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Abstract 
 
 I show that a handful of the regressions based tests traditional to cross-sectional or 
time series models can be extended to panel data models with correlated fixed effects. 
Specifically I extend the tests for endogeneity, overindentification, and nonlinearities 
developed by Wooldridge (1994).  This results in regression based tests that can be easily 
made robust to arbitrary heteroskedasticity and/or cluster serial correlation. 
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1.  Introduction  
 
 Estimation methods have become increasing complex as the availability of 

longitudinal data sets have grown. While there are clearly many benefits to these more 

sophisticated models, specification testing within such models can be arduous.    

 Traditional estimation methods for static panel data models are the within-group 

and the generalized least squares (GLS) estimators. The key distinction between the two 

methods is in the treatment of the unobserved component. The GLS estimator assumes 

the unobserved component and the observed explanatory variables are uncorrelated 

where as the within-group estimator allows for correlation between the unobserved 

component and the time averages of the explanatory variables. The focus of this paper is 

specification testing in the context of panel data models estimated using the within-group 

estimator.  Throughout the paper we allow for arbitrary correlation between the time 

averages of the regressors and the unobserved component.  We extend robust regression 

based methods, for testing hypotheses about the conditional mean, that have been 

traditionally applied to either purely cross-sectional or time-series models.  Specifically, 

we derive test for endogeneity, over-identification, and non-linearities for the within-

group estimator.  

  In deriving the above test we assume that at least some of the observed 

explanatory variables are correlated with the idiosyncratic errors.  This necessitates an 

estimation method involving instrumental variables along with the within transformation.  

 The test statistics are derived under minimal assumptions pertaining to the 

distribution of the unobserved component.  We assume the unobserved component is a 

random variable that is invariant through time for each unit of the cross-section. The time 
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invariance allows us to apply standard fixed effects estimation techniques using 

instruments.  One could, of course, allow the unobserved component to trend, assuming 

we had enough time periods to difference the data before applying the within 

transformation.  

 The remainder of the paper is organized as follows: section 2 reviews the existing 

testing literature pertaining to panel data models. Section 3 develops the model and 

assumptions necessary for consistent estimation of the population parameters.  Section 4 

derives the test statistic and its asymptotic distribution.  Section 5 lays out each of the 

three tests specifically and section 6 presents a brief conclusion. 

 

2. Literature Review  

 Panel data is unique in that it has both a cross-section and time-series dimension. 

This allows us to construct specification tests by applying either T or N asymptotics. The 

decision of which dimension you assume fixed verses growing infinitely is imperative. 

Assuming the time-series dimension tending off to infinity changes the whole setting of 

the model; while the unobserved component is no longer a problem the time-series nature 

of the observed explanatory variables is.  Traditionally the approach in panel data models 

has been to assume the time dimension is fixed while the cross-sectional dimension tends 

to infinity. However, Baltagi discusses panel data models containing correlated 

unobserved components using T asymototics.  

  In deriving the test statistic we assume the cross-section to grow while the time-

series dimension remains fixed. We discuss the implications of allowing the time-

dimension to grow in the conclusion.  Therefore, the focus of the literature review is on 
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panel data models where the cross-sectional dimension is thought to be significantly large 

relative to the time-dimension. 

  Much of the testing literature pertaining to panel data models builds on the work 

of Hausman (1978). In general, the Hausman test can be applied anytime an econometric 

model can be consistently estimated under the alternative hypothesis as well as under the 

null.  The test is based on comparing the two estimates.  Since, under the null hypothesis 

both estimation procedures are consistent, therefore, observing a statistical difference 

between the two provides evidence against the null.  The standard, and most widely 

applied, version of the test assumes that the estimation procedure under the null 

hypothesis is more efficient. This assumption simplifies the calculation of the variance 

covariance matrix.  While it is possible to compute the variance covariance matrix 

without maintaining such efficiency assumptions, most statistical packages do not allow 

for computation of the robust version directly. 

