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1 Introduction 
In vector autoregressions (VARs), whether structural or not structural, the number of structural 

shocks is equal to the number of variables. In contrast, typical business cycle (BC) models have only 

very few shocks. In addition, VARs normally find very small contemporaneous cross-variable 

responses while BC models usually predict sizeable contemporaneous cross-variable responses. This 

paper reconciles these two important differences between VAR and BC models by identifying and 

estimating a VAR with the number of structural shocks less than the number of variables in the VAR.  

The key insight is to treat structural shocks as factors. The proposed method not only 

determines the number of structural shocks but also uniquely identifies these shocks using short run 

restrictions even when the number of the shocks is greater than one. Furthermore, all VAR tools are 

available for dynamic analyses of economic models under this identification method – for example, 

impulse response functions are easily constructed. Although the method is related to latent index 

models (e.g. Sargent and Sims, 1977), it is different from factor models in many respects. For 

example, latent index models can estimate only the number of factors and their total contribution to the 

variance of analyzed variables but, in general, they cannot be used for economic analyses because 

factors are not uniquely identified.  

To illustrate the method, I apply it to the problem of identifying effects of monetary policy. 

Using US data, I construct impulse responses of key macroeconomic variables to restrictive monetary 

policy shocks. In contrast to commonly used VAR identification schemes, my identification leads to 

responses of the price level and exchange rate consistent with macroeconomic theory. Specifically, in 

response to policy surprises the price level does not rise on impact and then gradually falls and the 

exchange rate appreciates on impact and then gradually depreciates. In other words, I do not find the 

price level and exchange rate puzzles. In addition, under my identification the policy is a lot less noisy 

than under other identification schemes. I also provide an explanation of why recursive identification 
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schemes typically find weak contemporaneous responses of macroeconomic variables to innovations 

in monetary policy.   

In the next section I briefly discuss conventional identification methods in VARs and establish 

when the researcher can restrict the number of structural shocks to be smaller than the number of 

variables in a VAR. Then I consider identification issues (Section 3). I discuss estimation and 

inference in Section 4. I show how to estimate the number of structural (fundamental) shocks in 

Section 5. In Section 6, my identification scheme is compared with other popular schemes. In Section 

7, I present an empirical application to the analysis of monetary policy. Section 8 concludes.  

2 Conventional and reduced rank VARs 
The appealing features of VARs are the minimal set of assumptions necessary for the analysis, 

simple estimation and inference. Simplicity comes at the cost of underidentification of structural 

parameters of economic models. To illustrate this point, suppose that the reduced form of an economic 

model can be written as  

1

p

t i t i t
i

A−
=

= Π +∑X X ε  (2.1) 

where Xt is a vector of q variables, tε  is the vector of structural innovations, 1, ,..., pA Π Π  are matrices 

of conformable sizes. The matrix A summarizes contemporaneous relationships in the economy. The 

standard theory of simultaneous equations immediately indicates that the matrix A is not generally 

identified because there are no excluded variables. Indeed, the VAR, by assumption, includes all 

relevant variables. For many cases (e.g. forecasting), this inability to recover A is not important. 

However, if A is incorrectly identified, all subsequent economic analyses, including impulse response 

functions and associated confidence bounds, can be safely scrapped. As I show below, some puzzles 

found in the VAR literature may well be a result of wrong identification of the matrix A. Thus, the 

matrix A is of central importance in the VAR framework.  
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To identify the matrix A, the researcher must impose extra assumptions on the structure of A 

and the properties of structural innovations tε . In the seminal paper, Sims (1980) postulated that 

( )t t qE Iε ε ′ =  and A is a lower triangular matrix implying recursive structure of the economic model. 

Unfortunately, contemporaneous effects in macroeconomics do not typically have a recursive 

structure. A partial remedy to this problem is to assume that matrix A is block recursive (Keating, 

1994). Dissatisfaction with the assumption of recursive structure generated a voluminous literature on 

so called structural VARs (e.g. Bernanke (1986), Shapiro and Watson (1988), Blanchard and Quah 

(1989), King et al. (1991), Strongin (1995), Christiano, Eichenbaum and Evans (1996, 1999), Leeper, 

Sims and Zha (1996), Bernanke and Mihov (1998), Gonzalo and Ng (2003), Rigobon and Sack (2003) 

and many others). Structural VARs impose identifying restrictions on the matrix A and/or matrices 

1,..., pΠ Π  and/or higher moments of innovations so that A can be recovered completely or partially 

(semi-structural VARs). Identifying restrictions are justified on the grounds of economic theory (e.g. 

demand shocks are neutral in the long run as in Blanchard and Quah (1989)) or institutional 

arrangements (e.g. reserves respond in a particular way as in Strongin (1995)).  

It is conventional to assume that the number of shocks is equal to the number of variables in 

the VAR. In contrast to standard recursively identified VARs, structural VARs have the identified 

shocks associated with fundamental innovations, i.e. innovations in technology, preferences, or policy. 

Structural VARs, however, can produce too many structural shocks to be fundamental. For instance, in 

VARs with 10 variables there are 10 structural shocks.1 In contrast to VARs, the standard business 

cycle (BC) model implies that X, a vector of q economic variables, evolves according to  

1

p

t i t i t
i

B D−
=

= +∑X X η  (2.2) 

where tη  is a vector of k shocks to technology, preferences and policy, and B1,…,Bp,D are matrices of 

conformable sizes. Typically, k q<< . If equation (2.2) is taken as the benchmark for economic 
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analysis, then tε  in (2.1) is a linear combination of tη  and possibly other shocks. Linking 

macroeconomic theory and empirics then entails imposing restrictions on the covariance structure of 

VAR residuals so that the matrix A in (2.1) is consistent with the matrix D in (2.2). Furthermore, 

structural innovations in conventional VARs are completely attributed to fundamental shocks. It is, 

however, plausible that reduced form VAR residuals also absorb idiosyncratic innovations in the 

series. For example, the stock market is highly volatile and it is hardly conceivable that every change 

in the stock market is due to changes in fundamental factors. By pooling fundamental and 

idiosyncratic shocks, conventional VARs can give a misleading picture about the true responses of the 

economy to fundamental shocks. Specifically, as I show below, conventional VARs can underestimate 

the degree of contemporaneous cross-variable responses.  

To formally analyze the problem, suppose, without loss of generality, that 1 ,..., pΠ Π  are 

known in (2.1). Also suppose there are n variables and k structural shocks.2 It is impossible to recover 

structural shocks with n<k . A typical assumption is that k = n, as I have discussed, but there is no a 

priori reason not to have n>k. Consider a standard VAR(p) model: 
1

p
t i t i ti −=
= Π +∑X X u . VAR 

residuals ut are related to structural shocks tε  in (2.1) as follows: 

( ) ( ) ( )

1 11 1 1

1
1 1

...

