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1 Introduction

Economic and financial multivariate time series are typically nonlinear, non-normally distributed,

and have nonlinear co-movements beyond the first two conditional moments. Granger (2002) points

out that the classical linear multivariate modelling (based on the Gaussian distribution assumption)

clearly fails to explain the stylized facts observed in economic and financial time series and that

it is highly undesirable to perform various economic policy evaluations, financial forecasts, and

risk managements based on the classical conditional (or unconditional) Gaussian modelling. The

knowledge of the multivariate conditional distribution (especially the fat-tails, asymmetry, positive

or negative dependence) is essential in many important financial applications, including portfolio

selection, option pricing, asset pricing models, Value-at-Risk (market risk, credit risk, liquidity

risk) calculations and forecasting. Thus the entire conditional distribution of multivariate nonlinear

economic and financial time series should be studied, see Granger (2002).

Recently Chen and Fan (2003) introduce a new class of semiparametric copula-based multi-

variate dynamic (hereafter SCOMDY) models. A SCOMDY model specifies the multivariate con-

ditional mean and conditional variance parametrically, but specifies the distribution of the (stan-

dardized) innovations semiparametrically as a parametric copula1 evaluated at the nonparametric

univariate marginals, where the copula function captures the concurrent dependence between the

components of the multivariate innovation and the marginal distributions characterize their individ-

ual behaviors. Chen and Fan (2003) demonstrate via examples the flexibility of SCOMDY models

in capturing a wide range of nonlinear, asymmetric dependence structures and of the marginal

behavior of a multivariate time series. In addition, a SCOMDY model allows for the estimation of

multivariate conditional distribution semiparametrically, which, according to Granger (2002), is an

important feature of a multivariate time series model.

There are three sets of unknown parameters associated with a SCOMDYmodel: the dynamic pa-

rameters (i.e., the finite-dimensional parameters of the conditional mean and conditional variance);

the copula dependence parameters (i.e., the finite-dimensional parameters of the copula function

of the standardized multivariate innovation); and the infinite-dimensional marginal distributions of

each component of the standardized innovation. Chen and Fan (2003) provide simple estimators of

the parameters in a correctly specified SCOMDY model and establish their asymptotic properties.

In this paper, we shall first consider estimation of the three sets of parameters associated with

a SCOMDY model under a possibly misspecified parametric copula of the standardized innovation.

This is motivated by the facts that financial theory and economic theory often shed little light on the

specification of a parametric copula and that most of the existing applications have typically used

multiple choices of parametric copulas. Under misspecification of the copula, we propose a simple

1A copula is simply a multivariate probability distribution function with uniform marginals.
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three-step procedure to estimate all the SCOMDY model parameters. While the true unknown

dynamic parameters and the marginal distributions are still estimated root-n consistently, (n is the

sample size), the estimator of the copula dependence parameters will converge to the pseudo true

copula dependence parameters which are defined as the minimizer of the Kullback-Leibler distance

between the candidate parametric copula density and the true unknown copula density. Interest-

ingly, the limiting distribution of the estimator of the pseudo true copula dependence parameters is

not affected by the estimation of the dynamic parameters, albeit it does depend on the estimation

of unknown marginal distributions as if the dynamic parameters were known.

As commonly used parametric copulas such as the Gaussian copula, the Frank copula, and the

Clayton copula lead to SCOMDY models that may have very different dependence properties, one

important issue in empirical implementation of any SCOMDY model is the choice of an appropriate

parametric copula. A number of existing papers have attempted to address this issue for special

cases of SCOMDY models. In modelling the dependence structure of multivariate high-frequency

data, Breymann, et al. (2003) applied the Akaike information criterion (AIC) to five parametric

copulas and chose the Student’s t copula. Junker and May (2002) presented a transformed copula

to model the dependence structure between risk factors in a portfolio. To compare the transformed

copula with the Student’s t-copula and Cook-Johnson copula, they applied a χ2 goodness-of-fit test

to each copula and selected the transformed copula on the grounds that it resulted in a smaller

value of the test statistic. Granger, et al. (2003) used a conditional version of a special class of

SCOMDY models to study the behavior of the conditional dependence between consumption and

income over the business cycle. They considered eight alternative conditional copulas including

the Gaussian, Clayton, Gumble, among others, and chose the Gumble based on maximizing the

log-likelihood value. In Chen, et al. (2003) and Fermanian (2003), they respectively establish tests

for the correct specification of a parametric copula for specific members of SCOMDY models. One

drawback of these tests is that if the null hypothesis of correct specification is rejected, they provide

no guidance as to which copula model to choose.

Admittedly, existing work have taken an important step towards formal statistical model selec-

tion in the context of copula-based models. However, there are two issues that need to be addressed.

One is related to the statistical uncertainty of the goodness-of-fit criterion being used to select the

best model and the other concerns the most appropriate procedure for the comparison of more

than two models. In this paper, we attempt to address both issues, while allowing for misspecified

parametric copulas and completely unspecified marginals.

In the case with only two models, we extend the likelihood ratio tests for model selection of

parametric models in Vuong (1989) to SCOMDY models. Unlike Vuong (1989), the null hypothesis

we entertain in this paper is: one copula model performs at least as well as the other in terms of

the Kullback-Leibler Information Criterion (hereafter KLIC) which measures the distance between
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a given distribution and the true distribution, while in Vuong (1989), the null hypothesis is: the

two models perform equally well. One may take one copula model as the benchmark model such

as the Student’s t-copula or Cook-Johnson copula in Junker and May (2002), in which case the

benchmark model will be entertained unless there is strong evidence that it is outperformed by

the candidate copula model. Our testing procedure is general, allowing both competing parametric

copula models to be misspecified under the null and the alternative. Although our testing approach

is similar to those in Vuong (1989), Sin and White (1996), Rivers and Vuong (2002), Marcellino

(2002) and other work following Vuong (1989), we allow for infinite-dimensional nuisance parameters

(marginal distributions) in our model selection criterion. Hence our test is really a pseudo- (or

quasi-) likelihood ratio (hereafter PLR) test,2 and the limiting distributions of our test statistics

depend on the estimates of the unknown marginal distributions of the standardized innovations.

We distinguish between two cases: generalized non-nested case and generalized nested case. For

generalized non-nested models, the test statistic is asymptotically normally distributed and hence

easy to implement. For generalized nested models, however, the null limiting distribution is given

by that of a weighted sum of independent χ2[1] random variables, where the weights depend on

the parametric copulas as well as the true data generating process (DGP). As a result, the test

in this case is not distribution-free. This motivates us to provide a bootstrap test for generalized

nested models. The novelty of our bootstrap test in this case is that it is based on bootstrapping

a quadratic form, the limiting distribution of which is the null limiting distribution of the original

test statistic; bootstrapping the original test statistic in this case does not work since both copula

models can be misspecified. In general, one may not know a priori if the two models are generalized

non-nested or nested. A sequential test is thus provided in which one first tests the hypothesis that

the two models are generalized nested and then proceed to test model selection based on the result

of the pretest.