 Hausman and Taylor (1981) derive estimation and testing methods in the context 

of linear panel data models containing correlated fixed effects where interest lies in the 

parameters associated with observed time invariant explanatory variables. More 

specifically they develop an estimation procedure using instruments to estimate the 

parameters of the observed time-invariant variables. Where the instruments are the within 

transformations of the time-varying explanatory variables that are assumed to have no 

relationship with the unobserved component.  Therefore, Hausman and Taylor do not rely 

on instrument from outside the model. They also extend the work of Hausman in the 

context of testing for correlation between the unobserved component and the included 

explanatory variables.  
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 Metcalf (1996) extends above procedures of Hausman and Taylor to models 

containing endogenous variables in addition to the correlated fixed effects. That is, 

Metcalf requires instruments outside of the model.  The test statistic developed is then 

pertaining to possible correlation between the instruments and the unobserved 

component.   

 Ahn and Low (1996) further extend the testing literature regarding panel data 

models through reformulating the Hausman test in the context of GMM estimation. They 

note that the Hausman test statistic for testing correlation between the unobserved 

component and the regressors implies that the individual means or time averages of the 

regressors are exogenous. Their alternative GMM statistic incorporates a much broader 

set of moment conditions signifying that each of the time-varying explanatory variables is 

exogenous. The key feature of the alternative GMM test statistic is that unlike the 

Hausman test it has power in detecting nonstationary coefficients of the regressors. 

 The tests derived in this paper differ in two distinct ways: first most of the 

existing tests focus on testing for correlation between the unobserved effect and observed 

explanatory variables where as here, we assume the unobserved effects are correlated 

with the included explanatory variables.  The focus here is on testing for correlation 

between the observed explanatory variables and the idiosyncratic error.  Second, the tests 

derived in this paper focus on computational ease for both the non-robust and robust test 

statistic. Where, the robust version is robust to arbitrary forms of heteroskedasticity as 

well as within-group serial correlation. While many statistical packages will compute the 
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non-robust version of the Hausman statistic following a regression; it in general is much 

more tedious obtaining the robust version. In addition, it's not clear how to apply the 

Hausman test to panel data models containing both correlated unobserved components 

and endogenous explanatory variables.  

   The test statistics derived in this paper extend the regression based tests derived 

by Wooldridge (1994).  Wooldridge develops a score type test statistic in the context of 

time series models estimated by two-stage least squares.  The appeal of the tests is both 

computational ease and flexibility.  The flexibility of the test results from a partialling out 

method.  This allows for misspecification indicators that are non-linear functions of the 

instruments, for instruments that are not strictly exogenous, and for errors that that are not 

assumed to be independent or even uncorrelated. The resulting test statistic can be 

applied to a variety of hypotheses including endogeneity, serial correlation, 

overindentification, and nonlinearities, all of which can be easily made robust to arbitrary 

forms of heteroskedasticity and serial correlation. 

 

3. Model and Assumptions 

 Let {(zit, xit, yit): i = 1,……N; t = 1,……..T }be a sequence of observations, where 

zit is a 1×L vector of instruments, xit is a 1×K vector of time-varying explanatory 

variables, and yit  is the dependent variable. We assume random sampling in the cross-

section and fixed T.  Generally, the set of instruments and the set of explanatory variables 

will overlap. For example, it is often the case that time dummies are included in the set of 

explanatory variables. We are interested in the standard unobserved effects model 

(2.1)             yit =  xitβ + ci + uit         ( 1,........=i N  ; t = 1,…….T).   
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Where, ci is the time-invariant unobserved heterogeneity and uit is the idiosyncratic error.   

We are interested in consistently estimating the K ×1 vector β.  Throughout the paper we 

allow for arbitrary correlation between ci and xit, thus we eliminate ci using the fixed 

effects or within transformation: 

(2.2)                                 ÿit =  β + üitx&& it        ( 1,........=i N  ; t = 1,…….T).     

The time demeaning necessitates strict exogeneity for the consistency of the estimation 

procedures.  That is 

(2.3)                                           E( is itux′ ) = 0,             ( , 1,....... )s t T= .  

Maintaining we know the fixed effects estimation of β is consistent and asymptotically 

normal. However, if we believe that at least some of the elements of xit are correlated 

with the idiosyncratic error then the standard fixed effects estimation procedure is 

inconsistent.  In such cases the existence of instruments allows for estimation of β by 

pooled two-stage least squares (2SLS) using time-demeaned instruments.  

