = 6/23/88, § = 0.323, w = 14.651, and
¢ = 0.294. The sum of the squares of the residuals is e’'e = 4.517.

markets can actually be modeled as complex systems, there is much practi-
cal interest in the question of whether log-periodicity can be used to forecast
imminent stock market crashes.

Perhaps the most convincing evidence in favor of a correlation between
log-periodic precursors and ensuing crashes comes from systematic searches over
all time windows of a given length. Graf v. Bothmer and Meister (2003) fit
the Dow Jones Industrial Average for every window of 750 trading days be-
tween 1912 and 2000 to a log-periodic specification. If the parameters in the
best fit for a given window matched a selected profile, they found there was a
54.1% probability of a crash occurring within a year of the end of that window.
Similarly, Sornette and Zhou (2003) investigated the distribution of frequencies
w obtained by fitting a log-periodic specification to every window of a given
length. The conditional distribution of w for windows that ended in crashes
was significantly different from the distribution conditional on the window not
ending in a crash. In particular, the distribution conditional upon a crash
had a mean of 6.4 and a standard deviation of 1.6, highlighting the common
observation that log-periodic spells which precede crashes usually have frequen-
cies within a narrow range. This universality of the log-periodic frequency has
been interpreted by some as further evidence of an underlying mechanism that
governs the leadup to a crash.?

2 Although he uses a more stringent definition of both a crash and a log-periodic spell than
other authors who have done systematic searches, Johansen (2004) argues that there is very
nearly a 1-1 correspondence between log-periodic precursors and crashes that cannot be linked
to a clear external cause.



Nevertheless, since the existence of such log-periodic precursors would
have radical implications for the Efficient Markets Hypothesis (Fama (1970)),
much skepticism persists about whether they, indeed, are statistically significant
and—even if, for the sake of argument, we accept that they are significant—
whether existing models to explain these precursors are valid (Feigenbaum
(2001a,b), Tlinski (1999), Laloux et al (1999,2002)). Most investigations into
log-periodicity have focused on whether the time series of financial prices fits
well to a log-periodic specification or whether the Fourier transform of the se-
ries with respect to In(¢. — t) has large peaks. However, as Phillips (1986) has
shown, nonstationary time series like financial time series can produce regres-
sions with deceptively high measures of goodness of fit that do not reflect any
properties of the underlying data generating process.

According to the leading model of log-periodicity, the Johansen-Ledoit-
Sornette (JLS) model (2000), log-periodicity in the price process is a conse-
quence of herding behavior on the part of irrational investors, which causes the
probability of a crash to vary log-periodically. Rational investors perceive this
log-periodic variation in the crash probability, so, if markets are efficient, stock
returns must reflect this time-varying probability. Note that because markets
are efficient in the JLS model, rational investors in this model cannot exploit
the information about possible future crashes conveyed by a log-periodic trend.

If the JLS model is true, it is not just stock prices but also the daily
returns on stock prices, i.e. the first differences ¢; — ¢;—1, that must behave log-
periodically. Feigenbaum (2001) implemented a test of this more rigorous pre-
diction about daily returns. However, classical estimation of this log-periodic
model is complicated because the likelihood function has an infinity of local
maxima, and no one maximum totally overshadows all the others. The small-
sample properties of nonlinear least squares estimation in such a context are not
well-understood, so it is difficult to assess the statistical significance of a nonzero
log-periodic component in the largest peak. Disregarding any secondary peaks,
Feigenbaum (2001) used Monte Carlo simulations to estimate standard errors
for linear coefficients and obtained mixed results regarding the statistical signif-
icance of the amplitude C' of the oscillations in the precursor to the 87 crash.3
The null hypothesis of no log-periodicity could be rejected or not rejected, de-
pending on the beginning and end points of the data set. Moreover, when the
log-periodic coefficients are close to zero, the variance-covariance matrix of the
nonlinear parameters will be the inverse of a nearly singular matrix, so precise
estimates of the frequency w, exponent 3, and other nonlinear parameters could
not be obtained.

In the present paper, we examine the same data with an alternative
statistical paradigm that sidesteps these technical issues that plague classical
estimation. Whereas classical estimation tries to construct functions of the
observed data that converge in probability to the parameters, Bayesian estima-
tion employs a more straightforward approach. In the Bayesian paradigm, the

3Feigenbaum (2001) did not impose the constraint |C| < B imposed in this paper, so the
paper tested for log-periodicity primarily by testing for the significance of the oscillation term.



researcher defines his prior beliefs about the parameters as a probability dis-
tribution over the parameter space and then uses Bayes’ Law to update those
beliefs based on the observed data, producing a so-called posterior distribution
for the parameters. This procedure is not dependent on any special assump-
tions about the likelihood function. We can avoid the complicated problem
of obtaining the true global maximum. Bayesian methods also provide intu-
itive and exact finite-sample inference regarding any function of the parameters
without relying on asymptotic distributions.

Naturally, all of these advantages come with a price. =~ We have to
choose a prior distribution for the parameters, and the results may be sensitive
to this choice of a prior. Because there is a wide variance of opinion about
the validity of the log-periodic hypothesis, we consider two sets of priors. Both
priors satisfy the restrictions on the parameters imposed by the JLS model. To
match the preponderance of the evidence regarding the frequency w, in both
cases w has a mean of 6.4 and a standard deviation of 1.6. Within these
constraints, we consider one model that an agnostic financial economist might
favor with a diffuse prior distribution spread wide over most of the parameter
space. We also consider a model that a log-periodic researcher might favor
with a tight prior distribution concentrated around the parameters favored by
classical curve-fitting methods.

In addition to varying the priors, we consider variations of the model
along two other dimensions. One of the prime advantages of the Bayesian
paradigm is that we can take into account the JLS model’s predictions regard-
ing the probability of a crash on each trading day, something that cannot be
incorporated into a curve-fitting analysis. To compare to the previous litera-
ture, we begin by analyzing the marginal likelihood and posteriors for a model
that ignores the crash dynamics, and we then go on to analyze the full JLS model
with crash probabilities. In addition, we also assess the issue of how time is
measured in the model. Researchers have generally studied log-periodicity with
calendar-time models that measure the time ¢ of (1) in terms of physical days,
but we also look at a market-time model that measures ¢ in trading days.

Using data from 1983 to 1987, we find in all cases that the market-time
model has a marginal likelihood orders of magnitude better than the calendar-
time model. Disregarding the contribution of crash probabilities to the like-
lihood function, as has been done in the previous literature, then for all four
combinations of timing conventions and priors, the marginal likelihood of ob-
serving the data is higher in a model where the log-periodic coefficient B is
restricted to zero than in a model where it is distributed over nonzero values.
While the difference is small with diffuse priors, the posterior probability for the
JLS model is quite small compared to the corresponding null hypothesis model
with tight priors. This implies that the tight priors are concentrated in a region
with low posterior probability. Consistent with this result, we always find that
the posterior distribution for the sum of squared residuals minimized by classi-
cal methods has a mode away from the minimum, so classical methods do not
obtain the most likely set of parameters in the JLS model. Moreover, while the
previous literature has focused much attention on the frequency w, with diffuse



priors we find that the data set contains negligible information about the oscil-
latory parameters of the JLS model, i.e. the frequency, amplitude, and phase.
Precisely speaking, the posterior distributions for the oscillatory parameters are
essentially unchanged from their prior distributions.

If we do account for the crash probabilities, the marginal likelihood
comparison reverses in favor of the JLS model with diffuse priors. However, this
happens because the JLS model gives a high probability for a crash to occur on
10/19/87. Our findings regarding the oscillatory parameters remain the same.
Overall, Bayesian methods find no evidence that log-periodic oscillations in daily
returns are responsible for log-periodic precursors to financial crashes.

We must emphasize that the Bayesian framework is only capable of
testing fully specified probability models. As such, while the evidence reported
here counts against the JLS model, we make no claims regarding the general log-
periodic hypothesis that log-periodic spells are a signal of an imminent crash.
The log-periodic phenomenon may indeed be real, but if it is it then it would
appear the explanation for the phenomenon remains a mystery.