As we noted earlier, in empirical applications of copulas, it is more common to use several

parametric copulas to fit the data and compare the results obtained from different models. To

address the model selection issue in this case, we extend the PLR test developed for two competing

models to more than two models along the lines of the reality check of White (2000). In this

case, the candidate copula models are compared with a benchmark copula model. If no candidate

model is closer to the true model (according to the KLIC distance) than the benchmark model, the

benchmark model is chosen; otherwise, the candidate model that is closest to the true model will

be selected. White (2000) proposes the reality check test for the superior predictive accuracy of at

least one candidate model over the benchmark model when at least one of the candidate models is

nonnested with the benchmark model. Corradi and Swanson (2003, 2004) and Su andWhite (2003),

2Patton (2002) has applied Vuong (1989)’s likelihood ratio test in his study of purely parametric copula-based
dynamic models. Our study differs from his since we do not specify marginal distributions of the standardized
innovations.
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among others, extend the reality check of White (2000) to different contexts. Hansen (2003) shows

via simulation that the power of the reality check of White (2000) can be unduly influenced by

certain candidate models and proposes a standardized version of the test. However, the standardized

test of Hansen (2003) relies implicitly on the assumption that all candidate models are nonnested

with the benchmark model and hence has limited applicability compared with the original test

of White (2000). In this paper, we develop a novel test that shares the advantages of both the

reality check of White (2000) and the standardized test of Hansen (2003). Our test statistic not

only automatically standardizes the PLR statistic associated with generalized nonnested candidate

models (with the benchmark model), but also asymptotically removes the effect of generalized

nested candidate models (with the benchmark model). Consequently, our test potentially has

power gains over the original reality check of White (2000) and is not restricted to the class of

nonnested candidate models like the standardized test of Hansen (2003). Although the test is

developed for comparison of multiple SCOMDY models, the idea is applicable to other settings

such as those in White (2000), Corradi and Swanson (2003, 2004), Su and White (2003) and many

other work following White’s (2000) approach.

The rest of this paper is organized as follows. Section 2 briefly reviews the SCOMDY mod-

els. In Section 3, we study the large sample properties of the estimators of the SCOMDY model

parameters proposed in Chen and Fan (2003) under possibly misspecified parametric copula. It

is very interesting to note that the limiting distribution of the estimate of the copula dependence

parameters is not affected by the estimation of the dynamic parameters of the conditional mean

and conditional variance, although it does depend on the estimation of the unknown marginal

distributions of the standardized innovations. This result is not only important in its own right,

but also useful in establishing the asymptotic distribution of the PLR statistic under possibly mis-

specified copulas. In Section 4, we first present the null hypothesis and the PLR statistic for the

model comparison of two SCOMDY models and then provide the limiting distributions of the PLR

test statistics. It is again interesting to note that the limiting distribution does not depend on the

dynamic parameter estimation, although it does depend on the estimation of marginal distribution

of the standardized innovations of the SCOMDY models. Section 5 extends the above results to

more than two competing SCOMDY models. Section 6 briefly concludes. All technical proofs are

gathered into the Appendix.

2 Semiparametric Copula-based Multivariate Dynamic Models

Let {(Y 0t ,X 0
t)}nt=1 be a vector stochastic process in which Yt is of dimension d, and Xt is a vector

of predetermined or exogenous variables distinct from the Y ’s. Let It−1 denote the information
set at time t, which is the sigma-field generated by {Yt−1, Yt−2, ...;Xt,Xt−1, ...}. In Chen and Fan
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(2003), they specify the class of SCOMDY models as follows:

Yt = µt(θo1) +
q
Ht(θo)�t, (2.1)

where

µt(θo1) = (µ1,t(θo1), ..., µd,t(θo1))
0 = E{Yt|It−1}

is the true conditional mean of Yt given It−1, and is correctly parameterized up to a finite-
dimensional unknown parameter θo1; and

Ht(θo) = diag.(h1,t(θo), ..., hd,t(θo)),

hj,t(θo) = hj,t(θo1, θo2) = E[(Yjt − µt(θo1))
2|It−1], j = 1, ..., d,

is the true conditional variance of Yjt given It−1, and is correctly parameterized up to a finite-
dimensional unknown parameter θo = (θ

0
o1, θ

0
o2)

0, where θo1 and θo2 do not have common elements.

The standardized multivariate innovations {�t ≡ (�1t, . . . , �dt)0 : t ≥ 1} in (2.1) are independent
of It−1, and are i.i.d. distributed with E(�jt) = 0 and E(�2jt) = 1 for j = 1, . . . , d. Moreover,

�t = (�1t, . . . , �dt)
0 has a distribution function F o(�) = Co(F o

1 (�1), . . . , F
o
d (�d);αo), where F

o
j (·) is the

true but unknown continuous marginal of �jt, j = 1, . . . , d, and Co(u1, . . . , ud;αo) : [0, 1]
d → [0, 1]

is the copula function which has a continuous copula density function co(u1, . . . , ud;αo) depending

on a true but unknown finite dimensional copula parameter αo.

In Chen and Fan (2003), they provided many examples of SCOMDY models by combining

different specifications of µt(θo1), Ht(θo) and Co(u1, . . . , ud;αo). Basically, µt(θo1) and Ht(θo) can

take almost all the commonly used conditional mean and conditional variance specifications such

as ARCH, GARCH, VAR, Markov switching, etc., see Granger and Teräsvirta (1993), Hamilton

(1994), Tsay (2002), and all the chapters on dependent processes in the Handbook of Econometrics,

Vol. 4, edited by Engle and McFadden (1994). Similarly, Co(u1, . . . , ud;αo) can be any parametric

copula function such as the Normal (or Gaussian) copula, the Student’s t-copula, the Frank copula,

the Gumble copula, and the Clayton copula, see Joe (1997) and Nelsen (1999) for examples and

properties of copulas.

We conclude this section using the following SCOMDY examples as illustration.

Example 1 (GARCH(1,1)+Normal copula): For j = 1, ..., d,

Yjt = X 0
jtδj +

q
hjt�jt,

hjt = κj + βjhj,t−1 + γj(Yj,t−1 −X 0
j,t−1δj)

2, (2.2)

where

κj > 0, βj ≥ 0, γj ≥ 0, and βj + γj < 1, j = 1, . . . , d.
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In terms of our notation, θ1 = (δ1, ..., δd)
0, θ2 = (κ1, ..., κd;β1, ..., βd; γ1, ..., γd)0, µt = (X

0
1tδ1, ...,X

0
dtδd)

and Ht = diag{h1t, ..., hdt}. The standardized multivariate innovations {�t ≡ (�1t, . . . , �dt)0 : t ≥ 1}
are independent of It−1, and are i.i.d. distributed with E(�jt) = 0 and E(�2jt) = 1 for j = 1, . . . , d.

The copula of �t = (�1t, . . . , �dt)
0 is assumed to be a normal copula with unknown correlation

matrix α = Σ. A d− dimensional normal copula is derived from the d− dimensional Gaussian distri-
bution. Let Φ denote the scalar standard normal distribution, and ΦΣ,d the d−dimensional normal
distribution with correlation matrix Σ. Then the d−dimensional normal copula with correlation
matrix Σ is

C (u;Σ) = ΦΣ,d(Φ
−1(u1), ...,Φ−1(ud)),

whose copula density is

c (u;Σ) =
1p
det(Σ)

exp

(
−
¡
Φ−1(u1), ...,Φ−1(ud)

¢0 ¡
Σ−1 − Id

¢ ¡
Φ−1(u1), ...,Φ−1(ud)

¢
2

)
.