Under the appropriate assumptions, this estimation procedure is consistent and 

asymptotically normal.  We then analyze the model (2.1) under the following 

assumptions. 

Assumption A.1                        E( is ituz′ ) = 0           ( , 1,....... )s t T= . 

 A sufficient condition for assumption A.1 is the zero conditional mean 

assumption 

(2.4) E(uit | zi) = 0. 

Where, zi is a T ×L matrix of instrumental variables. The general analysis assumes A.1 

since it is a weaker condition. However, it is necessary to assume 2.4 in the test for 
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nonlinearities as shown in the examples.  The next assumption imposed is the 

identification condition. 

Assumption A.2   Let , where,*
it it it it   L( |  ) = x x z z≡ Π&& && && && [ ]

T
-1

it it it it
t 1

Π E( ) E( )z z z x
=

′ ′≡ ∑ && && && &&  and 

L( x&& it׀ z&& it) denotes the linear projection of x&& it onto z&& it. Then let 

(2.5)                                                *
i iE( )  X X A&& ′ ≡

Where A is positive definite, that is, the rank of A = K.  Thus a necessary condition is the 

order condition, meaning L ≥ K. 

 The pooled 2SLS estimator of β can be expressed as 

(2.6)           .      
N N N N

-1 -1
i i i i i i i i

i=1 i=1 i=1 i=1

ˆ  = ( ) ( ) =  + ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆy uX X X X X Xβ β′ ′ ′ ′∑ ∑ ∑ ∑&& && && && && &&

Where,  = itx̂&& z&& it Π̂ are the fitted values from the first-stage regression of 

(2.6)                      x&& it on z&& it;   ; t = 1,…….T.     1,........=i N

Under assumptions A.1 and A.2 and finite second moment assumptions 

                                              β̂ p⎯⎯→ β . 

This follows from the law of large numbers (LLN); since E( *
i iuX ′&& )=0 under A.1, 

E( ) is nonsingular underA.2, and * *
i iX X′&& && Π̂ ⎯⎯→Πp .  

 By the central limit theorem (CLT) 

(2.7)                            N-1/2  normal (0,B) . 
N

*

i=1
i iuX∑ && d⎯⎯→

Where 

(2.8)                          .        *  E( )i i i iΒ u u XX ′≡ &&&& *

Then the first order asymptotic representation is 
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(2.9)                       N ˆ( )β β−  = A-1 N-1/2 
N

*

i=1
i iuX ′∑ &&   + op(1). 

Equation (2.9) shows that the first-stage regression does not affect the limiting 

distribution of the pooled 2SLS estimator. That is, the same limiting distribution is 

obtained when  replaces , or when itx̂&& *
itx&& Π̂  replacesΠ . Without imposing further 

assumptions 

(2.10)                     ˆ( )β β−N  normal (0, Ad⎯⎯→ -1BA-1). 

Thus the asymptotic variance of β̂  is 

(2.11)                                    avar( β̂ )= A-1BA-1/N. 

We could of course simplify (2.11) by imposing homoskedasticity and no serial 

correlation assumptions.  However, we are interested in the fully robust statistic. Later as 

a special case we consider the case of no serial correlation and/or homoskedasticity. 

 

3. Specification Tests 

 The specification tests developed here focus on when and if the estimation 

procedure outline in section two is consistent and necessary. That is we want to test if a 

particular set of variables are related to the idiosyncratic error. For example, if interest 

lies in testing when the two stage method is necessary we would want to test whether or 

not xit is endogenous. In deriving the test statistic and its properties we generalize by 

defining a set of misspecification indicators that are to be tested for correlation with the 

idiosyncratic error. This allows us to model the three tests regarding the conditional mean 

of equation 2.2 in one setup. 
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 Let vit(γ) be a 1×Q vector of misspecification indicators that may possibly 

depend on some G×1 vector of parameters (γ) and elements of {zit, xit, yit}.  Where we 

assume a consistent estimator of γ, that is, N ( γ̂ - γ) = Op(1).  

 The tests take the null hypothesis to be 

(3.1) Ho: it isE( u ) = 0v′ ,            s,t = 1,……T. 