The paper is organized as follows. In Section 1, we give a brief intro-
duction to the subject of Bayesian inference. In Section 2, we review the JLS
model. In Section 3, we present the first probability model that we estimate,
which assumes the stock market is in a log-periodic regime for the entire data
set and which does not explicitly take into account the probability of a crash.
In Section 4, we discuss our choice of priors and compute marginal likelihoods.
In Section 5, we describe the resulting posterior distributions. In Section 6, we
discuss the posterior distribution of the sum of squared residuals, which is the
focus of most of this literature. In Section 7, we repeat the analysis for the
model with crash probabilities. Finally, we conclude in Section 8.

1 Bayesian Inference

Bayesian inference proceeds by computing the likelihood of observing a set
of data for a given probability model.* The results are summarized as a prob-
ability distribution for the parameters of the model and also for unobserved
quantities such as forecasts of future observations. Thus, Bayesian statistical
conclusions about a parameter 6 are made in terms of probability statements
conditional on the observed data (). The so-called posterior probability dis-
tribution p (0 | @) contains all current information about the parameter 6. In
order to make probability statements about 6 given @, we must begin with a
model that provides a joint probability distribution for both 6 and @:

p(0,Q)=p@)p(Q]0).

4For a more complete introduction to the subject of Bayesian inference, consult Berger
(1985), Bernardo and Smith (1994), or Gelman et al (2003).




The distribution p (#) represents the modeler’s prior beliefs regarding the param-
eters 6 as they stand before he confronts the data. The sampling distribution
or likelihood function p(Q | 0) is the probability of observing the data under
the model if 0 is the parameter vector.

Conditional on the known values of the data ), Bayes’ rule yields the
posterior density:

p(0|Q):p(9,Q):p(ﬁ)p(Q\9)7 @)
p(Q) p(Q)
where p(Q) = [p(Q|0)p(0)dh. Note that p(Q), known as the marginal
likelihood, is obtained by integrating the likelihood function p (Q | ) over the
whole parameter space with respect to the measure p(6)df. The marginal
likelihood is important because it is the posterior likelihood that the model is
correct, whatever the unobservable parameters might be.
Since p (Q) does not depend on # and can be considered a constant for
a given data set @,

p(0]Q)xp(0)p(Q]0) (3)

is an an unnormalized posterior density. The primary task of any specific
application of Bayesian inference is to develop the model p (0, Q) and perform
the necessary computations to summarize p (6 | Q) in appropriate ways. When
the posterior distribution p (6 | Q) does not have a closed form, various posterior
simulation methods can be used to access the posterior distribution. In this
paper we will use the importance sampling methodology described in Appendix
C.

When a discrete set of competing models is proposed, the term Bayes
factor is sometimes used for the ratio of the marginal likelihood p(Q|A;) under
one model A; to the marginal likelihood p(Q|A;) under a second model A;.
That is,

P(@Q1A) _ [p(0alA)p(@a. A dos,
P(QIA;)  [p(0a;]45) p(QlOa;, Aj) da;’
where 04, and 04, are the vector of parameters for the models A; and A;
respectively, which need not be the same. Suppose the researcher has prior
beliefs p(A;) and p(A;) regarding the probability that each of these models is
the correct model. Then the ratio of the posterior probabilities of these models
is

Bayes factor (4;; 4;) =

p(AilQ) = p(Ai)p(Q]As) = p(As) x Bayes factor (4;; A4;) .

p(4;1Q)  p(A;)p(Ql4;)  p(4;)
Thus, if the Bayes factor of model A; over A; is greater than 1, the posterior of
A; will increase more relative to its prior than the posterior of A; relative to its
prior. It is through a comparison of Bayes factors that we will judge how well
the JLS model explains the data relative to an alternate hypothesis.




2 The JLS Model

The Johnasen-Ledoit-Sornette (JLS) (2000) model of log-periodic precur-
sors describes the market for a financial asset with price s(t) that pays no divi-
dends, so any nonzero price path for the asset constitutes a bubble.> Two types
of agents participate in the market. First, there are enough rational agents to
ensure that the market behaves efficiently. These agents are identical in their
preferences and any other characteristics, so they can be lumped together as one
representative agent. Second, there is also a group of irrational agents whose
herding behavior leads to the crashes in this model.

The irrational agents reside on a network with a discrete scaling sym-
metry. For example, this network could have a tree structure where every node
is joined to I' other nodes without any closed loops. FEach of these irrational
agents can be in one of two states: bullish or bearish. Let 7;; represent the
state of irrational agent i at time ¢, where 7,4 = 1 if the agent is bullish and
74 = —1 if the agent is bearish. Irrational agents determine their beliefs about
the future of the market based largely on the influence of their nearest neigh-
bors. If a majority of his neighbors is bearish, ¢ will likely be bearish also, and
conversely if they are bullish. Adding stochastic noise to allow the beliefs to
change over time, we model the states of the irrational agents as following the
Markov process

Tit+1 =sgn [ K E Tst T Eit+1 | s
JEN(3)

where K is a positive coupling constant, N(7) is the set of i’s nearest neighbors,
and €; 411 is a mean-zero, i.i.d. random variable.

This model is very similar in structure to the Ising model of ferromag-
netism in statistical mechanics, where the 7; correspond to the spin or magne-
tization of each component atom of the ferromagnet. The Ising model exhibits
two phases of behavior. When the coupling constant K is high relative to the
standard deviation of the noise process 0., which is analogous to the system’s
temperature, the system will eventually settle into an ordered phase where all
the spins have the same direction. In this phase, the aggregate sum ), 7; will
be large in magnitude, and the system will have a measurable magnetization on
the macroscopic level. When the coupling constant K is low relative to o, the
system will be disordered. There will be domains of the network where the 7;
are positive and other domains where the 7; are negative. The aggregate sum
>, Ti and the aggregate magnetization will be close to zero.

In the JLS network model, a crash can be viewed as a transition from
the disordered phase to an ordered phase where the bulk of irrational agents
are bearish. In the disordered phase, irrational agents are split roughly equally
between bullish and bearish opinions, and each group’s influence on the market

5See Blanchard and Fischer (1989) for a review of bubble solutions.



cancels the other out. The rational beliefs of the rational agents then determine
the price of the asset, which evolves in a fashion consistent with the Efficient
Markets Hypothesis (Fama (1970)). In contrast, when the market transits into
an ordered phase where the irrational agents all believe the price of the asset is
going to fall, they all unload their holdings in the asset, causing a precipitous
decline in the price.

Let o. denote the critical standard deviation that divides the ordered
phase from the disordered phase in the analogous Ising model. Because of the
discrete scale invariance of the network, aggregate properties of the ferromagnet
will have a log-periodic dependence on the distance between o. and o.. Based
on this result, JLS postulated that the probability of the trading network going
from a disordered phase to an ordered phase, i.e. the probability of a crash,
should also vary log-periodically with respect to time.® The rational agents,
who know the probability of a crash, respond accordingly, and this causes the
price of the asset to also exhibit a log-periodic time dependence.

In more precise terms, JLS claim that the hazard rate of a crash will
vary log-periodically. Consider an event that occurs at a stochastic time T' > 0.
Let F(t) = Pr[T < t] be the cumulative distribution function (cdf) for 7" and
f(t) = F'(t) be the corresponding probability density function (pdf). Then the
hazard rate,

_f@)
h(t) = T-FQ)’

is usually interpreted as the probability that the event occurs at ¢ given that
it has not already occurred. This is not quite correct, however, since h is a
density and not a probability. The proper interpretation of A is discussed in
Appendix A, where we show that for to > t;

Pr[T < tylt; <T]=1—exp ( /:2 h(t’)dt’> . (4)

The hazard rate function determines the probability that a crash will
occur at time ¢ given that a crash has not yet occurred. In the JLS model, h(t)
evolves log-periodically in t. — ¢, where ¢.. is a critical time (and a parameter of
h). 1If a crash occurs, then Ing(¢) will fall by some random amount s drawn
from a distribution with mean ®. The model can leave the log-periodic regime
in two ways. Either there is a crash, or ¢ gets to ¢, without a crash. Note that
te. should not be interpreted as the crash time. It is a critical time at which the
potential for a crash subsides. Indeed, according to the model the crash must
occur before t..