Normal copula withΣ 6= 0 generates joint symmetric dependence, but there is no tail dependence
(i.e., there is no joint extreme events).

Example 2 (GARCH(1,1)+Student’s t-copula): the conditional mean and conditional vari-

ance of Yjt, j = 1, ..., d, are specified in the same way as those in Example 1.

The copula of �t = (�1t, . . . , �dt)
0 is assumed to be a Student’s t- copula with unknown corre-

lation matrix α = Σ. A d− dimensional t-copula is derived from the d− dimensional Student’s
t-distribution. Let Tν be the scalar standard Student’s t distribution with ν > 2 degrees of freedom,

and TΣ,ν be the d−dimensional Student’s t distribution with ν > 2 degrees of freedom and a shape

matrix Σ. Then the d−dimensional Student’s t-copula with correlation matrix Σ is

C (u;Σ, ν) = TΣ,ν(T
−1
ν (u1), ..., T

−1
ν (ud)).

The Student’s t copula density is:

c (u;Σ, ν) =
Γ(ν+d2 )[Γ(

ν
2 )]

d−1p
det(Σ)[Γ(ν+12 )]

d

Ã
1 +

x0Σ−1x
ν

!− ν+d
2 dY

i=1

Ã
1 +

x2i
ν

! ν+1
2

,

where x = (x1, ..., xd)
0, xi = T−1ν (ui) .

The Student’s t copula with Σ 6= 0 can generate joint symmetric tail dependence, hence allow
for joint fat tails (i.e., an increased probability of joint extreme events).

Example 3 (GARCH(1,1)+Clayton copula): the conditional mean and conditional variance

of Yjt, j = 1, ..., d, are specified in the same way as those in Example 1.

The copula of �t = (�1t, . . . , �dt)
0 is assumed to be the Clayton copula:

C(u1, . . . , ud;α) = [u
−α
1 + . . .+ u−αd − d+ 1]−1/α, where α > 0. (2.3)
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The copula density of the Clayton copula is given by

c(u1, . . . , ud;α) = {Πdj=1[1 + (j − 1)α]}{Πdj=1u−(α+1)j }[
dX

j=1

u−αj − d+ 1]−(α
−1+d), where α > 0.

Unlike the Gaussian and Student’s t copulas, the Clayton copula can generate asymmetric

dependence. In particular, the Clayton copula has lower tail dependence, but no upper tail depen-

dence.

All three examples have been applied in empirical finance. For instance, Example 1 has been

used in Hull and White (1998) for value-at-risk calculation for asset returns and for exchange rates.

It can be regarded as a special case of the DCC model proposed in Engle (2002) and Engle and

Sheppard (2001). Examples 2 and 3 have been used in Breymann, et al. (2003) and Junker and May

(2002) for joint tail dependence and risk management modelling for multivariate high frequency

data. But none of the existing work have considered model selection tests with possibly misspecified

copulas.

3 Estimation of SCOMDY Model Parameters under Copula Mis-
specification

In this section, we first review the simple estimators of parameters in a SCOMDY model pro-

posed in Chen and Fan (2003) and then establish their large sample properties when the copula is

misspecified.

3.1 Estimation of model parameters

Let �t(θ) ≡ [Ht(θ)]
−1/2(Yt − µt(θ1)) be the innovation function. The log-likelihood function for the

SCOMDY model with a candidate copula function C(u1, . . . , ud;α) is, (up to a constant term)

Ln(θ, f ;α) =
1

n

nX
t=1

lt(θ, f ;α)

=
1

n

nX
t=1

− log |Ht(θ)|
2

+
dX

j=1

log fj(�jt(θ)) + log c(F1(�1t(θ)), . . . , Fd(�dt(θ));α)


where |Ht(θ)| denotes the determinant of Ht(θ), c(u1, . . . , ud;α) is the copula density function

associated with the copula function C(u1, . . . , ud;α), and f = (f1, ..., fd) with fj being the unknown

probability density function (pdf) of Fj , j = 1, ..., d. As the marginal distributions Fj are completely

unspecified, we normalize the mean and variance of the innovation �jt such that E[�jt(θ)] = 0 and

V ar[�jt(θ)] = 1 for j = 1, . . . , d.

We need to estimate three sets of parameters θo, (F
o
1 , . . . , F

o
d ) and α∗, where α∗ is defined as

α∗ ≡ argmax
α∈A

E0[log c(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α)]
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= argmax
α∈A

Z
[0,1]d

log c(u1, . . . , ud;α)c
o(u1, . . . , ud;αo)du1 · · · dud.

If the copula density c(u1, . . . , ud;α) correctly specifies the true copula density up to the copula pa-

rameter α, then α∗ equals the true value αo. Otherwise, the copula density function c(u1, . . . , ud;α∗)

is the closest in the family of parametric copula densities {c(u1, . . . , ud;α) : α ∈ A} to the true
copula density in terms of minimizing the KLIC.

We first consider the estimation of θo and (F
o
1 , . . . , F

o
d ). The following estimators are proposed

in Chen and Fan (2003). The parameter θo1 is estimated by OLS:

eθ1 = arg max
θ1∈Θ1

{−1
2n

nX
t=1

[Yt − µt(θ1)]
0[Yt − µt(θ1)]};

and the parameter θo2 is estimated by QMLE:

eθ2 = arg max
θ2∈Θ2

−1
2n

nX
t=1

dX
j=1

(
(Yjt − µt(eθ1))2
hj,t(eθ1, θ2) + log hj,t(eθ1, θ2)

)
.

Given the estimator θ̃, one can estimate F o
j using the rescaled empirical distribution of {�jt(θ̃)}nt=1:

eFnj(x) = 1

n+ 1

nX
t=1

1(�jt(θ̃) ≤ x), j = 1, ..., d. (3.1)

Since the estimators θ̃ and ( eFn1, ..., eFnd) do not depend on the parametric copula specification,
their asymptotic properties established in Chen and Fan (2003) still hold. In particular, under mild

regularity conditions, eθ is a √n−consistent estimator for θo and ( eFn1, ..., eFnd) is √n−consistent
estimator of (F o

1 , . . . , F
o
d ).

Given (θ̃, eFn1, ... eFnd), α∗ can be estimated by α̂:
α̂ = argmax

α∈A
1

n

nX
t=1

log c( eFn1(�1t(θ̃)), . . . , eFnd(�dt(θ̃));α). (3.2)

Chen and Fan (2003) establish the asymptotic properties of α̂ when the copula is correctly

specified. In the next subsection, we will extend their results to the case where the copula is

misspecified.

