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Summary.  The objective of this project is to develop an appropriate econometric (statistical) 

method for analyzing, with minimal assumptions, small and possibly incomplete and ill-behaved 

data.  In this paper we develop an efficient and easy to apply image reconstruction (estimation) 

method for analyzing such data.  The resulting method extends (and builds on the foundations of) 

information-theoretic methods by further relaxing some of the underlying assumptions, uses 

minimal distributional assumptions, performs well (relative to current methods of estimation and 

image reconstruction) and uses efficiently all the available information (hard and soft data).  

Further, this method is computationally efficient.  
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1.  Introduction 

1.1  Motivation and Basic Objectives 

Most data sets (in economics and other social sciences) are non-experimental, very small, highly 

collinear, and are under-determined in the sense that there is not enough information for 

perfectly inverting to obtain a solution (ill-posed or ill-conditioned). Moreover, with these data, 

the underlying generation process, or likelihood, is unknown.  The objective of this research is to 

develop an efficient and easy to apply image reconstruction (estimation) method for analyzing 

such data.  The resulting method is an information-theoretic one that uses minimal distributional 

assumptions, performs well (relative to current methods of estimation), uses efficiently all the 

available information (hard and soft data) and is computationally efficient.  

1.2  Background and Brief History 

With the above in mind, and within the general objective of image reconstruction, estimation and 

inference for a large class of models, it seems that going back to the foundations of Information 

Theory and Maximum Entropy was inevitable and led to a whole class of information-theoretic 

methods.  All of these information-theoretic methods could be viewed as approaches to solving 

ill-posed or under-determined problems in the sense that without a pre-specified likelihood or 

distribution, there are always more unknowns than knowns regardless of the amount of data.  

That is, since the observation matrix is irregular or ill-conditioned or since the number of 

unknowns exceeds the number of data points, the problem is ill-posed.  To solve these problems, 

one has to (i) incorporate some prior knowledge, or constraints, on the solution, or (ii) specify a 

certain criterion to choose among the infinitely many solutions, or (iii) use both approaches.  But 

what criterion and what constraints should one use?   

It seems natural to employ an informational criterion together with variations of the 

observed moments.  For example, Zellner (1997, p. 86) says, “The BMOM – Bayesian Method 

of Moments - approach is particularly useful when there is difficulty in formulating an 

appropriate likelihood function. Without a likelihood function, it is not possible to pursue 

traditional likelihood and Bayesian approaches to estimation and testing.  Using a few simple 

assumptions, the BMOM approach permits calculation of post-data means, variances and other 

moments of parameters and future observations.” 

In the BMOM approach, one starts by maximizing the continuous entropy function 

subject to some side conditions (pure conservation laws) and normalization.  This approach 
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yields the average log-height of the density function, which is the least informative density given 

these side-conditions (e.g., Zellner, 1991; 1997).   

Similarly, under the Empirical Likelihood (EL) objective, one starts by searching for the 

“natural” weight of each observation by maximizing the discrete likelihood objective subject to 

the exact moment restrictions and normalization.  Under the Generalized Maximum Entropy 

(GME) approach, one maximizes the joint entropies of both signal and noise, but subject to noisy 

moment representation (noisy conservation laws).  Other examples include some of the 

information-theoretic Generalized Method of Moments, GMM, (e.g., Kitamura and Stutzer, 

1997; Imbens, Johnson and Spady, 1998) methods as well as the class of regularization methods, 

(e.g., Donoho et. al., 1992), or the class of models known as “quantified Maximum Entropy 

(ME)” (e.g., Skilling, 1989).4  The solutions in all of these methods depend on the choice of 

regularization parameter, and the moments’ representation, and all are derived as in the 

traditional ME approach.  

In general, the common idea behind these approaches consists of transforming, with 

minimum a-priori assumptions, an ill-conditioned, linear problem, subject to non-linear but 

convex constraints, into a much simpler and much smaller problem in convex optimization.  

Even though these approaches may seem quite similar on the very abstract level, they differ in 

their treatment of the data (the constraints) as they are developed based on the view that the data 

one observes may be in terms of moments (pure or noisy) which takes us to the ME or MEM, or 

may be in terms of noisy observations which takes us to the GME.  For a detailed discussion and 

comparison of these information-theoretic estimation rules see Golan (2002a). 

In Section 2 we describe the basic Model and formulate the Information-Theoretic (IT) 

model.  In Section 3, we present some examples and contrast (empirically) our method with 

others. We conclude in Section 4. 