Suppose that & (¢) has the specification

h(t) = B'(t. —t)"*[1+ Ccos(wln(t. — t) + ¢')]. (5)

6Note that the analogy between the time to a crash and the distance in the phase space to
the transition boundary is not exact, and this postulate has never been rigorously established.



As Graf v. Bothmer and Meister (2003) point out, the hazard rate must be
positive, so we must have B’ > 0 and |C] < 1. JLS (2000) impose the further
restriction &« = 1/(I' — 1) € (0,1). Without loss of generality we can assume
that w > 0 and ¢ € [0,27). The latter assumption also allows us to restrict C'
to be positive. Finally, if ¢* is the time of the crash, we must have ¢, > t*.

In the absence of a crash, the price of the asset s(t) is assumed to be a
martingale process, consistent with the Efficient Markets Hypothesis:

Elds(t)] = 0. (6)

Let j(t) be a random variable that is 1 if the crash has occurred as of time ¢
and is 0 if no crash has yet occurred. Suppose that the price process is

_ ds()
~ S0

where dz(t) is a mean-zero, unit-variance stochastic innovation and u(t) is a
deterministic drift function that will be set so that s(t) satisfies the martingale
condition (6). JLS say little about the distribution of z. We will assume that
dz is an i.i.d. normally distributed variable. The standard deviation o will be
drawn from an appropriate prior. Since the probability density that a crash
will occur at t if no crash has occurred so far is h(t),”

dq(t) = pu(t) + odz(t) — wdj(t),

Elds(t)] = u(t)s(t) — ®h(t)s(t) = 0.
Therefore, the drift must satisfy
pu(t) = Fh(t),
so, in the absence of a crash,
dq(t) = ®h(t)dt + odz. (7)

Since the price of the asset is actually measured discretely at times
to, ... ,tn, we need to translate (7) into a conditional probability distribution
for q(t;y1) given ¢(t;). Let us define

t
H(t) = E/ R(t)dt’,
to
and
AH (t1,t2) = H(ta) — H(ty).
Then since we have assumed dz is normally distributed,
qtiy1) — q(t;) ~ N(AH(ti,tip1), 0% (tigr — t)).

7JLS (2000) disregard the contribution of the stochastic volatility o on the expectation of
ds that comes from Ito’s Lemma.

10



As is shown in Appendix B, if h(t) has the log-periodic specification (5),

then
H(t)=A—- B(t, —t)° 1+L2cos(wln(tcft)+¢) ) (8)
Vi+(%)
where
b=1—a«a
B rB’
T l-a
o=¢ (),

and A is an unidentifiable normalization constant that can be ignored.

3 Model without Crash Probabilities

For comparison with the previous literature, we first ignore the probability
of a crash. Suppose that we have data at times g, t1,t2,... ,tny < t.. At tg,
when the log price is gy, we assume we are in a log-periodic regime characterized
by the parameter vector ¢ = (B, C,[,w, ¢, t.). Then Eq. (8) will determine
H(t;€) for all t € [tg,t.]. Since the crash does not occur between ¢y and ¢y, for
i=1,... N,

q(t;) ~ N (q(ti—1) + p(ti — tic1) + AH(ti—1,t;€),0%(t — ti—1)) -

Note that we allow for a constant drift p that is not included in the original
JLS model.

We assume the following parameterizations for the priors. The drift is
drawn from

o~ N (p,0%).

It is convenient to characterize the distribution for the variance of the daily
returns in terms of its inverse, which is known as the precision. The more

11



precisely a random variable is known, the smaller its variance will be. The
precision is then drawn from®

T:%NF(%,&).

The log-periodic parameters of £ are drawn independently from distributions
appropriate to the support of each parameter:

B ~ F(a_B,ﬁB

¢~ Blacs)

g~ B (asfs)
w o~ F(a_,ﬁ_)
p ~ U

tc—tN ~ F(at, t)-

Let 0 = (i, 7,€) be the parameter vector. Then the prior density will
be

2
1 - (:u‘n - &) a o —1
p(f) x —exp|————2 |72 exp (60? T)

Tn 203
x B exp (B ) (227 (1 - 0)2e Tt gea (1 — g)la

X e~ exp( ) (te — tn)2t™ " exp(—(te — tn) ;)

for 0 € ® =R x R% x [0,1]? x Ry x [0,27) X [tn, 00).
Given 0 and ¢y, the probability density for ¢, , will be

p(Qti+1|Qt“ A / t
t+1

th.l —qt; — ,U(tz—i-l ) AH(tz; tl+17 5))2
X exp
2(tip1 —ti)
Then the posterior density will be
N-1
nc(9|Qtoa Qtqy-- - >qtN> X p(@) H p(qti+1 |qti’9)'
i=0

8The beta distribution B(a,3) has support [0,1] with density proportional to z*~1(1 —
x)#~1. The mean is a/(a + §) and the variance is a3/[(a + 8)%?(a+ 8+ 1)]. The gamma
distribution T'(a, ) has support [0,00) with density proportional to z* ! exp(—Bz). The
mean is a/3 and the variance is a/32.

12



4 Marginal Likelihood

We compute the log marginal likelihood as

L=I(M)=1n ( [ rern@p) de)

where

N-1

p(Q|9) = H p<qti+1‘qti79)7

=0

and @ = (Gty,qt,5- -+ ,Gty)- The marginal likelihood of a model can be inter-
preted as the likelihood that the model is true given the observed data.

Initially, we considered the same data set as Feigenbaum (2001a), the
S&P 500 from January 2, 1980 to October 19, 1987. Actually, in Feigenbaum
(2001a), the data set was cut off at September 30, 1987, following the common
practice in the curve-fitting literature to not include the last days before the
crash. This end-cutting practice has never been given much justification other
than that it leads to improved fits and is not appropriate when comparing the
likelihoods of different models, although we will discuss what happens when we
end-cut the data later in the paper.

We started with the following relatively diffuse priors with large vari-
ances that would hopefully encompass the “true” values of the parameters:

pw ~ N(0.0003,(0.01)%) (9)
7 ~ I(1.0,107°)
B ~ T(1.0,100)

c,B ~ U(0,1)
w ~ TI(16.0,2.5)
¢ ~ U(0,27)

te—ty ~ T(1.0,0.01).

We chose E[u] = 0.0003 and E[r] = 10° to roughly match the behavior of
daily returns for the 80s. Since B is the critical coefficient that determines
whether there is any log-periodicity or not, we chose E[B] = V[B]*/? = 0.01 to
encompass a wide range of possible values. Since fits typically obtain values of
t. within a few months after the crash, we chose E[t.—t,] = Vt. —tn]l/Q = 100.
Since 8, C', and ¢ are bounded both above and below, we chose uniform priors
that give equal weighting to all points in their domains. Finally, we chose
FElw] = 6.4 and V[w]'/? = 1.6 to match the observations reported by Sornette
and Zhou (2003) based on log-periodic fits over several data sets.

Let Aj7 . be the model with these priors and calendar (real) time. Let
Aﬁim be the model with these priors and market time (so ¢; is replaced by
i). Let A% be a null hypothesis model with H set to zero and calendar

13



time. Let A7, be the same null hypothesis model in market time. Finally,
let Qi; = (Gt,s--- ,q). With 1,000,000 simulations we find that

(A"C |Q}%}§ég7) 6373.9034 + 0.0580

10/16/87 B
( re Q1 e ) —  6373.3688 & 0.0707
QUO/16/5T)
(A1) = 64215131 £0.0531
( zWIQ}%}Zé”) —  6421.0307 + 0.0681

Notice that in both market and calendar time, the marginal likelihood
is essentially the same whether we include log-periodicity or not. This suggests
that the likelihood function does not significantly depend on the log-periodic
parameters &, which it will not for B close to 0. Nevertheless, with both timing
conventions, the marginal likelihood is higher for the null hypothesis model.