That is, we are interested in testing whether vit is strictly exogenous in (2.1).  This is 

equivalent to  

(3.2)                                      Ho: it itE( u ) = 0v′&& && .          

In deriving a test of (3.1) we note that 

                                                it it it itE( u ) = E( u )v v′ ′&& && && . 

Thus the test statistics derived take the null hypothesis to be  

(3.3)                                  Ho: it itE( u )v′&& . 

While the equivalence between (3.1) and (3.3) simplifies the derivation of the test 

statistics it is not without cost, we have to restrict the analysis to tests about the 

conditional mean.  For example we cannot take vit = ( uit-1, ….uit-q), since under the null 

hypothesis of no serial correlation, (3.3) is naturally violated.  

 Tests of (3.1) are derived under assumptions that are extensions of those made in 

section 2; when each is used it is assumed to hold under the null.  However, the robust 

forms of the tests are most easily estimated under the alternative; we therefore analyze 

the behavior of the tests under local alternatives. 
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The first assumption is 

Assumption B.1 Assumption A.1 holds and, in addition 

(i)  E[  it it( )uv γ′&& ] = 0   s,t = 1,….T 

(ii) E [∇  it it( )uv γ′&& ] = 0. 

Where∇ v&& it(γ) denotes the gradient of v&& it with respect to γ. Part (ii) of B.1 ensures that 

the estimation of γ does not effect the limiting distribution of the test statistic so long 

as N ( γ̂ - γ) = Op(1).  Requiring B.1 (ii) is innocuous since it is trivially satisfied in the 

test for endogeneneity and overidentification under A.1 and for the test of nonlinearities it 

is satisfied under the zero conditional mean assumption (2.4). 

 The sample analog of (3.3) is  

(3.4)                                 
N T

1
it it

i=1 t=1

ˆ ˆN uv− ′∑∑ &&   

Where “^” denotes that each function is evaluated at ( ˆ ˆ,β γ ).  To use (3.4) as a test of 

(3.3), entails deriving the limiting distribution of 

(3.5)                               
N T

1/ 2
it it

i=1 t=1

ˆ ˆN uv− ′∑∑ &&   

under the null hypothesis.  However, it is often the case that the limiting distribution of 

(3.5) is different from the limiting distribution of 

                                            
N T

1/ 2
it it

i=1 t=1
N uv− ′∑∑ && . 

That is, we need to know when the estimation of β does not effect the limiting 

distribution.  Since B.1 (ii) ensures that the estimation of v&& it does not affect the limiting 

distribution so long as N ( γ̂ - γ) = Op(1); deriving a quadratic form of (3.5) that has an 

asymptotic chi-squared distribution is straightforward, although nothing ensures that the 
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resulting statistic will be easy to compute via regressions.  A simpler approach is to 

transform (3.5) so that the first stage estimation does not affect the limiting distribution.  

This results in robust test statistics that are easy to compute using a series of regressions, 

and are asymptotically equivalent so long as a consistent estimation procedure is used in 

the first-stage estimation as shown by Wooldridge (1990).  This brings us to our second 

assumption. 

Assumption B.2   Assumption A.2 holds and, in addition, let 

   x&& it
* ≡ L( x&& it| z&& it , v&& it). 

Then 

   rank 1
it it

1

(
T

t

T E r r−

=

)′∑  = Q. 

Where rit is a 1×Q vector of time-demeaned population residuals from the linear 

projection of v&& it onto x&& it
*

            rit ≡ v&& it – L( v&& it| x&& it
*). 

 We adjust (3.5) by replacing v̂&& it with r̂ it. This partialling out of v&& it essentially 

allows us to ignore the first-stage estimation when deriving the limiting distribution of 

(3.6)                      
N T

-1/2
it it

i=1 t=1

ˆ ˆN ur′∑∑ .     

Where r̂ it is obtained from the regression  

(3.7)                           v̂&& it on  x̂&& it
*;       1,........=i N  ; t = 1,…….T.    