...

t k t

t t

nt n nk kt
n n k k

u a a
A

u a a

ε

ε
× × ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u ε  (2.3) 

where the matrix A is not necessarily a square matrix. Consider second moments of the error term ut. 

From (2.3) it is easy to find that  

( ) ( ) ( )E E A A AE A′ ′ ′ ′ ′Ω ≡ = =uu εε εε  (2.4) 

If structural shocks εt are uncorrelated and normalized to have unit variance, then ( )E I′ =t tε ε  

and equation (2.4) simplifies to  

AA′Ω =  (2.5) 
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Equation (2.5) implies that Ω  has reduced rank and, therefore, X X′  has a stochastic 

singularity under the null of reduced rank of A. To eliminate the singularity, I augment the model (2.3) 

with an additive idiosyncratic "noise" shock vt. The noise shock vt does not have an economic meaning 

in the sense that it does not affect the interrelationship among ut embodied in the matrix A and 

structural shocks tε . The noise shock vt may be a measurement error, a shock induced by noise/chartist 

traders, myopic consumers, etc.3 Specifically, I consider 

1 11 1 1 1

1

...

...

t k t t

t t

nt n nk kt nt

u a a v
A

u a a v

ε

ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ε v  (2.6) 

where 

 ( ) ( ) ( )0 , , 0t t t k t sE t E I t E s t′ ′= ∀ = ∀ = ∀ ≠ε ε ε ε ε  (2.7) 

( ) ( ) ( ) ( )2 2 2
1 20 , , ,..., , 0t t t v v vn t sE t E diag t E s tσ σ σ′ ′= ∀ Ψ ≡ = ∀ = ∀ ≠v v v v v  (2.8) 

( ) 0 ,t sE s t′ = ∀ε v  (2.9) 

In addition to the standard assumption (2.7), assumption (2.8) postulates that shocks vt are 

contemporaneously and intertemporally uncorrelated and have different variances. Condition (2.9) 

requires vt to be uncorrelated with εt at all leads and lags. Representation (2.6) and conditions (2.7)-

(2.9) essentially replicate assumptions necessary for the existence of a factor representation of the 

series ut.4  

Given (2.6)-(2.9), consider the second moments of the error term ut: 

( ) ( ) ( )

( ) ( )

2
1

2
2 2 22
1 2

2

0 0
0 0

, ,...,

0 0

t t t t t t

v

v
t t v v vn

vn

E E A A E

AE A AA diag AA

σ
σ

σ σ σ

σ

′ ′ ′ ′Ω ≡ = + =

⎡ ⎤
⎢ ⎥
⎢ ⎥′ ′ ′ ′= + = + = + Ψ
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u u ε ε v v

ε ε
 (2.10) 

This shows that the covariance matrix Ω can be decomposed into the covariance explained by 

the factor structure of the model ( AA′ ) and the covariance explained by idiosyncratic innovations in 

the data (Ψ). Note that Ω is of full rank as long as Ψ is non-degenerate.5 Hence, ( )E X X′  is invertible. 
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It is proven in factor analysis (e.g. Anderson and Rubin, 1956) that Ψ being positive definite (i.e. non-

degenerate in my case) is a necessary condition for the existence of a factor representation, which is 

my representation (2.6) with the number of structural shocks smaller than the number of variables in 

the VAR (i.e. A has reduced rank). Thus, Ψ being non-degenerate is a necessary condition for the 

existence of representation (2.6), which I shall call the structural or fundamental form. Because 

rank(A)<n, I call my approach the reduced rank (RR) identification.6  

Note that decomposition of the covariance matrix Ω  and estimation of 1 ,..., pΠ Π  are 

disentangled. In the spirit of Sims (1980) and Bernanke (1986), I use lags to filter the series, find 

reduced form shocks, impose short run restrictions on the covariance of the reduced form shocks and 

identify/estimate the matrices A and Ψ  in (2.10). The implicit assumption is that dynamic responses 

embodied in 1,..., pΠ Π  are the same for structural and noise shocks.  

3 Identification 
The covariance matrix Ω has ( )1

2 1n n +  unique entries; thus, the maximum number of 

identifiable parameters is ( )1
2 1n n + . The matrices A and Ψ  have nk  and n parameters, respectively.  

Therefore, a necessary condition for identification of the structural form (2.6) is:  

( ) ( )1
2 1 1n n nk n n k+ ≥ + = +  (3.1) 

However, A is not unique for 2k ≥  structural shocks. The classical factor analysis (e.g. 

Basilevsky, 1994) shows that while the matrix Ψ is uniquely identified, there are infinitely many 

matrices B and orthonormal rotation matrices M such AA BB′ ′=  with B=AM. To uniquely (up to sign) 

identify A, I have to eliminate the possibility of rotating axes of the factor space. Specifically, one 

needs at least ( )1
2 1k k −  restrictions on A so that there is no orthonormal rotation matrix M such that 

B=AM satisfies the restrictions I impose on A. I focus on zero restrictions on some entries of A.7 Let rA 

denote the number of imposed zero restrictions. In the case of orthogonal structural shocks, a typical 

case in economic applications, the necessary condition to identify A is (Lawley and Maxwell, 1974): 
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( )1
2 1Ar k k≥ −  (3.2) 

Given (3.2) holds,  identification of Ank n r+ −  then requires:  

( ) ( ) ( ) ( )21 1 1
2 2 21 1 1 0A Ad n n n k r n k n k r k k⎡ ⎤= + − + + = − − − + − − ≥⎣ ⎦  (3.3) 

The parameter d denotes degrees of freedom and d>0 implies overidentification.  

Anderson (2003) and Anderson and Rubin (1956) give sufficient conditions for zero 

restrictions to uniquely identify A. For the rth column of an ( )n k×  matrix A – i.e. the rth factor – to be 

uniquely identified three requirements must be satisfied: 

R1) the column must contain at least k-1 zeros; 

R2) the matrix of rows A(r) containing zeros at the rth column with rth column deleted must 

have rank k-1; 

R3) each column of A must contain at least three non-zero entries.8 

Another sufficient condition to identify the matrix A (Anderson (2003), Anderson and Rubin 

(1956)), which I will call R4, is that rows and columns of the matrix A can be rearranged so that the 

first k rows of the rearranged A form a lower triangular ( )k k×  matrix.9 In general, conditions R4 and 

R1-R3 are not equivalent.10  

As an example, consider the following covariance structure 

 

1 11 1

2 21 22 2
1

3 31 32 3
2

4 41 42 4

5 52 5

0

0

t t

t t
t

t t t
t

t t

t t

A

u a v
u a a v
u a a v
u a a v
u a v

ε
ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u  (3.4) 

The matrix A satisfies requirements R1-R3 since all columns have at least one zero entry and 

three non-zero entries and matrices A(1)=[a52] and A(2)=[a11] have rank one. Condition R4 is also 

satisfied: the first two rows of A form a lower triangular matrix. The model is overidentified because 

d=2.  
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Note that conditions R1-R3 enable me to partially identify A. In other words, if the researcher 

is interested in identifying the effects of only one factor (i.e. he or she does not need to identify A 

completely), it is enough to identify the column of A corresponding to the factor of interest. The 

following example illustrates partial identification: 

11 21 31 41 51 61 71

12 22 32 42 52 62 72

33 43 53 63 730 0

a a a a a a a
A a a a a a a a

a a a a a

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.5) 

Observe that A(3)= 11 12

21 22

a a
a a
⎡ ⎤
⎢ ⎥
⎣ ⎦

 has rank two. Thus, the third factor (the third column of A) is 

uniquely identified, while the first and the second are identified only up to rotation (no zero entries in 

the first and second columns). The rows and columns of A cannot be rearranged to form a lower 

triangular matrix in the first three rows of the rearranged A, i.e. R4 fails. To estimate the identified 

columns of A, I can put an arbitrary constraint on the entries of the first two columns to reach 

identification without affecting the identified third factor, e.g. set a12=0.  