As we have discussed, one issue that comes up in Bayesian inference
is that the results may be dependent on the choice of a prior distribution.
Although the priors (9) may seem reasonable to an economist who is skeptical
at best regarding the log-periodic hypothesis, the hypothesis has been around
for almost a decade, so there are researchers who have strong priors that the
hypothesis is probably valid. Since the hypothesis is based on the results of
nonlinear least squares (NLLS) curve fitting, and the JLS model in particular is
based on the hypothesis that oscillations in ¢(t) reflect oscillations in E[q(t)] =
H(t), the formation of a log-periodic researcher’s priors would presumably be
guided by such curve fitting. However, for the 80-87 data set the best fit to the
specification (1) has C' = 2.546, which is outside the range 0 < C' < 1 required
for the hazard rate to be positive in the JLS model (Graf v. Bothmer and
Meister (2003)). Other researchers (Graf v. Bothmer and Meister (2003), and
Sornette and Zhou (2003)) have found that the S&P data do fit this restriction
if a smaller data set is used, so we next tried the same fit using data only from
January 1983 to September 30, 1987. This is presented in Fig. 2 and has
parameters A = 5.918, B = 0.013, C = 0.966 € [0,1], 8 = 0.580, w = 5.711,
t. = 10/20/87, and ¢ = 4.844. The parameters that have been given the most
attention in the literature are B, §, and w. Our prior for w was already chosen
to match the observations of log-periodic researchers, and we do not change this.
However, we do tighten the parameters of B and 3 and also t., since it originally
had a very diffuse prior. For these three parameters, we set their prior means
to match the values in the fit. We then set the prior standard deviation for
each of these variables to 10% of the corresponding prior mean. Finally, since
there was no drift in the JLS model, we center the prior for p around 0 with
a standard deviation smaller than the diffuse standard deviation by a factor of
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Figure 2: The S&P 500 from 1983 to 1987 and a fit according to Eq. (1) with
A =592 B =0.013, C =0.966, t. = 10/23/87, § = 0.580, w = 5.711, and
¢ = 4.845. The sum of the squares of the residuals is e’'e = 1.762.

ten. This gives the priors

p ~ N(0.0,1079)

T o~ T(1.0,107°)
B~ T(100.0,7613.8)
C ~ U(0,1)

B ~ DB(41.3834,29.9228)
w ~ TI(16.0,2.5)

¢ ~ U(0,2m)

te—ty ~ T(100.0,25.0).

We will denote models with this tight prior by B. With 1,000,000
simulations we find that

L. (B"C QIO/16/5T) 3989 8349 + 0.0145

1/3/83

Lo

( lpc 1/3/83
ne 10/16/87
( n m|Q1/3/83

10/16/87
lp,m|Q1/3/83

Le = 4031.1120 £ 0.0143
L

10/16/87) —  3977.8087 + 0.0975
) —  4026.8213 + 0.0724.

nc
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If we use the original diffuse priors with this smaller 83-87 data set, we get

Lo (AI@ET) = 3980.6134 0.0437

Loe (A @4es™) = 3979.9157 +0.0600
Loe (A2, IQUAAT) = 4028.9448 +0.0420
Loe ( lwmg}gg”) = 4028.6634 + 0.0640.

The log-periodic model actually does better with the diffuse priors. In-
deed, under both timing conventions, tightening the prior actually decreases the
marginal likelihood of both log-periodic models, which suggests that the pos-
terior mode is not in the region favored by NLLS fitting to ¢(¢). In contrast,
tightening the prior for the two null hypothesis models increases the marginal
likelihood. Presumably this happens because we are tightening the prior around
the posterior mode of the null hypothesis models.

As a side point, if we truncate the data set to end at 9/30/87 as we did
when obtaining the curve fitting estimates that guided the prior, the likelihood
results for the log-periodic model get closer to the null hypothesis but remain
smaller. For the two sets of priors, we get the following:

Loe (ARIQVT) = 39835710 +0.0427

Loe (A JQUET) = 3983.4500 +0.0679

Loe (A2, QVEET) = 40248567 +0.0409
Loe (Al @VlT) = 4027732+ 0.0600.
Loe (BRIQUANT) = 39857188 +0.0145

Loe (BiglQUaT) = 39848788 +0.0200
Loe (BitalQUsla’) = 4026.9231+0.0146
Loe (Bl @Vl = 40265267 +0.0225.

In sum, for both sets of priors and both sets of timing conventions,
the null hypothesis always outperforms the JLS model in terms of marginal
likelihood.  With diffuse priors, the difference is small. For example, con-
sider the market-time model (and the whole 83-87 data set). The Bayes
factor for the JLS model relative to the matching null hypothesis model is

exp (E (A;;Cm@}%}gés?) —Lne (Azcm\Q}%}ggw)) = 0.75. The data cause

an agnostic economist to put less weight on the JLS model, although they do
not compel him to quash this weight. In contrast, if we consider the calendar-
time model with tight priors, the corresponding Bayes factor is 0.0066. If a
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researcher has strong priors about the parameters of the JLS model based on
the results of NLLS curve fitting, then the JLS model fares quite poorly.

Note that the marginal likelihood assesses the overall likelihood that a
model is true without saying anything about its most likely parameter values.
Thus, even if the JLS model fares well or not so poorly in terms of marginal
likelihood, the parameters favored by the data may not correspond to values
that translate to significant log-periodic behavior. To determine the favored
parameters, we must compute their posterior distribution, which is the subject
of the next section.

5 Posterior Estimation

We use importance sampling, as described in Appendix C, to estimate the
posterior distribution for the parameters. For the drift ;1 and the precision 7,
we used a multivariate ¢ distribution with eight degrees of freedom. After using
a diffuse source to estimate the posterior moments, the source was fine-tuned
so the source means matched the first-stage posterior means and the source
variances were chosen to be twice the first-stage posterior variances. For the
log-periodic parameters in &, we generally used the same distribution as the
prior for the source except we doubled the variance.” In the special case of a
parameter with a uniform prior, we maintained a uniform source.

The means of the posteriors for the eight parameters of the JLS model
are given for three versions of the model in Table 1. For the case of the
parameters in £, the estimates obtained by nonlinear least squares curve fitting
to Eq. (1) are also given. Note that for both the market- and calendar-
time models, the posterior means are generally far from the NLLS estimates.
With the tight priors, the distributions for B, §, w, and t. are confined to the
neighborhood of the NLLS estimates, so they cannot stray too far from those
estimates. Nevertheless, excepting t., the means are still beyond two standard
errors of the NLLS estimates.

However, the posterior means are not necessarily a good measure of
the center of the posterior distributions because some of these distributions are
skewed. The posterior marginal densities for each parameter give us a better
picture of what values of the parameters are favored by each model.