3.2 Asymptotic properties of α̂ under copula misspecification

The difficulty in establishing the asymptotic properties of the estimator α̂ arises from the fact that

for many widely used copula functions including the Gaussian copula, the t-copula and the Clayton

copula, the score function and its derivatives blow up to infinity. To handle this difficulty, Chen

and Fan (2003) first establish a weighted uniform CLT for the empirical process
√
n( eFnj(·)−F o

j (·))
based on pseudo-observations {�jt(eθ)} and then used it to prove the √n−consistency of α̂ under
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the correct specification of parametric copula. In this section we modify their result to obtain the
√
n−consistent estimation of α∗ under misspecified copula.3
Let A be the parameter space, which is a compact subset of Ra. For α ∈ A, we use ||α − α∗||

to denote the usual Euclidean metric.

Proposition 3.1 Under Assumptions D and C stated in the Appendix, we have: ||bα−α∗|| = op(1).

Proposition 3.1 states that the estimator α̂ is a consistent estimator of the pseudo true value

α∗. If the parametric copula correctly specifies the true copula in the sense that there exists αo ∈ A
such that C(v1, . . . , vd;αo) = Co(v1, . . . , vd) for almost all (v1, . . . , vd) ∈ (0, 1)d, then α∗ = αo and

α̂ consistently estimate αo.

In the following we denote l(v1, . . . , vd, α) = log c(v1, . . . , vd, α), lα(v1, . . . , vd, α) =
∂l(v1,...,vd,α)

∂α ,

lj(v1, . . . , vd, α) =
∂l(v1,...,vd,α)

∂vj
, lαα(v1, . . . , vd;α) =

∂2l(v1,...,vd;α)
∂α∂α0 and lαj(v1, . . . , vd;α) =

∂2l(v1,...,vd;α)
∂vj∂α

for j = 1, . . . , d. Define Ujt ≡ F o
j (�jt(θo)) for j = 1, . . . , d and Ut = (U1t, . . . , Udt)

0. Denote

A∗n ≡
1

n

nX
s=1

{lα(U1s, . . . , Uds, α
∗) +

dX
j=1

Qαj(Ujs;α
∗)},

where

Qαj(Ujs;α
∗) ≡ E0{lαj(Ut;α

∗)[I{Ujs ≤ Ujt}− Ujt]|Ujs}.

We also denote B ≡ −E0[lαα(Ut;α
∗)] and Σ ≡ V ar0[lα(Us;α

∗) +
Pd

j=1Qαj(Ujs;α
∗)], and assume

that both B and Σ are finite, positive definite.

Proposition 3.2 Let α∗ ∈ int(A). Under Assumptions D and N stated in the Appendix, we have:
(1) bα− α∗ = B−1A∗n + op(n

−1/2); (2)
√
n(bα− α∗)→ N (0, B−1ΣB−1) in distribution.

The additional terms Qαj(Ujs;α
∗) in A∗n are introduced by the need to estimate the marginal

distribution function F o
j (·). In the case where the distribution F o

j (·) is completely known, these
terms will disappear from A∗n. It is interesting to note that the asymptotic variance of α̂ does not

depend on the functional form of the marginal distribution F o
j . It is even more interesting to observe

that the limiting distribution of bα is not affected by the estimation of the dynamic parameters θo.
Remark: The asymptotic variance of bα can be consistently estimated as bB−bΣ bB−, where bB− is
the generalized inverse of

bB = − 1
n

nX
t=1

lαα(Ũt; α̂),

3Although White (1982) established the asymptotic properties of the maximum likelihood estimator under mis-
specified parametric models, his results are not directly applicable here since the estimation of the copula dependence
parameter in a SCOMDY model under copula misspecification depends on the estimates of the unknown marginal
distributions.
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where Ũt = (Ũ1t, . . . , Ũdt)
0 = (F̃n1(�1t(eθ)), ..., F̃nd(�1t(eθ)))0; and

bΣ = 1

n

nX
t=1

[lα(Ũt; α̂) +
dX

j=1

bQαj( eUjt; α̂)][lα(Ũt; α̂) +
dX

j=1

bQαj( eUjt; α̂)]
0,

with

bQαj(Ujt; α̂) =
1

n

nX
s=1,s6=t

³
lαj(Us; α̂){I{Ujt≤Ujs} − Ujs}+ lαj(Ut; α̂){I{Ujs≤Ujt} − Ujt}

´
.

Any inference drawn based on α̂ and this variance estimator bB−bΣ bB− would still be valid except
that it is on the pseudo true value α∗ and the estimated parametric copula estimates the closest

copula in the parametric family to the true copula in terms of minimizing the KLIC.

4 Pseudo Likelihood Ratio Tests for Model Selection between Two
SCOMDY Models

In this section we first introduce the appropriate PLR statistic for testing model selection between

two SCOMDY models along the lines of Vuong (1989). We then establish the limiting distribution

of the PLR statistic.

4.1 The PLR statistic

For each i = 1, 2, let {Ci(u1, . . . , ud;αi) : αi ∈ Ai ⊂ Rai} be a class of parametric copulas.
Assuming that the conditional mean µt and the conditional variance Ht are correctly specified, we

are interested in selecting a parametric copula such that the resulting SCOMDY model is closer to

the true SCOMDY model from which the multivariate time series {Yt}nt=1 is generated. Let

ct,i(α) = −1
2
log |Ht(θo)|+

dX
j=1

log foj (�jt(θo)) + log ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));αi),

in which ci(·;αi) is the density function of the copula Ci(·;αi), and foj (·) is the density function
of the true marginal cdf F o

j (·) of �jt(θo), j = 1, ..., d. Throughout this paper, we let E0[·] denote
the expectation of · taken with respect to the true distribution Co(F o

1 (·), . . . , F o
d (·);αo). Denote

α∗i = argmaxαi∈Ai E
0[ct,i(αi)] as the pseudo true value associated with the copula model i = 1, 2.

Clearly we have

α∗i = arg max
αi∈Ai

Z
[0,1]d

log ci(u1, . . . , ud;αi)c
o(u1, . . . , ud;αo)du1 · · · dud.

Hence the value of α∗i depends on both the parametric copula ci() and the true copula co().

Following Vuong (1989), we measure the closeness of a SCOMDY model to the true model

by the minimum of the KLIC over the distributions in the copula model or equivalently by the

maximum of E0[ct,i(αi)]. Since only the third term in the expression for ct,i(αi) depends on the
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copula, an equivalent measure of the closeness of the i-th copula model to the true copula model is

E0 log [ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )], i = 1, 2; the largerE

0 log [ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )],

the closer is the model to the true model. This motivates the following hypotheses: For pseudo

true values α∗1 and α∗2, the null hypothesis is

H0 : E0
(
log

c2(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
≤ 0,

meaning that the copula model with the copula C1(·;α1) is not worse than the copula model with
the copula C2(·;α2), and the alternative hypothesis is

H1 : E0
(
log

c2(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
> 0,

meaning that the copula model with C1(·;α1) is worse than the copula model with C2(·;α2).
In the above formulation, one can take the copula model C1(·;α1) as the benchmark model and

the model C2(·;α2) as a candidate model. Given the prevalence of the Gaussian distribution in
multivariate financial time series modelling, it is natural to take the Gaussian copula model as the

benchmark model; the Gaussian copula model will be retained unless the test strongly suggests

that the candidate model outperforms the Gaussian copula model. In Junker and May (2002), the

benchmark model is either the Student’s t-copula or the Cook-Johnson copula.