Provided identification requirements are satisfied, I proceed to estimation and inference 

section.  

4 Estimation and inference 
I suggest using generalized method of moments (GMM) to estimate parameters matrices ,A Ψ  

because it conveniently combines estimation and inference. The task is to cast factor model (2.6) as a 

collection of moment restrictions.11 

To start with a simple case, suppose 1,..., pΠ Π  are known. The goal is to decompose ut into 

factors and uncorrelated errors, i.e. find matrices ,A Ψ  such that AA′Ω = + Ψ  where Ψ  is a diagonal 

matrix with non-negative entries. This provides the following moment conditions12: 

 ( ) 0vech AA′Ω − − Ψ =  (4.1) 

The sample analogues to (4.1) corresponding to diagonal elements of Ω  are  
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2 2 21

1 1
0

T k

it iv ijT
t j

u aσ
= =

⎛ ⎞
− + =⎜ ⎟
⎝ ⎠

∑ ∑
 

(4.2) 

and to off-diagonal elements:  

21

1 1
0

T k

it jt iv ip pjT
t p

u u a aσ
= =

⎛ ⎞
− + =⎜ ⎟
⎝ ⎠

∑ ∑
 

(4.3) 

To simplify notation, define ( ) ( ),t t tF A vech AA′ ′Ψ = − − Ψu u . Then the population 

parameters A and Ψ satisfy:  

[ ] ( ) ( ){ }1
0 0

,
, arg min , ,

A
A E F A E F A−

Ψ

′Ψ = Ψ Σ Ψ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (4.4) 

where Σ  is some ( )n n×  positive definite weighting matrix.  

Efficient GMM estimates of ˆ ˆ,A Ψ are derived as a solution to  

( ) ( )11 1
, 1 1

ˆmin , ,
T T

t tT TA t t

F A F A−

Ψ
= =

⎧ ⎫′⎛ ⎞ ⎛ ⎞⎪ ⎪Ψ Σ Ψ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ∑  (4.5) 

where  

( ) ( )1

1

ˆ , ,
T

t tT
t

F A F A
=

′Σ = Ψ Ψ∑   

( ) ( )1 1

, 1 1

, arg min , ,
T T

t tT T
A t t

A F A F A
Ψ = =

⎧ ⎫′⎛ ⎞ ⎛ ⎞⎪ ⎪⎡ ⎤Ψ = Ψ Ψ⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ∑    

Note that estimation of A and Ψ  entails non-linear optimization in entries of A. Also note that 

the derivative of F with respect to A and Ψ  is independent from ut, which is important in deriving the 

asymptotic distribution of A and Ψ . Significantly, if d in (3.3) is greater than zero, one can use the J-

statistic, a byproduct of the GMM estimation, to test overidentifying restrictions imposed on A and Ψ . 

Note that the J-statistic does not depend on whether the model is uniquely identified since all optimal 
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solutions to (4.5) yield the same minimum. Thus, the statistic can be used to determine the rank of A, 

i.e. the number of factors (see below), even when A is partially identified. 

Of course, { }1 ,..., p≡ Π ΠΠ  is not known in typical applications. Recall that the moments used 

in estimation of the VAR are  

( )1 1 ... 0 1,...,t t p t p t kE X X X X k p− − −⎡ ⎤− Π − −Π = =⎣ ⎦  (4.6) 

and note that VAR residuals ut are functions of Π . This is an example of two stage estimation. By 

focusing on (4.2) and (4.3) only and treating 1
ˆ ˆ,..., pΠ Π  as population parameters, I generally 

underestimate the variance of A and Ψ . The straightforward way to resolve this problem is to combine 

(4.2) and (4.3) with (4.6) and estimate , ,A ΨΠ  simultaneously. However, with large p and n, the 

number of moments can be overwhelming and the finite-sample properties of GMM can quickly 

deteriorate. Fortunately, I can circumvent simultaneous estimation as the following proposition 

suggests. 

 
Proposition 1 

Under regularity conditions, ( ) ( )ˆ ˆ ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  and ( ) ( )ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  have the same asymptotic 

distribution.  

Proof: see appendix.  

 

This proposition proves that while making standard asymptotic inference about A I can ignore 

the fact that 1
ˆ ˆ,..., pΠ Π  are estimates from the first stage and treat 1

ˆ ˆ,..., pΠ Π  as if they were the 

population parameters.13 This greatly simplifies estimation and inference for A and Ψ : one only needs 

to estimate the VAR by OLS and in the GMM part treat the estimated residuals ˆtu  as population 

counterparts ut.  

In the following proposition I show that ˆ ˆ,A Ψ  are asymptotically normally distributed.  
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Proposition 2 

Suppose A is locally identified (i.e. ( ), ,AE F AΨ⎡ ⎤∇ Ψ⎣ ⎦  is of full rank) and VAR residuals 

{ }t t
u ∞

=−∞
 are iid and ( )4

tE < ∞u  . Then 
( )
( )

( )

( )
( )

ˆ
0,

ˆ
d

vec A vec A
T N

diagdiag

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥− ⎯⎯→ Φ⎜ ⎟⎢ ⎥ ′′ ⎢ ⎥Ψ⎜ ⎟Ψ ⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠

.  

Proof: see appendix.  

 

In case A is not identified, the Hessian of the objective function in (4.4) is not invertible 

because the objective function is flat along parameters that are not identified uniquely (i.e. there are 

infinitely many rotations of A). To fix this problem, I can identify A by imposing further restrictions on 

A without distorting the estimates of identified factors, e.g. impose zeros as I do for (3.5).  In sum, the 

estimation procedure is as follows:  

1. Estimate VAR by OLS and store the residuals ˆtu . 

2. If the matrix A is partially identified, impose restrictions on A to achieve identification without 

affecting identified columns of A. 

3. Estimate the matrices A and Ψ  using the stored residuals and the GMM estimator described 

above. 