5.1 Posterior Graphs for Market-Time Model with Diffuse
Priors

For the remainder of the paper, we will primarily focus on the market-time

model with diffuse priors ( ﬁim) since this has the highest marginal likelihood

91f a t. was drawn that was too close to ¢y, this could cause problems so we truncated the
source distribution so t. >ty +0.5. To be consistent, we must truncate the prior distribution
in the same way. This was not done in the marginal likelihood estimates reported above (and
below). Nevertheless, truncating the priors had a negligible effect on marginal likelihoods.
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NLLS Ape B¢ Ape

Ip,c Ip,c lp,m

I - 0.000294 0.000032 0.000420
(6.16x10-6)  (4.59x10-6)  (4.78x10-6)
T - 15757 15698 13437
(2.39) (11.70) (2.43)
B 0.0130 0.007195 0.012553 0.007359
(3.36x10-3)  (2.77x10-3)  (3.44x10-5)
C 0.966 0.498202 0.721244 0.500030
(0.001705) (0.005045) (0.001618)
I} 0.580 0.361958 0.530319 0.384268
(0.002057) (0.000998) (0.001726)
w 5.711 6.429387 5.940680 6.425584
(0.005232) (0.010669) (0.006496)
10) 4.845 3.124951 3.818973 3.149531
(0.012147) (0.048272) (0.009522)
te 10/20/87  2/9/88 10/20/87  3/31/98
(0.504492) (0.008439) (0.436634)
ele 1.762 53.482 64.473 44.897
(0.233) (1.379) (0.189)

Table 1: Estimates of parameters using nonlinear least squares and from poste-
rior means for the 1983 to October 16, 1987 data set without crash probabilities.
Standard errors for the posterior means are given underneath. Results are based
on one million draws from an importance sampler.

of the four versions of the JLS model that we have considered thus far. In Figs.
3-10, we plot the marginal posterior density for each of the eight parameters.
Fig. 3 gives the posterior for the precision 7 of the stochastic innovations to the
price process. Although JLS (2000) say very little regarding these stochastic
innovations, it is necessary to specify a distribution for these distributions to
complete the model. Given our choice of a normal distribution for the innova-
tions, the precision is actually the parameter that the likelihood function is most
sensitive to. If the precision is too large, the likelihood function will penalize
a parameter vector if it gives an expected return series that varies far from the
observed return series. On the other hand, if the precision is too small, the
daily returns will be allowed to vary much more. Probability will be spread
over a larger space of possible return series, putting less density on any return
series that is covered, including the observed return series. However, while the
likelihood function is quite sensitive to 7, JLS make no claims about it, so it is
of less interest.

The drift @ is another parameter that we have added to the model since
most financial models would allow for a small drift. Its posterior is given in Fig.
4. A constant drift term would produce exponential variation in the price series.
A term of the form exp(ut) does not appear in the log-periodic specification
(1) and has generally not been considered by log-periodic researchers since an
exponential term would tend to diminish the significance of the nonoscillatory
power term. However, the peak of the posterior for y is clearly away from zero
in Fig. 4.

The posterior for the log-periodic coefficient B is plotted in Fig. 5. A
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Figure 3: Posterior density for the precision 7 in the market-time model with

diffuse priors and no crash probabilities (A7;,,).
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Figure 4: Posterior density for the drift ;1 in the market-time model with diffuse
priors and no crash probabilities (A};,).
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Figure 5: Posterior density for the log of the log-periodic coefficient In B in the

market-time model with diffuse priors and no crash probabilities (A, )

classical approach to testing the log-periodic hypothesis would be to test the
null hypothesis that B = 0. One might think that a natural analog to this in
the Bayesian paradigm would be to look at whether the posterior for B peaks
at zero. However, the prior density for B at B = 0 is zero. That is why we
have to consider the null hypothesis where B = 0 as the separate model A7¢,,.
The graph does show though that In B peaks about -5 with B ~ 0.007, which is
roughly the posterior mean. This is smaller than the NLLS estimate of 0.13.19

We did not plot the corresponding priors in the above graphs of the
precision, drift, and log-periodic coeflicient because the data must necessarily
be informative about the values of these three parameters. In the remaining
graphs, we also give the prior for comparison. If B = 0, the likelihood function
will not depend on g, t., w, C, or ¢. In that case, the remaining five parameters
would not be identified by the model, so estimating them would be pointless.
Since the posterior for B is concentrated around small values, it may still be the
case that the likelihood function is practically independent of these parameters,
in which case the posterior and prior densities will be the same, and we can
view these parameters as “spurious”.

Both the posterior and prior densities for the exponent § are given
in Fig. 6. Clearly, the data are informative about [ since the posterior is
monotonically decreasing whereas the uniform prior is flat. In this case, the
posterior mean of 0.38 understates how bad the NLLS estimate of § = 0.58 is

108trictly speaking, we should be comparing the market-time model to NLLS estimates
from the market-time model. However, there is not much difference between the posteriors
for the market and calendar-time models with diffuse priors.
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Figure 6: Posterior and prior densities for the exponent $ in the market-time

model with diffuse priors and no crash probabilities (A7)

since the posterior mode is near zero.

The posterior and prior densities for the critical time ¢. are plotted in
Fig. 7. For most of the parameter space the posterior and prior are fairly
similar, but the posterior density falls off at small values close to t5 while
the exponential prior peaks at zero. The posterior peaks at about 20 trading
days after ¢y, or the week of 11/9/87. The NLLS estimate, in contrast, is at
10/20/87, or a day after the crash.

Finally, the posterior and priors for the frequency w, amplitude C, and
phase ¢ are given in Figs. 8-10. These three parameters appear only in the
oscillatory term of Eq. (1) and will be referred to as the oscillatory parame-
ters. For all three of these parameters, there is no significant difference between
the posterior and prior. Because the mean is tightly estimated, the posterior
mean of 6.42 for w is more than three standard errors away from the prior mean
of 6.40.'1 However, this 0.3% difference is not economically significant, par-
ticularly since there is no diminishment of the variance from the prior to the
posterior. Therefore, we have to conclude that the data contains negligible
information about the oscillatory parameters of the JLS model. This finding
presents a problem for the JLS model since it was these oscillations that the
model was invented to explain, yet the model actually has nothing to say about
them.

HFor ¢ and C, the difference between the posterior and prior means is not statistically
significant.
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Figure 7: Posterior and prior densities for the critical time ¢. in the market-time
model with diffuse priors and no crash probabilities (A}, ).
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Figure 8: Posterior and prior densities for the frequency w in the market-time
model with diffuse priors and no crash probabilities (A}, ).
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Figure 9: Posterior and prior densities for the amplitude C' in the market-time
model with diffuse priors and no crash probabilities (A]C, )
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Figure 10: Posterior and prior densities for the phase ¢ in the market-time
model with diffuse priors and no crash probabilities (A]C, )
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Figure 11: Posterior density for the precision 7 in the calendar-time model with

tight priors and no crash probabilities (Bj7.).

5.2 Posterior Graphs for Calendar-Time Model with Tight
Priors

The calendar-time model with tight priors is the model that would most
resemble what has been discussed in the previous literature, so we also plot the
marginal posterior densities for its parameters. These are shown in Figs. 11-
18. Unlike with diffuse priors, the posteriors for all the log-periodic parameters,
including the oscillatory parameters, differ significantly from the priors.

The tight priors for the exponent § and the critical time ¢. both have a
single, roughly symmetric peak away from zero, so they are markedly different
from the corresponding diffuse priors. Consequently, the posteriors for these
parameters are also quite different from the corresponding posteriors with dif-
fuse priors. In Figs. 14-15, both parameters exhibit posteriors with roughly
symmetric peaks like the prior. Consistent with the difference between the prior
and posterior means for (3 reported in Table 1, the posterior mode for 3 is lower
than the prior mode, confirming that the model favors lower values of § than
would be obtained with NLLS curve fitting. This is also true for ¢. although
the difference in the prior and posterior modes is less than a day. Note that in
both cases the posterior mode cannot move too far away from the prior mode
since if the prior puts zero weight on a parameter vector the posterior must do
the same.

Fig. 16 demonstrates that the posterior for the frequency w has at least
three peaks. As is shown in Fig. 17, the posterior for the amplitude C' is not
uniform like for the diffuse prior, but is weighted toward the maximum value
of 1. Keeping in mind that the posterior for the phase ¢ has to wrap around
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Figure 12: Posterior density for the drift p in the calendar-time model with
tight priors and no crash probabilities (B}°.).