Where x̂&& it
* are the fitted values obtained from the regression  

(3.8)                          x&& it  on v̂&& it , z&& it;         1,........=i N  ; t = 1,…….T.    
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However, in the test for endogentiety and overidentification v̂&& it can be omitted from (3.8) 

since in both tests v&& it is a strict subset of z&& it under the null hypothesis.  We discus when 

v̂&& it can be omitted from (3.8) in the test for nonlinearities in the examples. 

 In the derivation of the first-order asymptotic representation of (3.6) we assume 

B.1 and B.2 hold under the null hypothesis.  The first step shows that estimation of rit 

does not affect the first-order asymptotic distribution. That is, 

                         =  
N T

-1/2
it it

i=1 t=1

ˆ ˆN ur′∑∑
N T

-1/2
it it

i=1 t=1

ˆN r u′∑∑  + op(1) 

under Ho. This can be verified by a mean-value expansion, since r̂ it is a linear function of 

( v̂&& it( γ̂ ) , z&& it) B.1(ii) ensures that 
N T

-1 *
it it

i=1 t=1

ˆ ˆN ux ′∑∑ && p⎯⎯→  0 . Next we show that estimation 

of uit does not affect the first-order asymptotic distribution by a mean-value expansion of 

                  

N T N T N T N T
-1/2 -1/2 -1 -1/2

it it it it it it it it p
i=1 t=1 i=1 t=1 i=1 t=1 i=1 t=1

ˆˆN u  = N u  + N N(  - ) = N u  + o (1)r r r x rβ β′ ′ ′ ′∑∑ ∑∑ ∑∑ ∑∑&&   

By the CLT, ˆ( )β β−N  = Op(1) and by definition of x&& it
*,  x&& it = x&& it

* + git where 

E( ) = 0, E( ) = 0. Therefore, E(it itgz&&′ it itgv′&& it itgr′ ) = 0, thus E( it itr x′&& ) = E( ) = 0; since *
it itr x′&& r it 

is the population residual from the linear projection of v&& it onto x&& it
*, then by the LLN   

.  This asymptotic equivalence simplifies finding the limiting 

distribution of (3.6) since we can ignore the fact that 

N T
p-1

it it
i=1 t=1

N  r x′ ⎯⎯→∑∑ && 0

r it and uit have been estimated. 
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Define 

(3.9)                                  
T

it it
t=1

C  var ( u )r′≡ ∑ . 

The test statistic proposed is 

(3.10)                       
N T N T

-1/2 -1 -1/2
it it it it

i=1 t=1 i=1 t=1

ˆ ˆˆ ˆˆ ˆδ  (N u ) (N u )r C r′ ′ ′≡ ∑∑ ∑∑   

                 
N T N T

-1
it it it it

i=1 t=1 i=1 t=1

ˆˆ ˆˆ ˆ= ( u ) (N ) ( ur C r )′ ′ ′∑∑ ∑∑ . 

Provided a consistent estimator of C is used δ̂ d χ⎯⎯→ 2 with Q degrees of freedom 

under B.1 and B.2. Of course the actual form of the test statistic depends on the estimator 

used for C. We first derive the fully robust version of the test. That is, a test statistic that 

is robust to heteroskedasticity of unknown form and to cluster serial correlation. A 

consistent estimator of (3.9) is then 

(3.11)                             . 
N T T

-1
it is is it

i=1 s=1 t=1

ˆ ˆ ˆ ˆ ˆ = N u uC r′∑∑∑ r

ˆ ˆr

Therefore the proposed test statistic in (3.10) takes the form 

(3.12)              . 
N T N T T N T

1
it it it is is it it it

ˆ t=1 i=1 s=1 t=1 i=1 t=1 i=1

ˆ ˆ ˆ ˆˆ ˆ ˆ = ( u ) ( u u ) ( u )r r r
δ

δ −′ ′ ′ ′∑∑ ∑∑∑ ∑∑

The above test statistic, in general, cannot be computed via regressions.  However, there 

exist a test statistic that is asymptotically equivalent to (3.12) under Ho and local 

alternatives that can be easily computed using simple regression.  The alternative statistic 

is the fully robust Wald statistic of λ̂ from the regression 

(3.13)                     û it on r̂ it ;      1,........=i N  ; t = 1,…….T.   
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Where λ̂  is the Q×1 vector of coefficients on r̂ it.  This results in a test statistic of the 

form 

(3.14)            . 
N T N T T N T

1
it it it is is it it it

 i=1 t=1 i=1 s=1 t=1 i=1 t=1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ  ( u ) ( e e ) (r r r −′ ′ ′ ′Γ ≡ ∑∑ ∑∑∑ ∑∑ ˆ u )r