4. Use standard asymptotic inference to construct confidence intervals, test hypotheses, etc.   

So far, I have focused on asymptotic inference and testing. Alternatively, one could use 

bootstrap methods to improve the finite sample properties of the GMM. For instance, Horowitz (1998) 

suggests using bootstrap procedures to compute bias-corrected GMM estimates for covariance 

structures and to improve the accuracy of inference.14 Since moment conditions in my application are 

non-linear, I suggest using the k-step bootstrap15 developed by Davidson and McKinnon (1999) and 

adapted for testing by Andrews (2002) to reduce the computational burden of the bootstrap.  
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Although asymptotically 1
ˆ ˆ,..., pΠ Π  and ˆ ˆ,A Ψ  are uncorrelated (Proposition 1), I cannot expect 

this condition to hold in a finite sample. Thus, in making inference about A  and Ψ  I cannot ignore 

sampling uncertainty induced by 1
ˆ ˆ,..., pΠ Π . The dimension of [ ] [ ] ( )vec vec A diag⎡ ⎤′ ′ ′Γ = Ψ⎢ ⎥⎣ ⎦

Π  is 

likely to be very large and, hence, bootstrap based on simultaneous estimation of Γ , which I call 

simultaneous bootstrap, may perform poorly for the same reasons why the simultaneous estimation of 

Γ  performs poorly. An attractive alternative is to use sequential estimation of Γ  for each bootstrap 

replication, i.e. for each bootstrap replication estimate Π  and then estimate ,A Ψ  using Π̂ . This 

approach, which I call sequential bootstrap, is very fast: the first stage is computed with OLS and the 

second one is computed with k-step bootstrap. Monte Carlo simulations (not reported) show that 

sequential bootstrap outperforms simultaneous bootstrap in terms of mean square error by a huge 

margin even in the smallest VAR compatible with reduced rank structure.  

In sum, I use the following procedure for bootstrap: 

1. Estimate VAR by OLS and store the residuals ˆtu . 

2. Estimate the matrices A and Ψ  using the stored residuals and the GMM estimator described 

above. 

3. Resample residuals ˆtu  and create new series ( )B
tu .16  

4. Create new series ( )B
tX  using Π̂  from step 1 and resampled ( )B

tu  from step 3. 

5. Estimate VAR using ( )B
tX  and compute residuals. 

6. Estimate the matrices A and Ψ  using residuals from step 5.17 

7. Repeat steps 3-6 sufficiently many times. 

8. Compute bias, construct confidence intervals, etc.  

To illustrate bootstrap and standard asymptotics procedures, I apply both procedures in my 

empirical example.  



 14

Once parameters are estimated, I can use standard VAR tools to analyze the properties of the 

model. First, I can recover structural shocks. Factor analysis (e.g. Anderson, 2003, Section 14.7) 

provides a simple formula to estimate the factors, i.e. structural shocks in my context: 

( ) 1
1 1ˆ ˆ ˆˆ ˆˆt n tI A A A

−
− −′ ′= + Ψ Ψε u    

The estimate of t̂ε  can be interpreted as the posterior estimate of tε  given VAR residuals ut.18 

Note that if A is not fully identified, structural shocks cannot be recovered.  

Second, variance decomposition and impulse response functions are easily constructed. 

Suppose the VAR in (2.1) has moving average representation ( )( )t t tL A= +X Θ ε v  where ( )LΘ  is a 

lag polynomial. Then the impulse response to the structural shock i is { } 0s i s
A ∞

=
Θ  where Ai is the ith 

column of the matrix A and sΘ  is the sth term in ( )LΘ . Likewise, the impulse response to 

idiosyncratic noise vit is { } 0s i s
e ∞

=
Θ  where ei is the selection vector, i.e. the ith column of In. Confidence 

bounds for impulse responses can be computed using Kilian's (1998) procedure.  

The share of the variance of variable j at horizon h attributed to structural shock i is:  

 

( ) ( )

( )
0

,

0

h
i i

j s s j
s

j i h

j s s j
s

e A A e
V

e AA e

ε =

=

′′ ′Θ Θ
=

′ ′ ′Θ + Ψ Θ

∑

∑
 (4.7) 

where ( )iA  is the ith column of the matrix A corresponding to the ith structural shock. For the 

idiosyncratic shock i the share is  

( )
0

,

0

h

j s i i s j
v s
j i h

j s s j
s

e e e e
V

e AA e

=

=

′ ′ ′Θ Ψ Θ
=

′ ′ ′Θ + Ψ Θ

∑

∑
 (4.8) 

where ei is the ith selection vector. By inspecting the numerator in (4.7) one can note that if the factor i 

(the ith column of A) is not identified, then its variance decomposition depends on orthonormal 
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rotations of A. Hence, impulse responses and variance decompositions are meaningful only for 

identified factors. For variance decomposition, however, one can note that the share of variance 

attributed to idiosyncratic noise is uniquely identified because Ψ  is uniquely identified and, 

consequently, (4.8) is immune to rotations of A.  

So far I have been assuming that I know the rank of A. Now I turn to cases when the number of 

factors (i.e. rank of A) is unknown.  

5 How to determine the rank of A? 
Determining the rank of A is not a trivial question. Factor analysis typically uses likelihood 

ratio tests to check if eigenvalues of certain matrices fall below some threshold so that contribution of 

would-be factors is indistinguishable from idiosyncratic noise.19 Cragg and Donald (1997) suggest a 

simple way to estimate the rank of A in the framework of GLS estimators. I modify their procedure to 

paste it into my GMM framework.  

Note that if the number of factors is less than the true number of factors, say k0, the J-statistic 

would diverge to infinity as the sample size increases by consistency of J-tests. On the other hand, if 

k>k0 then J(k)≤ J(k0), i.e. one can match moments better with more free parameters.20 Consider the 

following generic criterion:  

( ) ( ) ( ) ( )1 , ,S k f T J k A g k−= Ψ −   

where k is the rank of A, ( ), ,J k A Ψ  is the J-statistic for rank k given population parameters A and Ψ , 

g(k) is a function strictly decreasing in k, and f(T) is a function of sample size T such that 

( )limT f T→∞ = ∞  and ( )1lim 0T T f T−
→∞ = .21 Under these conditions I can prove the following 

proposition.  

 

Proposition 3 
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The rank k minimizing S(k) – denoted by k̂  – is a consistent estimate of k0, i.e. 

( ) ( )0 0
ˆ ˆlim Pr lim Pr 0T Tk k k k→∞ →∞> = < = .  

Proof: see the appendix.  