Figure 13: Posterior density for the log of the log-periodic coefficient In B in the
calendar-time model with tight priors and no crash probabilities (Bj,°,).
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Figure 14: Posterior and prior densities for the exponent ( in the calendar-time
model with tight priors and no crash probabilities (B]y.).
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Figure 15: Posterior and prior densities for the critical time ¢. in the calendar-
time model with tight priors and no crash probabilities (B}.).
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Figure 16: Posterior and prior densities for the frequency w in the calendar-time

model with tight priors and no crash probabilities (Bﬁfc).

continuously from 27 back to 0, we see in Fig. 18 that the ¢ posterior has a single
peak between 37/2 and 27. These results suggest that the likelihood function
is not, in fact, completely insensitive to the oscillatory parameters. Tightening
the prior allows us to probe the likelihood function at a smaller scale, and this
reveals that there is structure to the likelihood function along the oscillatory
dimensions.

However, if we do not have a reason to believe that the parameters of
a model are most likely to fall in a given region, it does not make sense to
concentrate the probability density of our prior within that region. We chose
our tight prior based on NLLS curve fitting, but, as we have seen, tightening the
prior in this way actually diminishes the marginal likelihood, suggesting that
the most likely parameter values are not close to their NLLS estimates. This
interpretation is also supported by the above findings regarding ¢. and 5. In
the next section, we will see further evidence of this in the posterior distribution
of the residuals sum minimized by the NLLS procedure.

6 Nonlinear Least Squares

In addition to computing the posterior distribution for the parameters of
a model, the Bayesian paradigm allows us to compute posterior distributions
for any function of the parameters, including the sum of the squared residuals
between the raw financial time series and the model’s prediction for the time
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Figure 17: Posterior and prior densities for the log-periodic amplitude C' in the
calendar-time model with tight priors and no crash probabilities (Bj,°,).
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Figure 18: Posterior and prior densities for the phase ¢ in the calendar-time
model with tight priors and no crash probabilities (B} ).
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series. According to the JLS model, the expectation of the log price at time ¢;
is

Elg] = qro + p(ti — to) + AH (L, o). (10)
If we define
e =q, —Elg,] i=0,...,m,

then the NLLS procedure, which has generally been followed in the existing
literature, is to choose the parameters £ that minimize

N
ele= E er.
i=0

Note that the specification of Eq. (10) differs from the standard log-
periodic specification of (1) in two respects. First, as we have noted before, we
have included a linear drift term in (10), which generally is not done. Second,
and more important, the constant term in (10) is the log of the price at the
initial time to. In contrast, the constant term in (1) is a free parameter that
is also determined by the fitting procedure. Since the linear term in (10) is
partially correlated with the non-oscillatory component of the AH term, adding
the linear term cannot help in minimizing e”e as much as varying the constant
will. As a result, even if we augment the JLS model by adding the linear term
to E|qy,], it is not possible to get values of e’'e as low as one would get by using
NLLS to estimate A and £ in the standard specification of (1).

For example, in the context of the calendar-time model, the smallest
value of e”e obtained by our importance sampler was 2.72. This was obtained
with the parameters u = —0.0003, B = 0.00964, C' = 0.769, 8 = 0.675, w =
11.589, ¢ = 6.259, and t. = 10/20/87. The corresponding fit used to determine
the tight priors in Section 4 had a much smaller e’e of 1.76. However, if we
adjust the constant A in that fit from 5.918 to 5.711 so that E[q,] = q4,, then
the residual sum increases to 9.12.

The posterior densities for e’ e in the market-time model with diffuse
priors and in the calendar-time model with tight priors are respectively given
in Figs. 19 and 20. In both cases, most of the density is concentrated around
small values of eTe. However, the density is not maximized at the minimum
possible value of e”e. For the calendar-time model, the posterior is maximized
at eT'e = 6.25, which is small but twice as large as the minimum observed value
of 2.72. A similar story can be told regarding the market-time model.

Thus, the most likely value of e”e in the JLS model is not the minimum
possible value, and it is easy to see why. The justification for least-squares min-
imiziation, when it is appropriate, is that the likelihood function is a decreasing
function of e”'e, as would happen for example if we were estimating a model of
the form

T

Y :Zail‘ij‘+€j, (11)
=1
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Figure 19: Posterior density for the nonlinear least squares residuals sum e’e

in the market-time model with diffuse priors and no crash probabilities (A7, ).
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Figure 20: Posterior density for the nonlinear least squares residuals sum e”'e

in the calendar-time model with tight priors and no crash probabilities (Bj;,).



based on J observations of combinations of a dependent variable y and m in-
dependent variables z1, . . . , z,,. If the disturbance term ¢; is normally
distributed, then the likelihood function will depend only on the sum of the
residuals for this model and the variance of the ¢;.

As was done in Feigenbaum (2001a), one can estimate the JLS model
in this matter, but it is the daily returns ¢, — g¢,_, that behave as a (nonlinear)
model similar to (11), not the ¢;, themselves. Consequently, the likelihood
function is, modulo an irrelevant constant,

N
L= 71117—%52,

where

(qti —qQt;_ T E[qti - qti—l])Q

N
s* =
Z ti—ti—1
=1
2
B iv: (at, — @ty — p(t; —ticy) — AH (b, ti-1))
; ti —ti—1 )

=1

Thus the likelihood function will be maximized with respect to p and € if S2
is minimized. While it is true that e”e and S? are highly correlated, it is not
true that the global minimum of S? corresponds to the global minimum of e”e.
Indeed, for the calendar-time model with tight priors, the draw with the highest
observed posterior density'? had S? = 0.0769 and e’e = 5.25 while the draw
with the minimum value of e”'e = 2.72 had S? = 0.0778.

In the language of econometrics, NLLS estimation of the specification
(1) does not consistently estimate the parameters of the JLS model. As Feigen-
baum (2001a) argued, in order to determine the parameters of the JLS model
one needs to focus on the daily returns and not the raw price time series. The
JLS model defines a stochastic process for the daily returns, and the prices are
obtained by integrating those returns. The literature has generally proceeded
in the reverse fashion, by regressing a model of the prices and obtaining returns
by differencing the prices, and this backwards approach is not appropriate for
model estimation.

7 Model with Crash Probabilities

Thus far, we have considered a model in which daily returns vary log-
periodically, but we have ignored the reason why they vary log-periodically in the
JLS model, which is that the probability of a crash also varies log-periodically.
Classical curve-fitting and spectral methods are unable to take into account this

12The parameters of this highest posterior draw were u = 9.87x107%, 7 = 15323, B = 0.013,
C =094, 3=0.55, w=5.70, » = 4.96, and t. = 10/20/87.
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time-varying crash probability, so the existing literature has been dominated by
discussion of an incomplete model.'® This is of concern because, if the model
predicts that the probability of a crash on 10/19/87 is on the order of 107°, this
probability is smaller than the empirical frequency of crashes and the model
would not do a very good job of explaining crashes. On the other hand, if the
model predicts that the probability of a crash on any day between 1983 and
1987 was on the order of 10%, the model would run into the opposite problem
because the crash should have occurred much sooner than 10/19/87.

With Bayesian methods, it is straightforward to complete the model by
adding in the crash probabilities, and this is what we will do in this section.
To do this we must first specify the distribution of crash sizes. We only have
the one crash event in our 1980 to 1987 data set, so we will assume a dogmatic,
degenerate distribution for the crash size k. The S&P 500 fell from 282.70 to
224.84 on 10/19/87, which translates to a fall of 0.22900 in the logarithm g.
Thus, we will assume that x = 0.22900 with probability 1.

From Eq. (4), conditional upon a crash not occurring at the prior times

t1,...,t;—1 a crash will occur at ¢; > t; with the probability
AH(t;—1,t;
1—exp (——(tz 1’tl)> .
K
Thus, the posterior density inclusive of the crash probabilities is
N AH(t1,t5;€)
c ne i—15 Uiy
pE01Q ) = pre(6Q) ") exp ( > %) (12)
i=1
« (1 ~ exp < AH(ty, min{tN+1,tc};§))> .
K

Note that in the last factor, the probability that a crash happens between ¢y
and tny1 = 10/19/87, we integrate the hazard rate from ¢y to either ty1 or t.,
whichever is smaller. Once t. is reached, if the crash has not occurred already,
it will not occur. What happens after ¢. is not specified by the JLS model.
As a null hypothesis, we will construct an alternative model with a
constant probability of a crash of magnitude x on any given trading day.'*
From 1962 to 1998, there were 9190 trading days, and there were no other days
when the market dropped as much as it did on 10/19/87. Thus, we will assume
a constant probability of p., = 1/9190 for the market to drop by x on any given
trading day. Given that a crash did not occur on the initial day in our data
set, 1/3/83, there were N = 1211 days between 1/3/83 and 10/16/87 on which

13Note that there are classical methods that can take into account the crash probabilities.
Maximum likelihood estimation (MLE) of the JLS model could incorporate the crash proba-
bilities into the likelihood function as we have done, but, to our knowledge, no researcher has
used MLE to estimate the model.