Where, ê it is the residual from the regression in (3.13).  Thus the regression form of the 

test replaces ( û is û it) with ( ê is ê it) in the estimation of C, that is (3.14) is just (3.12) 

estimated under the alternative that λ ≠ 0. It can be shown that for sequence of local 

alternatives λN = λN-1/2, where uit = ritλN + eit; the test statistic in (3.14) has a limiting 

non-central chi-squared distribution with non-centrality parameter equal toλ .  This 

facilitates interpreting a rejection since λN = λN-1/2 0 as N⎯⎯→ ⎯⎯→ ∞  under the 

sequence of local alternatives, as well as under Ho where λ̂ p⎯⎯→ 0. 

 The more restrictive form of (3.10) adds the following assumptions. 

Assumption B.3 The homoskedasticity assumption 

  E(uit
2 |zi,vi) = σ2

u. 

Assumption B.4 The no serial correlation assumption 

  E(uituit+j | zi,vi) = 0    j ≥ 1. 

Under B.3 and B.4 a consistent estimator of C is 

(3.15)                      
N T

2 -1
it it

i=1 t=1

ˆ ˆ ˆˆ = σ NC r r′∑∑ .   

With 

  
N T

2 -1
it

i=1 t=1

ˆ ˆσ = (N(T-1) u∑∑ 2    

This gives the following form for the test statistic in (3.10) 

(3.16) 
N T N T N T N T

-1 2 1 2 2
it it it it it it it u Q

ˆ t=1 i=1 t=1 i=1 t=1 i=1 t=1 i=1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ = ( u ) ((N(T-1) u ) ( u ) = N(T-1)Rr r r r
δ

δ χ−′ ′ ′ ′∑∑ ∑∑ ∑∑ ∑∑ �  
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where Ru
2 is the R-squared from the regression in (3.13). 

 

4. Examples 

Example 4.1 (testing for endogeneity) ).  Partition the model as 

(4.1) yit =  xit1β1 + xit2β2 + ci + uit .  

Where, xit1 is maintained to be exogenous. The null hypothesis of interest is then Ho: 

E( ) =0. The model is estimated by Fixed Effects under the null, that is, zit2 itux′&& it = xit.

The test statistic is based on the sample covariance between uit and the fitted values from 

the regression  

(4.2)                 x&& it2 on w&& it ;   ; t = 1,…….T 1,........=i N

where w&& it is a set of instruments that contains x&& it1 but not x&& it2.  A necessary condition is 

that w&& it contain at least as many variables as x&& it. We then define rit ≡ x&& it2
* - x&& itθ, where 

x&& it2
* is the population fitted value from the regression in (4.2).  Thus v&& it(γ)′ ≡ x&& it2

* = 

w&& itγ.  Therefore, the test is really testing if a particular linear combination of the 

instruments w&& it are correlated with uit.  

Procedure (4.1) 

(1) Obtain û it form the estimation of (2.1) by fixed effects. 

(2) Obtain the predicted values of x&& it2
* as the fitted values from the regression of x&& it2 

on w&& it. 

(3) Regress the fitted values from step two on x&& it and obtain the residuals r̂ it. 

(4) Regress û it  on r̂ it. 

Then the robust version of the test is attained from computing the fully robust version of 

the Wald test and the non-robust test is just N(T-1) times the R-squared. 
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Example 4.2 (Testing for overidentifying restrictions) 

There û it denotes the pooled 2SLS residuals using instruments z&& it.  To test for 

overidentifying restrictions we must have L > K where Q ≡ L-K.  Let v&& it be the 1 ×Q 

vector of possible overidentifying restrictions, thus the null hypothesis is                       

Ho: E( ) =0.  We define rit ituv′&& it ≡ v&& it – L( v&& it | x̂&& it), where are the fitted values from the 

first-stage regression of 

it
ˆ̂x&&

x&& it on z&& it. 