Define

LRn(θo, F
o
1 , . . . , F

o
d ;α

∗
2, α

∗
1) =

1

n

nX
t=1

(
log

c2(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
.

Let α̂i denote the two-step estimator of α
∗
i for the SCOMDYmodel with copula Ci(u1, . . . , ud;αi),

i = 1, 2. Our tests will be based on the following PLR statistic:

LRn(θ̃, eFn1, . . . , eFnd; α̂2, α̂1) = 1

n

nX
t=1

(
log

c2( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂2)
c1( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂1)

)
.

4.2 Asymptotic properties of the PLR statistic and PLR tests

As will be shown later, the asymptotic distribution of the PLR statistic takes different form de-

pending on whether the two closest parametric copulas to the true copula are equal. To distinguish

between these two cases, we introduce the concept of generalized non-nested and of generalized

nested copula models.

Definition 4.1 (i) Two models are generalized non-nested if the set {(v1, . . . , vd) : c1(v1, . . . , vd;α∗1) 6=
c2(v1, . . . , vd;α

∗
2)} has positive Lebesgue measure;

(ii) Two models are generalized nested if c1(v1, . . . , vd;α
∗
1) = c2(v1, . . . , vd;α

∗
2) for almost all (v1, . . . , vd) ∈

(0, 1)d.
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It is important to note that as the closest copula in a parametric class of copulas depends on

the true copula, it is not obvious a priori whether two parametric classes of copulas are generalized

non-nested or generalized nested. However commonly used parametric classes of copulas such as

the Clayton copula, the Gumble copula, and the Gaussian copula can be shown to be generalized

non-nested unless the closest member to the true copula in each class is the independence copula.

We first obtain the probability limit of the PLR statistic:

Proposition 4.1 Suppose for i = 1, 2, the copula model i satisfies assumptions of Proposition 3.1

and C6 in the Appendix. Then: LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0
h
log

c2(U1t,...,Udt;α
∗
2)

c1(U1t,...,Udt;α
∗
1)

i
= op(1).

In the following for i = 1, 2, we let li(v1, . . . , vd, αi) ≡ log ci(v1, . . . , vd, αi), Bi ≡ −E0[li,αα(Ut;α
∗
i )]

and

Qi,j(Ujs, α
∗
i ) ≡ E0{li,j(Ut;α

∗
i )[I{Ujs ≤ Ujt}− Ujt]|Ujs} for j = 1, ..., d. (4.1)

THEOREM 4.2 Suppose for i = 1, 2, the copula model i satisfies assumptions of Proposition 3.2.

Then:

(1) for the generalized non-nested case,

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0

·
log

c2(U1t, . . . , Udt;α
∗
2)

c1(U1t, . . . , Udt;α
∗
1)

¸¾
→ N (0, σ2),

where

σ2 = V ar0

log c2(U1t, . . . , Udt;α
∗
2)

c1(U1t, . . . , Udt;α
∗
1)
+

dX
j=1

{Q2,j(Ujt;α
∗
2)−Q1,j(Ujt;α

∗
1)}
 . (4.2)

(2) for the generalized nested case,

2nLRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1) = n(α∗2 − α̂2)
0B2(α∗2 − α̂2)− n(α∗1 − α̂1)

0B1(α∗1 − α̂1) + op(1)

→ Ma1+a2(·;λ∗),

where Ma1+a2(·;λ∗) is the distribution of a weighted sum of independent χ2[1] random variables with

unknown weights λ∗ = (λ∗1, . . . , λ∗a1+a2)
0, in which the weights depend on the two parametric copulas

and the true unknown distribution function.

Compared with Theorem 3.3 in Vuong (1989), the variance of the asymptotic distribution of the

PLR statistic for generalized non-nested models has the additional term due to
Pd

j=1{Q2,j(Ujt;α
∗
2)−

Q1,j(Ujt;α
∗
1)}. All of these additional terms are introduced by the first step estimation of the

unknown marginal distributions F o
j , j = 1, . . . , d. However, it is very interesting to note that the

limiting distribution of the PLR statistic does not depend on the functional forms of the unknown

marginal distributions F o
j , j = 1, . . . , d, nor does it depend on the estimation of the dynamic

parameters θo.
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The following proposition shows that σ2 > 0 if and only if the two copula models are generalized

non-nested. Consequently, for generalized non-nested models, the null limiting distribution of

n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1) is a normal distribution with a positive variance. This is the basis
for the PLR test for model selection in generalized non-nested case developed in this paper.

Proposition 4.3 Let σ2a = V ar0[log
c2(U1t,...,Udt;α

∗
2)

c1(U1t,...,Udt;α
∗
1)
] and σ2 be given by (4.2). Under conditions of

Theorem 4.2, σ2 = 0 if and only if σ2a = 0; and σ2a = 0 if and only if the two copula models under

selection are generalized nested.

4.3 A PLR test for selection of generalized non-nested models

Unlike Vuong (1989), for generalized non-nested models, the null hypothesis in our paper is a

composite hypothesis. As a result, the asymptotic distribution of the PLR statistic under the null

is not uniquely determined, see Theorem 4.2(1). The usual approach to handling this problem

is based on the Least Favorable Configuration (hereafter LFC) which is the point least favorable

to the alternative. In our case, the LFC satisfies E0
h
log

c2(U1t,...,Udt;α
∗
2)

c1(U1t,...,Udt;α
∗
1)

i
= 0. Under the LFC,

Theorem 4.2(1) implies that n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1) → N (0, σ2). Moreover, σ2 > 0 by

Proposition 4.3. We now provide a consistent estimator of σ2.

First, by the definition of Qi,j(Ujs;α
∗
i ) in (4.1), we have E

0{Qi,j(Ujs;α
∗
i )} = 0 for i = 1, 2 and

j = 1, ..., d. Moreover given Ujs, Qi,j(Ujs;α
∗
i ) can be estimated by

bQi,j(Ujs, α̂i) =
1

n

nX
t=1,t6=s

[li,j(Ut; α̂i){I{Ujs≤Ujt} − Ujt}+ li,j(Us; α̂i){I{Ujt≤Ujs} − Ujs}]. (4.3)

Then a consistent estimator of σ2 is given by σ̂2 =

1

n

nX
t=1

log c2(Ũt; α̂2)

c1(Ũt; α̂1)
− 1

n

nX
s=1

log
c2(Ũs; α̂2)

c1(Ũs; α̂1)
+

dX
j=1

{ bQ2,j( eUjt; α̂2)− bQ1,j( eUjt; α̂1)}
2 , (4.4)

where Ũt = (Ũ1t, . . . , Ũdt)
0 = (F̃n1(�1t(eθ)), ..., F̃nd(�1t(eθ)))0.

Define the PLR statistic for the selection of generalized non-nested models as

TN
n =

n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)
σ̂

, (4.5)

where the superscript “N” in TN
n is meant for non-nested models and normal limiting distributions.