141f daily returns are normally distributed, the standard deviation would have to be on the
order of 1% to fit most price data, in which case the probability of the market dropping by as
much as 20% on any given day would be astronomically small. So we must introduce another
mechanism to plausibly account for crashes in the null hypothesis.
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a crash again did not occur, and then there was one day in which a crash did
occur. Thus, under the null hypothesis the posterior density inclusive of the
crash probabilities is

PE(O1QY ) = p e (01QY ) (L = per) N per-

Taking into account the crash probabilities, we find the following mar-
ginal likelihoods with 1,000,000 draws:

Lo (A5 @ET) = 397138T1+0.0428
Lo (A, @ 4e8T) = 3971.9977 £ 0.1369
L. (An m|Q}%}§§87) = 4019.7889 + 0.0405
Lo (A, Q1T) = 4020.4599 +0.0654
Lo (Bid@el™) = 8973.6069 % 0.0144
Lo (B d@es™) = 3970.6058 +0.0814
Lo (Biml@es™) = 4021.8448 +0.0145
L. (BWQ}%}ggS?) = 4019.8423 + 0.0439.

In the complete model, with tight priors the null hypothesis still wins out
over the JLS model in terms of marginal likelihood. On the other hand, with
diffuse priors the JLS model now outperforms the null hypothesis. So, once
again, we find that the parameter estimates obtained by least-squares estimation
are not very probable under the JL.S model.

The reversal of marginal likelihoods for the diffuse-prior models is not
entirely surprising since, without crash probabilities, the marginal likelihood of
the null hypothesis models was only slightly higher than for the JLS models.
The JLS model has an explicit explanation why a crash should happen on or
around 10/19/87 while the null hypothesis does not. Accounting for the crash
probabilities should benefit the JLS model relative to the null hypothesis, and
with the diffuse priors it does so enough to push the balance in favor of the JLS
model. With market timing, adding crashes increases the Bayes factor for the
JLS model relative to the null hypothesis from 0.75 to 1.96.

However, the better performance of the JLS model with diffuse pri-
ors at explaining crashes does not translate to better performance at explain-
ing log-periodic oscillations. The posterior means for the diffuse-prior models
and for the tight-prior model with calendar timing are reported in Table 2.
The posterior densities for the parameters, as well as the residuals sum e”e, of
the market-timing model with diffuse priors are plotted in Figs. 21-29. The
only parameters that exhibit a major change are the log-periodic coefficient B,
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NLLS Af

c c
Ip,c Ip,c Alp7m

I - 0.000345 0.000122 0.000484
(7.74x10-10)  (4.14x10-6)  (1.22x10-6)
T - 15747 15687 13434
(2.49) (13.07) (2.36)
B 0.0130 0.009917 0.012525 0.009632
(4.80x10-3)  (2.48x10-5)  (5.11x10-9)
C 0.966 0.497774 0.703691 0.490394
(0.001420) (0.005681) (0.001662)
15} 0.580 0.336835 0.493638 0.386423
(0.001031) (0.000957) (0.001132)
w 5.711 6.409146 5.988231 6.426282
(0.005892) (0.014062) (0.006706)
10) 4.845 3.124951 3.662840 3.138914
(0.012147) (0.057786) (0.010267)
te 10/20/87 12/17/87 10/20/87  1/27/88
(0.504492) (0.010463) (0.364815)
ele 1.762 53.178 60.357 45.19711
(0.202) (1.378) (0.190)

Table 2: Estimates of parameters using nonlinear least squares and from poste-
rior means for the 1983 to October 16, 1987 data set with crash probabilities.
Standard errors for the posterior means are given underneath. Results are based
on one million draws from an importance sampler.

the power (, and the critical time ¢.. There was no reason to expect that
adding crash probabilities would significantly change the posterior probabilities
for the oscillatory parameters, and Figs. 26-28 confirm that the posteriors for
these parameters remain essentially unchanged from their priors in the complete
model.'®

What distinguishes B, 3, and t. is that these are the three parameters
that play the largest role in determining how the crash probability behaves
over time. Since the crash probability at ¢; is approximately proportional to
AH (t;, t;—1), and AH is proportional to B, a higher B means a higher crash
probability, and the posterior mean for B increases from .0073 to .0096 when
we add crash probabilities. We can also see the shift to higher values of B by
comparing Fig. 5 to Fig. 23.

Meanwhile, if we ignore the oscillatory term, the crash probability will
go roughly as

(te — t:)7 = (te — tim1)® ~ Blte — )P (t; — tioy).

Since a crash did not occur between 1/1/83 and 10/16/87 and a crash did occur
on 10/19/87, the likelihood function should favor a choice of 8 and t. that
confers a low probability of a crash for most of the 1983 to 1987 and then has
the probability shoot up just prior to 10/19/87. This can be achieved by having
B =~ 0 and t. ~ 10/19/87. Comparing Figs. 7 and 25, we find in the complete
model that the posterior for low t. is higher than the prior, in contrast to the

15The posterior for w in Fig. 26 does exhibit one abnormally high point, but this is still
within two standard errors of the prior.
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Figure 21: Posterior density for the precision 7 in the market-time model with
diffuse priors and crash probabilities (Aj, ).
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Figure 22: Posterior density for the drift p in the market-time model with diffuse
priors and crash probabilities (A7, ).
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Figure 23: Posterior for the log of the log-periodic coefficient In B in the market-
time model with diffuse priors and crash probabilities (Ajf, ).
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Figure 24: Posterior and prior density for the exponent 3 in the market-time
model with diffuse priors and crash probabilities (Af, ,)-
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Figure 25: The posterior and prior densities for the critical time ¢, in the market-
time model with diffuse priors and crash probabilities (Ajf, ).
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Figure 26: Posterior and prior densities for the frequency w in the market-time
model with diffuse priors and crash probabilities (Af, ,)-
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Figure 27: Posterior and prior densities for the amplitude C' in the market-time

model with diffuse priors and crash probabilities (
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Figure 28: Posterior and prior density for the phase ¢ in the market-time model
with diffuse priors and crash probabilities (A7, ).
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Figure 29: Posterior density for the nonlinear least squares residuals sum e’e

in the market-time model with diffuse priors and crash probabilities (Ajf, ).

model without crash probabilities. In Fig. 24, meanwhile, we see that there is
now a small secondary peak at low values of 3. Counterintuitively, the posterior
mode and mean for 3 are pushed to higher values in the complete model, which
probably happens because, for high values of ., a large § is needed to get the
crash probability to increase significantly as t approaches 10/19/87.

On a side note, since the likelihood function will put even less priority
on fitting the raw price data in the complete model than it did without crash
probabilities, one would expect to get larger values of the residuals sum e”e.
However, we do not find a statistically significant difference between the means,
and the posterior density of Fig. 29 is little changed from the corresponding
graph of Fig. 19 for the model without crash probabilities.

Incorporating crash probabilities of the JLS model into our analysis
does not do much, good or bad, to the model’s ability to explain log-periodic
oscillations, although it does show that the model can outperform a model with
a constant crash probability in terms of explaining when crashes occur.