 

Note that to determine the number of factors one does not need the uniqueness of A because the 

value of the objective function – and consequently the value of the J-statistic – is the same for any 

rotation of A and, therefore, arbitrary identification constraints can be used to determine k. For 

example, one can impose zero restrictions that form upper triangular k k× submatrix of zeros in A.22  

There are many functions f(N) and g(k) that satisfy the required properties. Popular choices are  

f(N)=1 and g(k)=-2nk, which corresponds to the Akaike information criterion (AIC), and f(N)=log(N) 

and g(k)=nk, which corresponds to the Schwarz information criterion (SIC).23  

Note that AIC does not satisfy ( )limN f N→∞ = ∞  thus it would tend to overestimate rank k. 

However, Monte Carlo simulations suggest that for moderately large samples AIC often outperforms 

SIC that imposes too heavy a penalty on overfitting.24 Because the covariance matrix of the VAR 

residuals ut is likely to have off-diagonal terms close to zero, the eigenvalues of AA' may be relatively 

small. In such a case, the above criteria can perform poorly because the penalty is too heavy (Cragg 

and Donald (1997)). I use Monte Carlo simulations to calibrate the penalty functions.  

This completes the description of the reduced rank identification. To show its merits, I briefly 

compare it in the next section with other popular identification schemes and macroeconometric tools.  

6 Discussion  
The reduced rank (RR) identification preserves useful properties of structural VARs and 

improves upon them in several ways. The RR identification easily links structural shocks in VARs 

with shocks in theoretical business cycle models. Note that, like (semi-)structural VARs, the RR 

identification permits partial identification of A. Under the proposed identification scheme, VAR 

residuals are linear combinations of structural and noise shocks. Also the RR identification imposes 
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short run restrictions and therefore is not sensitive to a chosen VAR order. Thus, estimation and 

inference are simple and computationally undemanding.  

More importantly, the RR identification can avoid Sims's (1998) "stickiness", a stylized fact 

that contemporaneous cross-variable responses tend to be very weak in conventionally identified 

VARs. Indeed, the covariance matrix of reduced form VAR residuals Ω  typically has off-diagonal 

entries small relative to diagonal ones and, therefore, popular (e.g. Cholesky) decompositions of Ω  

result in weak cross-variable responses. In contrast, business cycle models tend to produce strong 

contemporaneous responses thus making empirical stickiness a puzzle. Now I show how the RR 

identification can address this puzzle.  

To clearly present the difference between recursive identification schemes and the reduced 

rank identification, I assume that the system of equations linking structural shocks to VAR residuals is 

described in population as follows:  

1 11 1
1

2 21 22 2
2

3 31 32 3

0u a v
u a a v A
u a a v

ε
ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + = +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u ε v  (6.1) 

where u are reduced-form VAR residuals, ε  are structural shocks with unit variance, and v are 

idiosyncratic noise in the series with covariance matrix ( )2 2 2
1 2 3, ,diag σ σ σΨ = . Without loss of 

generality, I assume that 1) the structural shocks 2ε  represent innovations in monetary policy and 2) 

the second variable is the fed funds rate. I am interested in the contemporaneous response of the 

variables to an innovation in monetary policy. I will compare the reduced rank identification with the 

Cholesky decomposition as a prototype of all recursive identification schemes.  

By construction, the reduced rank identification has factor structure and, therefore, it correctly 

recovers the model in (6.1). Specifically, the contemporaneous response of the variables to a unit 

innovation in 2ε  is [ ]22 320, ,a a . Comovement of the series is determined by the sign of 22 32a a . If 
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22 32a a  is positive (negative), series move in the same (opposite) direction in response to a monetary 

policy shock 2ε .  

In contrast, the Cholesky decomposition ignores possible factor structure. Because of the 

ordering, the Cholesky identification correctly requires that the monetary policy 2ε  be orthogonal to 

u1. Define 2 3,u u  as VAR residuals net of 1u , i.e. 2 3,u u  are found as residuals from regressing 2 3,u u  

on u1. Note that u1 is contaminated with classical measurement error v1. Hence, estimated 12 13,α α  are 

attenuated towards zero. The contemporaneous response to a unit innovation in 2ε  is represented by 

the following vector  

 ( ) ( ) ( )1/ 2 1/ 2
1 1 2 10, var ,cov , varu u u u −⎡ ⎤⋅⎣ ⎦   (6.2) 

where the first entry of the vector is zero by the ordering of the variables. Comovement of responses to 

2ε  depends on the sign of ( )2 3cov ,u u . If ( )2 3cov , 0u u >  ( ( )2 3cov , 0u u < ), the series respond in the 

same (opposite) direction to an innovation in 2ε . In this simple case, it can be easily shown that 

( )
2
1

2 3 21 31 22 322 2
11 1

cov ,u u a a a a
a
σ
σ

= +
+

  (6.3) 

( )
( )

( )

2 2 4
21 11 1 2 2

2 22 222 2
11 1

1
var

a a
u a

a

σ
σ

σ

+
= + +

+
 (6.4) 

( )
( )

( )

2 2 4
31 11 1 2 2

2 32 322 2
11 1

1
var

a a
u a

a

σ
σ

σ

+
= + +

+
 (6.5) 

It follows from (6.3)-(6.5) that estimates of the covariance and variances are in general biased 

and inconsistent. Specifically, variances are unambiguously overestimated. From (6.2) I then find that 

( ) ( ) 1/ 2
1 2 1cov , varu u u −⋅  is attenuated towards zero, ceteris paribus, and, consequently, the third 

variable weakly responds to structural innovation 2ε  under the Cholesky identification. Moreover, 
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note that even when 1 0σ = , the Cholesky identification predicts that the contemporaneous response of 

the variables to 2ε  is ( ) ( )1/ 2 1/ 22 2 2 2
22 2 22 32 22 20, ,a a a aσ σ

−⎡ ⎤+ +⎢ ⎥⎣ ⎦
. Since the variances are generally inflated 

by 2 2 2
1 2 3, ,σ σ σ , the Cholesky identification finds a weak response of the third variable to 2ε . For 

models more general than (6.1), I can conclude that the Cholesky decomposition is biased to finding 

little contemporaneous comovement in the series, i.e. stickiness. Because the Cholesky identification 

finds little contemporaneous comovement of fed funds rate with variables ordered before fed funds 

rate, this can also explain why recursively identified structural innovations in monetary policy are 

often highly correlated with VAR residuals corresponding to the fed fund rate equation.  

In general, I cannot unambiguously sign the bias of the Cholesky identification for the estimate 

of ( )2 3cov ,u u  because it depends on the sign of 21 31a a . Note, however, that if 

( ) ( )21 31 22 32sgn sgna a a a≠ , then ( )2 3cov ,u u  can be approximately zero even when 22 32 0a a ≠ . 

Moreover, it is possible that empirical and theoretical responses can have different signs, i.e. 

( )( ) ( )2 3 22 32sgn cov , sgnu u a a≠ . Specifically, the necessary condition for this to happen is that 

variables co-move in response to some structural shocks and move in opposite directions in response 

to other structural shock, i.e. ( ) ( )21 31 22 32sgn sgna a a a≠  in our example. Thus, the Cholesky 

identification can produce not only attenuated but also incorrectly signed responses.  