2. Model and Formulation 

2.1 The Basic Model 

The observed data of an image, , are binary 0-1.  Thus, in each pixel we observe 0 or 1 (or 

black and white). Our objective is to reconstruct the blurry image to a “perfect” (clean) image as 

ijD

                                                 
4 A less well known class of ME-type methods that was developed for noisy data, known as the ME on the Mean, 
MEM, (and is related to the GME), is discussed in Gamboa and Gassiat (1997). 
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efficiently as possible.  Since images have many pixels/cells, we need to formulate the model 

such that we keep the complexity level to a minimum.  Further complication is that unlike the 

traditional discrete choice type models we do not have covariates (or independent variables) 

here.  Instead, we try to take into account the possible nearest neighbors and the correlations 

among the pixels.  To start, let 

ij ijD p= .      (1) 

where ijp  are the estimated probabilities (image). Taking into account the noise in the observed 

data, the correct noisy observed model is 

ij ij ij m ijm l ijlm l
D p z q= + = + v w∑ ∑ε     (2) 

where ijε  represents the noise in the data.  In this model, each ijε  is naturally bounded in [-1, 1], 

 and . Thus, we converted all of our unknowns (signal and noise) into 

proper probability distributions.  In this model, we allow correlations across neighbors. 

[0,1]z ∈ 1ijm ijlm
l

q w=∑ ∑ =

w

 To capture the relationship across the different pixels and to reduce the dimensionality, 

we transform model (2) into the following set of noisy moments: 

 

, ,ij ij ij m ijm l ijli i i i m i l
D p z q v= + = +∑ ∑ ∑ ∑ ∑ε   j=1, 2, …, J  (3a) 

, ,ij ij ij m ijm l ijlj j j j m j l
D p z q= + = +∑ ∑ ∑ ∑ ∑ε v w    i=1, 2, …, I  (3b) 

The Basic (no correlation) Generalized Cross Entropy (GCE) model is 
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The GCE solution is  
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( )
( )

( )0 0

0

ˆ ˆ ˆ ˆexp exp
ˆ

ˆ ˆexp

i j i j
j i j iijl l ijl l

ijl
i j ijj iijl l

l

w v w v
w

w v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎡ ⎤
⎢ ⎥⎣ ⎦

+ +
= ≡

Ψ+∑

λ λ λ λ

λ λ

⎥⎦    (5b) 

where ˆ j
iλ  and ˆi

jλ  are the I+J estimated Lagrange multipliers associate with the data (Eqs. 3a-3b). 

The estimated signal components are ˆ ˆij ijm m
m

p q z= ∑ , and the estimated noise components 

are ˆ ˆij ijl l
l

w v= ∑ε . 

2.2 The concentrated (dual) GCE  
 
Instead of using the constrained optimization estimation model (4), the GCE can be formulated 
as an unconstrained, concentrated (or a generalized likelihood) model:  
 

( ) ( ) ( )
, , , ,

λ log λ log λ ,j i
i ij j ij ij ij

i j i j i j i j
D D= + − Ω − Ψ∑ ∑ ∑ ∑l λ λ     (6) 

 
Maximizing (6) and solving for λ, yields the estimated  , which in turn yield the optimal 

probabilities 

λ̂

ˆ ijp and  via relationship (5).  ˆ ijlw

2.3 Adding the Nearest Neighbor Correlation 
 
Allowing for correlation of both the signal and the noise yields 

ij ij ijmij ij ij ijm ij l ijlm lA BD p z q A v w= + = + B∑ ∑ε     (7) 

where A and B are two correlation matrices associated with the signals and the errors 

correspondingly.  
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 We now specialize that model, to a “nearest-neighbor” type model with exponential 

weights for the neighbors.  Specifically, 
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where δ=0, 1, 2,... represents the number of nearest neighbors, α  reflects the rate of exponential 

decay for the signal, β reflects the decay rate for the noise, and ( ) ( 2 2, ,c k h )Max k h= .  All of these 

parameters are determined a-priori. Together the pair (c(k,h), α) represents the “weights” for the 

signal spatial correlations, and the pair (c(k,h), β) represents the “weights” for the noise spatial 

correlations. 

The GCE yields the solution 
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and 
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Finally the concentrated GCE (with correlation) is exactly like model (6), but the normalizations 

(partition functions) of the two right hand side terms (Ω and Ψ) are replaced by the more general 

normalizations specified in equations (9a)-(9b) above. 

 
3. Example 
 
To present a simple example, consider the following data (discussion of the data to be added) 

presented in Figure 1. The first step image reconstruction is shown in Fig. 2.   

Next step and Figures – to be added 
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Figure 2: First Step Estimates 
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4. Conclusion 

To be Added 
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