8 Conclusion

Let us suppose that the log-periodic hypothesis is, indeed, correct. Esti-
mation of the parameters of Eq. (1) by direct NLLS curve fitting of a raw price
series to the log-periodic specification produces descriptive statistics that char-
acterize any log-periodic oscillations that occur in a given time window. As we
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have seen, though, such descriptive statistics may not translate to the parame-
ters of the underlying model responsible for those oscillations. For researchers
interested in modeling financial markets as complex systems, it is ultimately
those fundamental model parameters that are of interest, not the descriptive
statistics.

Previous attempts to estimate the parameters of the Johansen-Ledoit-
Sornette (2001) model of log-periodicity have been hampered by technical issues.
Here, we have skirted those issues by employing Bayesian methods, which are
better suited for the analysis of complicated time-series models like the JLS
model. However, our findings do not provide support for the claim that the
JLS model can explain log-periodic oscillations. In examining the period pre-
ceding the stock market crash of October 1987, we find that the complete model
outperforms a null hypothesis model in terms of explaining why a crash would
occur on 10/19/87, yet the data set is uninformative about the oscillatory pa-
rameters of the model. This suggests that those oscillatory parameters play no
actual role.

The scope of our analysis was limited because we only considered data
from a single log-periodic spell. One argument in favor of the log-periodic
hypothesis is that similar values of the frequency w are observed throughout
the set of known log-periodic precursors. If one generalized the JLS model so
that it described the behavior of financial markets both during periods of log-
periodicity and during more quiescent periods, one could use the entire history
of financial prices to obtain a posterior for the distribution from which w is
drawn for each log-periodic spell. If the value of w is truly a universal property
of log-periodic spells, the set of all log-periodic spells should be more informative
about the oscillatory parameters of the JLS model than one log-periodic spell
in isolation. Such a global analysis might then provide more support for the
JLS model than could be found in the short data set considered here.

Even so, a negative result for the JLS model should not be interpreted
as a negative result for the log-periodic hypothesis as a whole. The head and
shoulders phenomenon, long recognized by technical traders, is another pattern
in stock prices that has recently been found to predict excess returns over time
scales of a month or longer (Savin, Weller, and Zvingelis (2003)). So it is
not unreasonable to think that a pattern like log-periodicity might also have
predictive power, but a different approach may be needed to explain how this
happens.

In the JLS model, log-periodicity in financial prices reflects log-periodic-
ity in traders’ expectations regarding the future path of those prices. Another
model of this class is pursued by Sornette and Ide (2003). They construct
a deterministic model in which log-periodicity results from the interaction of
fundamental and technical traders. Since the real world is not deterministic,
Sornette and Ide presumably have in mind that actual prices dance around
an expected price path that behaves as in their model. For both models,
if the expected price path is log-periodic, then expected daily returns should
also behave log-periodically, yet we find no evidence of such log-periodicity in
returns.
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This suggests that researchers should look to other explanations of log-
periodicity that do not involve expectations. For example, Stauffer and Sornette
(1998) constructed a model where prices are governed by a biased diffusion
process that produces log-periodic behavior. They offered no microfoundations
for why the market should behave in this way, but one could presumably explain
this behavior in terms of, possibly psychological, barriers. If the market has
a tendency to reverse direction when prices hit a floor or ceiling, log-periodic
oscillations would occur if prices go back and forth between the two barriers
at an increasing rate. One could then imagine that an acceleration in the
rate of hitting barriers might make the market more susceptible to a crash.
This approach would not share the JL.S model’s consistency with the Efficient
Markets Hypothesis, but the mainstream finance literature is starting to become

more receptive to behavioral models that deviate from rationality (Barberis and
Thaler (2002)).

A The Hazard Rate

One complication of this model is that while the log-periodic form of the
hazard rate was “derived” in the context of continuous time, the data is discrete.
How do we interpret the hazard rate in our discrete-time context?

Let us suppose that at t; the event has not occurred. What is the
probability that it will occur at or before t5 > ¢17 This probability is
Pr[T < tylty <T]= w

Pr[tl ]

N

F(t2) = F(t)
- Fh)

Then we get the hazard rate by taking

hity) = (d% Pr[T < toty < T])

to=t1

Let S(t) = 1 — F(t) be the survivor function. Then S’(t) = —F'(t) =
—f(t). Thus,
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Since S(0) =1,

S(t) = exp ( /Ot h(t’)dt’> .

Pr[T < tylt; <T] = S(ty) — S(ta) _ &P (_ Jo' h(t/)dt’) — exp (— S h(t’)dt’)

Then

S(t1) exp (— fotl h(t’)dt’)

Thus,
~ ~ t2
Pr[T < tolty < T] = 1 — exp (— / h(t')dt’) . (13)
ty
- ¢
In the limit of small [,* h(t")dt’,
~ ~ t2
Pr(T < oty < T %/ h(t')dt', (14)

t1

which is what people usually say the conditional probability will be. However,
(13) is the exact probability, and it will always be between 0 and 1, unlike the
approximate result (14).

B Properties of the Hazard Rate

An important property of the hazard rate function is that its integral will
have the same form as itself, a power law times a periodic function of In(t. — t)
with frequency w. This is because

h(t) = Re [B(tc _t)l-e {1 +Ce? (t, — t)in ,

and the derivative or integral of a power law is also a power law (assuming the
exponent is not -1). Focusing on a strictly real representation of h, consider a
function

f(t) = Fi(te — )" 7[1 + Fycos(wln(t. — t) + ¢) + Fzsin(wIn(t. — t) + ¢)(] |
15

This has derivative

fft) = —A=-ykt.—t)"
x[1+ Fycos(wn(t. — t) + ¢) + Fasin(wn(t. — t) + ¢)]
+wF(t. — t) Y [Fysin(win(t, — t) + ¢) — F3 cos(wIn(t, —t) + ¢)],
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which can be rewritten

F'(t)=—F{(te —t)""[1 + Fycos(wln(t. — t) + ¢) + Fisin(wIn(t. — t) + ¢)],

(16)
where
F = (-9
F = F2+1°" £y
w
F, = F3-— Fs.
3 377 5 2
Inverting this matrix
F/
o= !
L=~
1 ! w !
F2 = /3 F2—mF3
1+ (1)
1 / w !
Fy, = —— F3+—1_7F2

()
From (5), the hazard rate is
h(t) = B'(t. — t)"*[1 + C cos(wIn(t, — t) + ¢')].

If we set vy =a, F| = —B’, F} = C, and F} = 0, then h(t) has the form of Eq.
(16) Therefore, the integral of the hazard rate has the form of (15) up to a
constant, so
t =R!
B
H(t) = E/ h(t)dt = A — lﬂ—(tc —p)l-e

to -

<1y Ccos(w In(t. —t) + ¢') + 1= sin(wIn(t. — t) + ¢')

2
1+(ﬁ>

This can be further simplified as follows. Let

w
f=tan ' ——.
11—«
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CcosfOcos(wln(t. —t) + ¢') + sinfsin(wln(t. —t) + ¢')
2
1+ (12%)

= A-B(te—t)'"> |1+ #2 cos(wln(t. —t) + )| ,
L+ (1i)a)

where B =%B'/(1 —a) and ¢ = ¢' — 0.

C Importance Sampling

Denote the target density by p(f). Denote the source density by j(0), and
an arbitrary kernel of the source density k; (6) = ¢;-j(8) for any ¢; # 0. Denote
an arbitrary kernel of the target density by k, () = ¢, - p(¢) for any ¢, # 0.
The following result is due to Geweke (1989). Suppose that the sequence

M
{H(m)} is independent and identically distributed, with 6™ ~ j(0). Define

m=1
the weighting function w(f) = %. Suppose FE [g(0)] exists, E[w(0)] exists,

and the support of j(#) include ©. Then

3 g(0™yu(e™)

E(M) _ m=1

Q

— E[g(0)]

g

w(G(m))
1

m

Assuming V[g(0)] exists, then
MY — Elg(0)]) % N(0,7%),
where

~2(M) _ MY, [9(9(m)) —g(M)rw(g(m))Q
M 2
(£ wiom)

m=1

a.s.
— 7'2.
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