THEOREM 4.4 Suppose the conditions of Proposition 4.1 and Theorem 4.2 hold and the two

models are generalized non-nested. Then under the LFC, TN
n → N (0, 1).

Proposition 4.1 and Theorem 4.4 suggest the following directional test: Given a significance

level α, reject H0 in favor of H1 if T
N
n > Zα, where Zα is the upper α-percentile of the standard

normal distribution (i.e., Zα is the value of the inverse standard normal distribution evaluated at

1− α).
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4.4 A PLR test for selection of generalized nested models

We now consider the case where under H0, the two models are generalized nested. In this case, the

null hypothesis becomes a simple hypothesis. Define the test statistic:

TQ
n = 2nLRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1), (4.6)

where the superscript “Q” in TQ
n is meant for nested models and quadratic limiting statistics.

Theorem 4.2(2) implies that in this case the null limiting distribution of the PLR statistic TQ
n

is not distribution-free and is a complicated function of both the parametric copulas and the true

distribution function. Moreover, one needs to compute and estimate eigenvalues of a complicated

(a1 + a2) dimensional matrix in order to estimate the asymptotic critical values.

A typical solution to this problem is provided by the method of bootstrap to approximate the

critical values of the test. Typically, in order for a bootstrap test to work, the bootstrap sample

must satisfy the null model. In our case, both parametric copulas can be misspecified and hence

the null hypothesis does not specify a complete null model. Instead, we will rely on Efron’s naive

bootstrap, but use the distribution of 2nDn instead of T
Q
n computed on the bootstrap sample,

where

Dn =
1

2
(α̂2 − α∗2)

0B2(α̂2 − α∗2)−
1

2
(α̂1 − α∗1)

0B1(α̂1 − α∗1). (4.7)

This is motivated by the observation that in the generalized nested case, the null limiting distrib-

ution of TQ
n is given by the limiting distribution of 2nDn. Specifically,

Step 1: Draw a random sample {�̃∗t }nt=1 of size n from the residuals {e�t ≡ �t(eθ)}nt=1 with replace-
ment. This leads to one bootstrap sample.

Step 2: Compute the bootstrap estimates eF ∗nj(x) = 1
n+1

Pn
t=1 1(�̃

∗
jt ≤ x). Let eU∗jt = eF ∗nj(�̃∗jt),

j = 1, . . . , d.

Step 3: Compute the bootstrap estimates α̂∗i = argmaxα∈Ai [n
−1Pn

t=1 log ci(
eU∗1t, ..., eU∗dt;α)] for

i = 1, 2.

Step 4: Compute 2D∗n = (α̂∗2 − α̂2)
0B̂2(α̂∗2 − α̂2)− (α̂∗1 − α̂1)

0B̂1(α̂∗1 − α̂1),

where B̂i = n−1
Pn

t=1 li,αα(F̃n1(e�1t), . . . , F̃nd(e�dt); α̂i) for i = 1, 2;
Step 5: Repeat Steps 1-4 a large number of times and use the empirical distribution of the resulting

values of 2nD∗n to approximate the null distribution of the test statistic TQ
n .

Throughout the paper, we let P ∗(·|{(Yt,Xt)}nt=1) denote the probability law of the resampled
series, conditional on the data. Note that the above bootstrap procedure does not rely on any

specific forms of µt(θ) and Ht(θ), since the estimator α̂i and the test statistic T
Q
n depends on the
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data {(Yt,Xt)}nt=1 only through {�̃t}nt=1. Moreover, the asymptotic distribution of α̃i and the null
asymptotic distribution of TQ

n are the same as the case where θo is known. This together with the

fact that {�t(θo)}nt=1 is i.i.d. ensure that the above bootstrap procedure works.

THEOREM 4.5 Under the conditions of Theorem 4.2(2), P ∗(2nD∗n ≤ x|{(Yt,Xt)}nt=1) converges
in probability to Ma1+a2(x;λ

∗).

4.5 A sequential PLR test for model selection

The tests presented in the previous subsections are general in the sense that they apply to cases

where both parametric copula models could be misspecified, and none of the competing copula

models are required to be correctly specified.4 However, one needs to know whether the two

models are generalized non-nested. As the pseudo-values α∗1 and α∗2 are unknown, it is unknown a

priori if this is the case. Vuong (1989) suggests a sequential test in which one first tests if the two

models are generalized non-nested and then determines which test to use based on the result of the

pre-test.

The null hypothesis of generalized nested models can be tested by testing the null hypothesis

σ2a = 0. A consistent estimator of σ
2
a is given by

σ̂2a =
1

n

nX
t=1

"
log

(
c2(Ũt; α̂2)

c1(Ũt; α̂1)

)
− 1

n

nX
s=1

log

(
c2(Ũs; α̂2)

c1(Ũs; α̂1)

)#2
, (4.8)

where Ũt = (Ũ1t, . . . , Ũdt)
0 = (F̃n1(�1t(eθ)), ..., F̃nd(�1t(eθ)))0. In the following we denote λ∗2 =

(λ∗21 , ..., λ∗2a1+a2)
0 as the vector of squares of λ∗ = (λ∗1, ..., λ∗a1+a2)

0, the eigenvalue weights in Theorem

4.2(2).

THEOREM 4.6 Under the conditions of Proposition 4.1 and Theorem 4.2, we have:

(1) σ̂2a given in (4.8) is a consistent estimator of σ
2
a;

(2) When σ2a = 0, nσ̂
2
a →Ma1+a2(·;λ∗2) in distribution.

Theorem 4.6 and Proposition 4.3 suggest that a sequential test can be constructed in our case

as well. First, tests the null hypothesis that the two copula models are generalized nested by using

the test statistic nσ̂2a; if the pretest suggests that the the two models are generalized nested, then

stop; otherwise proceed to use the test TN
n for H0.

Like the null limiting distribution of TQ
n , that of nσ̂

2
a is not distribution-free. We propose to

use bootstrap to approximate its null distribution. The proof of Theorem 4.6 reveals that the null

limiting distribution of σ̂2a is given by the limiting distribution of Vd, where Vd ="
α̂2 − α∗2
α̂1 − α∗1

#0 "
E0l2,α(Ut;α

∗
2)
0l2,α(Ut;α

∗
2) −E0l2,α(Ut;α

∗
2)
0l1,α(Ut;α

∗
1)

−E0l1,α(Ut;α
∗
1)
0l2,α(Ut;α

∗
2) E0l1,α(Ut;α

∗
1)
0l1,α(Ut;α

∗
1)

# "
α̂2 − α∗2
α̂1 − α∗1

#
(4.9)

4Our test procedure follows the approach of Vuong (1989) and Rivers and Vuong (2002), which contrasts with
Cox’s (1962) non-nested testing procedure by not requiring one of the competing models to be correct under the null
hypothesis.
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This motivates us to bootstrap nVd as follows. First we follow Steps 1-3 in Section 4.4 and then

follow Steps 4-5 below:

Step 4: Compute V ∗d as V
∗
d =·

α̂∗2 − α̂2
α̂∗1 − α̂1

¸0 · 1
n

Pn
t=1 l2,α(Ũt; α̂2)

0l2,α(Ũt; α̂2) −1
n

Pn
t=1 l2,α(Ũt; α̂2)

0l1,α(Ũt; α̂1)
−1
n

Pn
t=1 l1,α(Ũt; α̂1)

0l2,α(Ũt; α̂2) 1
n

Pn
t=1 l1,α(Ũt; α̂1)

0l1,α(Ũt; α̂1)

¸ ·
α̂∗2 − α̂2
α̂∗1 − α̂1

¸
Step 5: Repeat Steps 1-4 a large number of times and use the empirical distribution of the resulting

values of nV ∗d to approximate the null distribution of the test statistic nσ̂
2
a.