Overall this simple exercise shows that the Cholesky-type identification is likely to find little 

and, possibly, incorrectly signed contemporaneous comovement of the series in response to identified 

structural shocks in a model like (6.1). In contrast to the Cholesky-type identification, the reduced rank 

identification takes out noise, i.e. the matrix Ψ , from the diagonal of the covariance matrix Ω  and, 

consequently, finds large comovement of series in response to structural shocks. Hence, stickiness of 

responses can be an artifact of inappropriate identification.  
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In addition to VARs, macroeconomic analyses have used (approximate) factor models 

(Geweke (1977), Sargent and Sims (1977), Quah and Sargent (1993), Stock and Watson (1988, 1998), 

Forni et al (2000), Forni and Lippi (2001), Giannone et al (2002), Kose et al (2003) among many 

others). This approach can, at least partially, address a call by Granger (2001) to expand the list of 

variables in macroeconometric models. A typical factor model (FM) can be written as (e.g. Forni et al, 

2000):  

( )t t tL= Γ ⋅ +X f v   (6.6) 

( ) t tLΘ =f ξ  (6.7) 

where Xt is a vector of q variables, ,Γ Θ  are lag polynomials (Γ  is often called factor loadings), tf  is 

a ( )1k ×  vector of factors and ,t tξ v  are iid innovations. Like the RR identification, FMs typically have 

k q . FMs usually impose few restrictions in (6.6) and (6.7). This is, however, a double sided sword. 

Most importantly, the factors are identified only up to rotation unless further restrictions on ,Γ Θ  are 

imposed or there is only one factor (i.e. k=1) like in, for example, Altug (1989), Otrok and Whiteman 

(1998), Forni et al (2000). I am not aware of FMs with two or more uniquely identified factors.25 In 

typical applications of the FM the dimension of X is large. Hence, I shall have to impose enormously 

many restrictions to uniquely identify factors, thus making estimation of (6.6) and (6.7) 

computationally infeasible. It may also be very difficult to justify restrictions in borderline cases. The 

inability to "name" (i.e. uniquely identify) factors greatly limits the use of FMs in macroeconomic 

analyses because if the causes (factors) are not identified the effects are not identified either.  

In contrast, the VAR model with a reduced rank identification utilizes 1) parametric modeling 

of dynamics of X and 2) factor analysis to recover structural shocks from (approximately) serially 

uncorrelated VAR residuals. A few plausible restrictions on A can break the possibility of rotating 

factor basis and, consequently, factors can be uniquely identified. Moreover, a partial identification of 

A and a small number of variables free the researcher from imposing dubious restrictions on factor 
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loadings (columns of A) to identify structural shocks.26 Computationally, the reduced rank 

identification is far less demanding than factor models.  

7 Application: identifying the effects of monetary policy 
I apply my method to the classical problem of identifying the effects of unanticipated 

innovations to monetary policy. The analyzed VAR specification is a simplified version of the 

specification widely used in the literature (e.g. Kim and Roubini (2000)). I choose the recursive 

Cholesky identification as a benchmark for comparison.  

Let Y be a vector of macroeconomic variables with sluggish adjustment (e.g. real GDP), V – 

vector of asset prices (e.g. S&P 500) and monetary aggregates, R – vector of policy variables (e.g. fed 

funds rate). Hence, [ ], ,≡X Y V R . In my model, two macroeconomic variables with sluggish 

adjustment are real GDP (RGDP) and GDP deflator (PGDP) so that Y=[RGDP, PGDP].27 The vector 

of asset price variables includes the index of commodity prices (CRB) and the real exchange rate 

(EXRUS); hence, V=[CRB, EXRUS]. The set of policy variables is exhausted by the fed funds rate 

(FFR), i.e. R=[FFR]. My baseline ordering is [RGDP,PGDP,CRB,EXRUS,FFR].28 

I assume that there are two shocks in this economy ,TECH POL
t t tε ε⎡ ⎤= ⎣ ⎦ε  where POL

tε  is an 

innovation in policy and TECH
tε  is a technology innovation.29  

To identify the effects of monetary policy, many (e.g. Bernanke and Blinder (1992), Bernanke 

and Mihov (1998)), but not all (e.g. Sims and Zha (1996), Cushman and Zha (1997)), of the VAR 

identification schemes assume a block recursive structure of the matrix A linking unobserved structural 

shocks to observed VAR residuals. For example, the Cholesky decomposition resulting in a unique 

lower triangular matrix A is a special case of the block recursive structure. For concreteness, consider 

the following relationship between reduced-form residuals and structural innovations: 
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11 12
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31 32 33 34 3

41 42 43 44 4

51 52 53 54 55

0 0 0
0 0 0 0 0

0 0
0

RGDP TECH
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PGDP

YYt t
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t VY VV t tt t
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RY RV RRt t
FFR POL
t t

a au
a a Au
a a a a A A Au
a a a a A A Au
a a a a au

ε
ε
ε
ε
ε

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

u = ε = ε   (7.1) 

 
where AYY, for example, indicates contemporaneous interactions among variables in the Y-block and 

ARY indicates the contemporaneous effect of innovations in the Y-block variables on variables in the R-

block. Since this identification requires equality of the number of shocks and variables, the researcher 

has to introduce, name and interpret structural shocks 2 3 4, ,t t tε ε ε . Hence, the matrix A is a square 5 5×  

matrix. Since I am interested in the effects of monetary policy, I can, without loss of generality, set 

matrices AYY and AVV to be lower triangular.  

A recursive structure of A is justified on the grounds of Wold causal chain and minimum delay 

restrictions. (For instance, the policy cannot affect contemporaneously variables in Y and V blocks.) 

No response of the Y-block variables to shocks in the R-block variables appears to be a reasonable 

assumption because the variables in the Y-block are slow to adjust. However, there is essentially no 

delay in the reaction of continuously clearing asset prices to changes in policy variables. Thus, any 

identification scheme that relies on a recursive structure in the [V,R] sub-block of the matrix A is 

potentially erroneous. In more general setups, even procedures that focus on the matrix ARR, for 

example semistructural identification of monetary policy, can produce misleading results because 

identification of ARR is based on residuals from regressing VAR errors in the R block on errors in the Y 

and V blocks and, thus, contemporaneous effects of R on V are ignored (i.e. AVR is assumed to be zero 

matrix).  

In contrast, my reduced rank (RR) identification imposes the following structure of the matrix 

A:  
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11 1

21 2

31 32 3

41 42 4

51 52 5

0
0 0

RGDP
tt

PGDP
t YYt TECH

tCRB
t t VY VR t t t tt POL

tEXRUS
t RY RRt

FFR
tt

a vu
a v Au
a a v A A Au
a a v A Au
a a vu

ε
ε

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = + = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

u ε v ε v  (7.2) 

The second column of A in (7.2) summarizes the contemporaneous effects of an innovation in 

monetary policy. Note that A is identified because the condition R4 is satisfied. To keep the 

specification flexible, I allow noise vt to be in each equation. 