Procedure 4.2 

(1) Obtain û it from pooled 2SLS on the time-demeaned data using the full set of 

instruments z&& it. 

(2) Define v&& it as a strict subset of z&& it, regress v&& it on , the fitted values from the 

first-stage regression in step one; save the residuals as 

it
ˆ̂x&&

r̂ it. 

(3) Same as step four in procedure (4.1) 

 

Example 4.3  (Testing for nonlinearities).  As in test for endogeneity, partition (2.1) as 

(4.3)                          yit =  xit1β1 + xit2β2 + ci + uit   ( 1,........=i N

N

 ; t = 1,…….T) 

 where xit1 exogenous and xit2 is endogenous. Therefore, x it1 is contained in zit the set of 

instruments.  Note that the test for nonlinearities assumes the more restrictive zero 

conditional mean assumption (2.4) under the null hypothesis.  To obtain a RESET-type 

(Ramsey 1969) we augment the (2.1) 

(4.4) yit = xit1β1 + xit2β2+ ci + α1( xit1β1 + xit2β2+ ci)2 + α2(xit1β1 + xit2β2+ ci)3 +  uit                                     

(  ; t = 1,…….T).   1,........=i
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The null hypothesis is Ho: α1 = α2 = 0. 

Note that the time-demeaning of (4.4) eliminates any interaction between the time-

invariant unobservables and time-varying explanatory variables since the correlation 

between them is usually thought to be though the time average on the explanatory 

variables. That is, in general we think that the time-demeaned explanatory variables are 

unrelated to the time-invariant unobservables.  This results in the following augmentation 

of the estimating equation (2.2) 

(4.5)  ÿit = x&& it1β1 + x&& it2β2+ α1( x&& it1β1 + x&& it2β2)2 + α2( x&& it1β1 + x&& it2β2)3 +  üit                                               

(  ; t = 1,…….T).   1,........=i N

However, if E( ) ≠ 0 then the following test can be viewed as a test for possible 

interactions between the time-varying explanatory variables and the time-invariant 

unobservables. 

it icx′&&

Procedure 4.3 

(1) Obtain û it from the pooled 2SLS regression on the time-demeaned data using 

instruments z&& it. 

(2) Define the 1×2 vector ĥit ≡ {( x&& it1 β̂ 1 + x&& it2 β̂ 2)2, ( x&& it1 β̂ 1 + x&& it2 β̂ 2)3} where we 

use the coefficient estimates obtained in step (1). 

(3) Augment the instruments zit with some non-linear functions of zit, that is, define  

git  ≡ g(zit). Generally you would include the squares, cubes and cross products of zit 

in git. Obtain x̂&& it2
* as the fitted values from the pooled OLS regression  

                         x&& it2  on g&& it, z&& it;         1,........=i N  ; t = 1,…….T.    

      Define x̂&& it
* ≡ ( x&& it1, x̂&& it2

*). 

 17



Note that step three can be omitted if E( x&& it2 | z&& it) is linear in z&& it.  Then x̂&& it
* ≡ ( x&& it1, 

ˆ̂x&& it2), 

where ˆ̂x&& it2 are the fitted values from the first-stage regression of x&& it2 on z&& it from step 

one. 

      (4) Obtain v̂&& it as the 1×2 vector of fitted values from the regression  

                                      ĥit on g&& it, z&& it;         1,........=i N  ; t = 1,…….T.    

(5) Obtain r̂ it as the residuals from the regression  

                              v̂&& it on x̂&& it
*;  1,........=i N  ; t = 1,…….T.    

 

(6) Same as step four in procedure (4.1) 

 

5. Conclusion 

The above procedures offer simple methods for testing hypotheses about the conditional 

mean in linear panel data models estimated by pooled 2SLS using time-demeaned data.  

We derived test statistics that are robust to heteroskedasticity of unknown form as well as 

cluster serial correlation.  However, we have not address the presence of Arch errors. 

That is even the robust form the tests assumes the variance is constant across time. If the 

time dimension is relatively small such an assumption is minor.  However, as the time 

dimension grows one would need to consider the potential problems associated with 

time-series models. Since we assume a fixed T we have not addressed such issues.  
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