THEOREM 4.7 Under the conditions of Theorem 4.6, P ∗(nV ∗d ≤ x|{(Yt,Xt)}nt=1) converges in
probability to Ma1+a2(x;λ

∗2).

5 PLR Tests for Model Selection between Multiple SCOMDY
Models

In empirical applications of copulas, several parametric copulas are often used to fit the data

and the results from models based on these copulas are then compared, see e.g. Breymann et

al. (2003), Junker and May (2002) and Granger, et al. (2003). The PLR tests developed in the

previous sections can be extended to the comparison of more than two copulas along the lines of

White (2000). In this case, all the candidate copula models are compared with a benchmark copula

model. If no candidate model is closer to the true model than the benchmark model according to

the KLIC distance, the benchmark model is chosen; otherwise, the candidate model that is closest

to the true model will be selected. As mentioned earlier, one natural benchmark model is the

Gaussian copula model, although the test applies to any benchmark model.

Let {Ci(u1, . . . , ud;αi) : αi ∈ Ai ⊂ Rai} be a class of parametric copulas with i = 1, 2, . . . ,M .

As in the previous sections, we are interested in selecting a parametric copula such that the resulting

SCOMDYmodel with copula Ci(u1, . . . , ud;αi) is closest to the true SCOMDYmodel with unknown

copula Co(u1, . . . , ud). This can be formulated as follows. Let C1(u1, . . . , ud;α1) be the benchmark

model and {Ci(u1, . . . , ud;αi)}Mi=2 be the candidate models. We are interested in testing if the best
candidate model outperforms the benchmark model according to the KLIC distance. Hence, for

pseudo true values α∗i , i = 1, . . . ,M , the null hypothesis is

HM
0 : max

i=2,...,M
E0

(
log

ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
≤ 0,

meaning that no candidate copula model is closer to the true model than the benchmark model,

and the alternative hypothesis is

HM
1 : max

i=2,...,M
E0

(
log

ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
> 0,
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meaning that there exists a candidate copula model that is closer to the true model than the

benchmark model.

Our test will be based on the following PLR statistics (i = 2, . . . ,M):

LRn(eθ, eFn1, . . . , eFnd; α̂i, α̂1) = 1

n

nX
t=1

(
log

ci( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i)
c1( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂1)

)
.

In the following we denote Ω = (σik)
M
i,k=2 in which

σik = Cov0

log ci(U1t, . . . , Udt;α
∗
i )

c1(U1t, . . . , Udt;α
∗
1)
+

dX
j=1

{Qi,j(Ujt;α
∗
i )−Q1,j(Ujt;α

∗
1)},

log
ck(U1t, . . . , Udt;α

∗
k)

c1(U1t, . . . , Udt;α
∗
1)
+

dX
j=1

{Qk,j(Ujt;α
∗
k)−Q1,j(Ujt;α

∗
1)}
 ,

where for i = 1, 2, ...,M and j = 1, ..., d,

Qi,j(Ujt, α
∗
i ) ≡ E0{li,j(Us;α

∗
i )[I{Ujt ≤ Ujs}− Ujs]|Ujt}.

Proposition 5.1 Suppose that for i = 1, 2, . . . ,M , the copula model i satisfies conditions of The-

orem 4.2. Suppose that Ω is positive semi-definite and its largest eigenvalue is positive. Then

jointly

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)−E0

·
log

ci(U1t, . . . , Udt;α
∗
i )

c1(U1t, . . . , Udt;α
∗
1)

¸¾
i=2,...,M

→ (Z2, . . . , ZM)
0,

in distribution, where (Z2, . . . , ZM)
0 ∼ N (0,Ω). Hence

max
i=2,...,M

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)−E0

·
log

ci(Ut;α
∗
i )

c1(Ut;α∗1)

¸¾
→ max

i=2,...,M
Zi in dist.

Proposition 5.1 implies that under the LFC (i.e., E0
n
log

ci(U1t,...,Udt;α
∗
i )

c1(U1t,...,Udt;α
∗
1)

o
= 0 for i = 2, ...,M),

maxi=2,...,M [n
1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)]→ maxi=2,...,M Zi in distribution, which could be used

to construct White’s (2000) Reality Check (RC) test. However, Hansen (2003) shows via simulation

that the power of the reality check of White (2000) can be unduly influenced by large σii and a

standardized version of the test improves the power of the reality check a great deal. In our context,

the standardized test is based on

TnM = max

"
max

i=2,...,M

n1/2LRn(eθ, eFn1, . . . , eFnd; α̂i, α̂1)√
σ̂ii

, 0

#
,

where σ̂ii is a consistent estimator of σii, the i-th diagonal element of Ω, defined as:

σ̂ii =
1

n

nX
t=1

log ci(Ũt; α̂i)

c1(Ũt; α̂1)
− 1

n

nX
s=1

log
ci(Ũs; α̂i)

c1(Ũs; α̂1)
+

dX
j=1

{ bQi,j( eUjt; α̂i)− bQ1,j( eUjt; α̂1)}
2 ,

where bQi,j is a consistent estimator of Qi,j and is computed the same way as in (4.3).
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It is important to point out that Hansen’s (2003) standardized test depends on Ω being positive

definite, which requires that none of the candidate models and the benchmark model are generalized

nested. This assumption can be restrictive in particular when a large number of candidate models

are entertained in a given empirical application. This motivates us to propose the following test

statistic:

TnI = max

"
max

i=2,...,M

(
n1/2LRn(eθ, eFn1, . . . , eFnd; α̂i, α̂1)√

σ̂ii
Gb(σ̂ii)

)
, 0

#
,

where b = bn → 0 as n→∞ and Gb(·) is a smoothed trimming function which trims out small σ̂ii.
We use the following smoothed trimming that has recently been used by Andrews (1995),

Ai (1997) and Linton and Xiao (2001). Let g(·) be a density function that has support [0, 1],
g(0) = g(1) = 0, and let

gb(x) =
1

b
g(
x

b
− 1),

where b is the trimming parameter, then gb(x) has support on [b, 2b]. Letting

Gb(x) =

Z x

−∞
gb(z)dz,

we have

Gb(x) =


0, x < bR x
−∞ gb(z)dz, b ≤ x ≤ 2b
1, x > 2b.

For example, consider the following Beta density

g(z) = B(a+ 1)−1za(1− z)a, 0 ≤ z ≤ 1,

for some positive integer a, where B(a) is the beta function defined by B(a) = Γ(a)2/Γ(2a), and

Γ(a) is the Euler gamma function. Then it can be verified that the function Gb(x) is (a+ 1)-times

continuously differentiable on [0, 1], see Linton and Xiao (2001). We will suppose that a ≥ 1.