From (7.2), one can see that I continue to assume that structural policy shocks cannot 

contemporaneously affect variables in the Y block. However, in contrast to (7.1), I assume that policy 

innovation affect variables in the V block. I also assume that there are no structural shocks associated 

with asset prices. This assumption indicates that asset prices respond only to fundamental innovations 

(i.e. innovations in policy and technology) and idiosyncratic innovation in asset prices (e.g. "bubble" 

component, noise traders). In this interpretation, AVR reflects equilibrium responses of asset prices to 

policy shocks. One could note that a similar structure can be generated by VARs that order the policy 

block R before the asset prices block V. The similarity is, however, superficial. In those VARs, asset 

prices respond to all innovations in policy variables. In my identification, asset prices respond to 

innovations in policy and do not respond to idiosyncratic noise in policy variables. For example, asset 

prices respond to fed funds rate shocks corresponding to "change in policy" but do not respond to fed 

funds rate shocks corresponding to noise in fed fund rate series. In other words, my framework 

separates innovations in policy variables into innovations in policy and idiosyncratic innovations while 

standard and structural VARs do not.  

Now I contrast these two approaches to identification. I estimate the VAR in levels after taking 

logs of RGDP, PGDP, CRB, and EXRUS. All series are monthly. RGDP and PGDP series are from 

Bernanke and Mihov (1998). The number of lags in the VAR is selected to be 13 to eliminate serial 

correlation in the residuals and to match lags in Bernanke and Mihov (1998). My sample covers 1965-
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1996 but I exclude 1979-1982 when a different monetary regime was in place (Bernanke and Mihov, 

1998).  

My AIC selection criterion suggests that k=2 is the appropriate number of factors. 

Overidentifying restrictions test cannot reject the hypothesis of two structural shocks at any reasonable 

significance level (p-value is 0.7). Table 1 presents the standard and bias corrected estimates of the 

matrix A in (7.2), and their asymptotic standard errors and bootstrap confidence intervals.30  

The estimated coefficients of the second column of A show the impact responses of CRB, 

EXRUS and FFR variables to a innovation in monetary policy. Note that commodity prices and real 

exchange rate respond to a shock in monetary policy as predicted by macroeconomic theory: 

commodity prices fall on impact (a32<0) while the real exchange rate rises (USD appreciates; a42>0). 

These responses are economically and statistically different from zero. In contrast, the Cholesky 

identification with ordering [RGDP,PGDP,CRB,EXRUS,FFR] implies that CRB and EXRUS do not 

respond contemporaneously. This is, however, not an artifact of ordering. Other orderings – e.g. 

[RGDP,PGDP,FFR,CRB,EXRUS] – in the Cholesky identification produce qualitatively very similar 

results, i.e. on impact CRB and EXRUS respond very weakly to innovations in FFR, thus confirming 

Sims's (1998) stickiness observation.  

Interestingly, in the Cholesky identification, almost 95% of the variance in uFFR is attributed to 

innovations in monetary policy, while in the reduced rank case it is only 26%= 2 2
52 /

FFRUa σ . The 

remaining noise in the fed funds rate due to other structural and idiosyncratic innovations (e.g. trading 

frictions, weather, etc.) move the rate but not the policy while in the Cholesky identification much of 

this variance is labeled as policy.  Hence, the RR identification indicates that a large portion of 

innovation in the FFR is not associated with policy changes. This makes sense if the Fed does not 

move FFR at random. Given the noisiness of FFR series, the RR identification appears more plausible 

than the Cholesky identification.  
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Impulse response functions31 (IRFs) for the conventional Cholesky identification and reduced 

rank identification are reported in Figure 1.32 For each identification scheme, the innovation is a unit 

shock to monetary policy. The time path of FFR is similar for the Cholesky and reduced rank (RR) 

identifications.  

As I have already noted from Table 1, the index of commodity prices (CRB) and the real 

exchange rate (EXRUS) contemporaneously respond to changes in monetary policy under the RR 

identification. The RR identification predicts that commodity prices fall on impact. Then it continues 

falling, after 20 months it levels off and gradually recovers. In contrast, under the Cholesky 

identification, CRB increases in the first months after the shock and only then it starts to fall and 

generally replicate the shape of the response under the RR identification.  

EXRUS appreciates on impact and then gradually depreciates under the RR identification. This 

response is consistent with the prediction of macroeconomic models with sticky prices (e.g. 

Dornbusch, 1976): tight monetary policy should lead to an appreciation of the real exchange rate on 

impact and its subsequent depreciation. Under the Cholesky identification, EXRUS peaks only after 30 

months and then starts depreciating, which is "the exchange rate puzzle" (e.g. Eichenbaum and Evans 

(1995), Kim and Roubini (2000) and Faust and Rogers (2003)). As I have mentioned above, the 

response does not qualitatively change if I put FFR before asset prices. Apparently, the RR 

identification matches the theoretical responses much better than the Cholesky identification.  

 The differences in the response of the price level to changes in monetary policy are of special 

interest. It is a well known observation that in VARs with a block recursive identification the price 

level tends to rise in the first periods after "restrictive" monetary policy shocks. Since there is no 

theory behind these dynamics, the phenomenon has been called "the price level puzzle" (e.g. Sims 

(1992)). It has been conjectured that once the effect of asset prices as leading indicators is taken into 

account the puzzle would disappear. Indeed, zero is within confidence bounds around the spike in the 

price level, yet the point estimate of the price level response remains embarrassingly positive. 
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According to the RR identification, there is no price level puzzle after a "restrictive" monetary shock. 

The price level remains essentially zero for six months and then starts to fall. On the other hand, the 

Cholesky identification produces the puzzle as expected.  

The response of GDP is also quite different. In the first months after the shock, the behavior of 

IRFs according to the Cholesky and RR identification is very similar. However, after six month, GDP 

stabilizes in the RR case and continues to fall in Cholesky case. The RR identification does not 

produce a hump shaped response typical for recursive identification schemes. A partial answer to this 

is in the behavior of commodity prices and the real exchange rate. In contrast to the impulse responses 

produced by the Cholesky identification, the RR identification has a gradual increase in the index of 

commodity prices and gradual depreciation of the real exchange rate at approximately 20 months. 

These two effects move real GDP in different directions: higher commodity prices slow the growth of 

real GDP while the depreciation of the real exchange rate stimulates it.  

The dynamics of real GDP and the price level provide an interesting perspective. On impact, 

the price level is sticky and all adjustment is happening through real quantities. After approximately 

six months, the price level begins to adjust. This is consistent with the New Keynesian explanation of 

how monetary policy affects output and prices.  