THEOREM 5.2 Suppose that the copula model i = 1, 2, ...,M satisfies conditions of Proposition

4.1 and Proposition 5.1. If b → 0 and nb → ∞, then under the null hypothesis we have: TnI =

TnM 0 + op(1), where

TnM 0 = max

"
max
i∈SN

(
n1/2LRn(eθ, eFn1, . . . , eFnd; α̂i, α̂1)√

σ̂ii

)
, 0

#
,

where SN = {i ∈ {2, ...,M} : Model i and the benchmark model are generalized nonnested} and M 0

is the number of candidate models that are generalized non-nested with the benchmark model.
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Theorem 5.2 implies that the null limiting distribution of TnI is the same as that of the stan-

dardized test TnM 0 applied to the set of candidate models that are generalized non-nested with the

benchmark model. That is, the trimming by Gb(σ̂ii) in the test statistic TnI removes the effect of

generalized nested models (with the benchmark model) on its limiting distribution. For candidate

models that are generalized nonnested with the benchmark model, Proposition 4.3 shows that the

corresponding variance-covariance matrix in the limiting distribution of

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)−E0

·
log

ci(U1t, . . . , Udt;α
∗
i )

c1(U1t, . . . , Udt;α
∗
1)

¸¾
i∈SN

is positive definite. Moreover, Proposition 5.1 implies that the test statistic TnM 0 satisfies Assump-

tions 1 and 2 in Hansen (2003) and hence its asymptotic distribution under the null hypothesis

depends only on all candidate models i0 ∈ SN for which

E0
(
log

ci0(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i0)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
= 0. (5.1)

To sum up, Theorem 1 in Hansen (2003) together with our Proposition 5.1 and Theorem 5.2

imply the following result.

Corollary 5.3 Under the conditions of Theorem 5.2, the null limiting distribution of TnI is given

by that of max[maxi∈SLN
Zi√
σii
, 0], where SLN = {i : i ∈ SN and model i satisfies (5.1)}.

To identify models in SN that satisfy (5.1), we follow Hansen (2003) by trimming out small

estimates of

E0
(
log

ci0(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i0)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

)
in the following bootstrap procedure used to approximate the unknown null limiting distribution

of TnI .

Let Ũt = (Ũ1t, . . . , Ũdt)
0 = (F̃n1(�1t(eθ)), ..., F̃nd(�1t(eθ)))0. Under general conditions, the following

bootstrap procedure works. Follow Steps 1-3 defined in section 4.4 and then:

Step 4. Let Ŵti = log
ci(Ũ1t,...,Ũdt;α̂i)

c1(Ũ1t,...,Ũdt;α̂1)
. Calculate its bootstrap value Ŵ ∗

ti = log
ci(eU∗1t,...,eU∗dt;α̂∗i )
c1(eU∗1t,...,eU∗dt;α̂∗1) and

define the recentered value as:

Ŵ ∗
tic = Ŵ ∗

ti − [
1

n

nX
t=1

Ŵti]I{ 1
n

nX
t=1

Ŵti ≥ −an}, i = 2, ...,M,

where an → 0 is a small positive (possibly random) number such that
√
nan →∞.

Step 5. Compute the bootstrap value σ̂∗ii of σ̂ii, i = 2, ...,M , and define the bootstrap value of TnI

as

T ∗nI = max
"
max

i=2,...,M

n−1/2
Pn

t=1 Ŵ
∗
ticp

σ̂∗ii
Gb(σ̂

∗
ii), 0

#
.
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Step 6. Repeat Steps 1-5 for a large number of times and use the empirical distribution function

of the resulting values T ∗nI to approximate the null distribution of TnI .

It is worthwhile to summarize the roles played by the two trimming functions: Gb(·) used in
defining the test statistic TnI and the trimming of n

−1Pn
t=1 Ŵti from below by −an in Step 4.

of the bootstrap procedure. The trimming function Gb(·) removes the effect of candidate models
that are generalized nested with the benchmark model on the limiting distribution of TnI , and the

second trimming identifies among the class of generalized nonnested candidate models (with the

benchmark model) the ones that are not strictly dominated by the benchmark model under the

null hypothesis.

THEOREM 5.4 Under the conditions of Theorem 5.2, the conditional distribution of T ∗nI given

{(Yt,Xt)}nt=1 converges in probability to the null limiting distribution of TnI .

6 Conclusion

Recently Chen and Fan (2003) proposed a class of SCOMDY models which specify the conditional

mean and the main diagonal of the conditional covariance of a multivariate time series parametri-

cally, but specify the multivariate distribution of the standardized innovation semiparametrically as

a parametric multivariate copula evaluated at nonparametric marginal distributions. They demon-

strated that the class of SCOMDY models can capture the entire conditional distribution of a

multivariate nonlinear time series flexibly, and studied the estimation of a SCOMDY model under

the correct specification of the model. Specific members of the class of SCOMDY models have been

applied in empirical finance and insurance, but all the existing applications have used multiple cop-

ula specifications without taking into account the statistical uncertainty involved in copula model

selection.

In this paper, we first extend the large sample properties of the estimators of SCOMDY model

parameters proposed in Chen and Fan (2003) under copula misspecification. Interestingly enough,

the limiting distribution of the estimator of the pseudo true copula dependence parameter is not

affected by the estimation of the dynamic parameters, albeit it does depend on the estimation

of unknown marginal distributions as if the dynamic parameters were known. Therefore, the

common practice in empirical finance of ignoring the estimation error of the dynamic parameters is

theoretically justified according to our first order large sample theory. Nevertheless, our results show

that the statistical uncertainty of the goodness-of-fit model selection criterion cannot be ignored.

We establish PLR tests for model selection of two SCOMDY models with possibly misspecified

parametric copulas for both generalized nonnested copulas and generalized nested copulas. Finally

we consider the PLR test for model selection between more than two SCOMDY models in which one

is the benchmark model and the rest are candidate models. Here we assume that the benchmark
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and at least one of the candidate models are generalized nonnested; our test has advantages over

both the reality check of White (2000) and the standardized test of Hansen (2003).

We are currently working on several extensions of the results reported in this paper. First,

instead of the in-sample PLR model comparison, we could consider out-of-sample PLR model

comparison. Second, we could follow the encompassing approach to perform in-sample and/or

out-of-sample multiple SCOMDY model comparison. See Hendry and Richard (1982), Mizon and

Richard (1986), Diebold (1989), White (1994), Clements and Hendry (1998), West (2001) and many

others for the encompassing tests of model comparison. Third, since some of the copula applications

are in terms of option pricing and forecasting, we could consider alternative loss functions instead

of the KLIC, see e.g. Machina and Granger (2000), Elliott and Timmermann (2002) and Su and

White (2003). Finally, we could consider the misspecification and model comparison of conditional

mean, conditional variance, and copula specifications jointly. This will be related to the model

comparison of semiparametric multivariate conditional distributions. The ideas in Diebold, et al.

(1999), Giacomini and White (2003), and Corradi and Swanson (2004) might be useful here.
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