Impulse responses produced by the Cholesky and reduced rank identification are strikingly 

different. What drives this result? In our discussion of the Cholesky and RR identification schemes, I 

have noted that the Cholesky identification tends to produce attenuated and, possibly, incorrectly 

signed responses to structural shocks. Specifically, I have derived that if the pattern of comovement in 

responses is different across structural shocks (i.e. variables co-move in response to some structural 

shock and move in different directions in response to another structural shock), then the Cholesky 

identification can produce incorrectly signed responses. Estimates of the matrix A presented in Table 1 

show that this is precisely the case. For example, FFR and EXRUS increase on impact in response to 

POLε  but move in opposite directions in response to TECHε . Also FFR and CRB co-move in response to 
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TECHε  but move in opposite directions in response to POLε . Consistent with our theoretical predictions, 

the Cholesky identification even with ordering [RGDP,PGDP,FFR,CRB,EXRUS] finds 1) a very weak 

correlation between monetary policy shocks and VAR innovations in EXRUS and 2) the theoretically 

wrong positive sign for correlation between identified shocks to monetary policy and VAR 

innovations in CRB (Figure 2).33  

Moreover, as anticipated, monetary policy shocks under the RR identification are less correlated 

with innovations in fed funds rate FFR than monetary policy shocks under the Cholesky identification 

(Figure 3).34 The reason is that the variances of idiosyncratic errors v dwarf off-diagonal entries of the 

covariance matrix of VAR residuals relative to its diagonal entries and, therefore, the Cholesky 

identification finds little comovement in the series thus implying a high correlation between VAR 

innovations in FFR and the Cholesky-identified monetary policy shocks.  

In sum, reduced rank identification appears to produce more reasonable impulse responses than 

recursive identification. Specifically, reduced rank identification 1) resolves two well-known puzzles, 

2) explains why the policy instrument is volatile in the recursive identification schemes, and 3) 

addresses stickiness of contemporaneous cross-variable response. The cornerstone of this success is, of 

course, the identified factor structure of VAR residuals.  

8 Conclusion 
There is often a disconnection between theoretical business cycle models and empirical VAR 

models as the number of structural shocks in VARs typically is not equal to the number of 

fundamental (i.e. technology, preferences, policy) shocks in business cycle models. This paper shows 

how the reduced rank identification that imposes a factor structure on VAR residuals rectifies this 

problem. Specifically, the reduced rank identification sets the number of structural shocks to be less 

than the number of variables in a VAR. This novel approach to identification has simple estimation 

and inference and it is no more computationally demanding than typical structural identification 
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schemes. The paper also presents formal statistical criteria to determine the number of structural 

shocks. Importantly, unlike dynamic factor models, the reduced rank approach uniquely identifies 

structural innovations and therefore it can be used for economic analyses. Finally, the reduced rank 

identification can explain stickiness (weak contemporaneous cross-variable response) regularly found 

in conventionally identified VARs. In empirical applications, the key is to find economically plausible 

restrictions on the matrix A linking observed VAR residuals with structural innovations.  

In my monetary policy example I show that the reduced rank identification produces results 

qualitatively different from and more theoretically plausible than those of conventional identification 

schemes. In particular, the reduced rank identification finds no price level and exchange rate puzzles, 

the curse of all recursive identification exercises. The reduced rank identification also finds a small 

contribution of policy innovations to the variance of fed funds rate innovations thus implying that the 

policy is not as noisy as recursive identification schemes often suggest.  

Of course, some issues remain unresolved. For example, reduced rank identification does not 

specify how many and which variables should be included in VAR. Potentially, more signals can 

improve the estimate of A but too many signals can easily make VAR infeasible. Where to draw the 

line is left for future research.  

 



 29

9 References  
 
Abowd, John M. and David Card, "Intertemporal Labor Supply and Long-Term Employment 

Contracts," American Economic Review 77:1 (1987), 50-68.  

------------- "On the Covariance Structure of Earnings and Hours Changes," Econometrica 57:2 (1989), 

411-445. 

Altug, Semru, "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International 

Economic Review 30:4 (1989), 889-920.  

Anderson, T.W. and Herman Rubin, "Statistical Inference in Factor Analysis," in Proceedings of the 

Third Berkeley Symposium on Mathematical Statistics and Probability, Jerzy Neyman, ed., 

(Berkeley, CA: University of California Press, 1956).  

Anderson, T.W., An Introduction to Multivariate Statistical Analysis. (Wiley, 2003).  

Andrews, Donald W.K., "Higher Order Improvements of a Computationally Attractive k-Step 

Bootstrap for Extremum Estimators," Econometrica 70:1 (2002), 119-162 

Bai, Jushan and Serena Ng, “Determining the Number of Factors in Approximate Factor Models,” 

Econometrica 70:1 (2002), 191-221. 

Basilevsky, Alexander, Statistical Factor Analysis and Related Methods: Theory and Applications. 

(Wiley, 1994)  

Bernanke, Ben and Alan Blinder, "The federal Funds Rate and the Channels of monetary 

Transmission," American Economic Review 82 (1992), 901-921.  

Bernanke, Ben and Ilian Mihov, "Measuring Monetary Policy," Quarterly Journal of Economics 113 

(1998), 869-902. 

Bernanke, Ben S., "Alternative Explanations of the Money-Income Correlation," Carnegie-Rochester 

Conference Series on public Policy 26 (1986), 49-100.  



 30

Bernanke, Ben, and Jean Boivin, "Monetary Policy in a Data-Rich Environment," Journal of Monetary 

Economics 50 (2002), 525-546.  

Bernanke, Ben, Jean Boivin and Piotr Eliasz, "Measuring the Effects of Monetary Policy: A Factor-

Augmented Vector Autoregressive (FAVAR) Approach," NBER Working paper #10220 (2004).  

Blanchard, O. J. and D. Quah, "The Dynamic Effects of aggregate Demand and Supply Disturbances," 

American Economic Review 79 (1989), 655-673.  

Christiano, L., M. Eichenbaum and C.L. Evans, "Monetary Policy Shocks: What We Have Learned 

and to What End?" in Handbook of Macroeconomics, M. Woodford and J. Taylor, eds., Vol. 1A, 

(Amsterdam: North Holland, 1999).  

------------- "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," Review of 

Economics and Statistics 78 (1996), 16-34.  

Cragg, G. John and Stephen G. Donald, "Factor analysis under More General Conditions with 

Reference to Heteroscedasticity of Unknown Form," in Advances in Economics and Quantitative 

Economics, G.S. Maddala, P.C.B. Phillips, T.N. Srinivasan, eds. (Cambridge, MA: Basil 

Blackwell, 1995) .  

------------- "Inferring the Rank of a Matrix," Journal of Econometrics 76 (1997), 223-250.  

Cushman, D.O. and T. Zha, "Identifying Monetary Policy in a Small Open Economy under Flexible 

Exchange Rates," Journal of Monetary Economics 39 (1997), 433-448.  

Davidson , Russell and James G. McKinnon, "Bootstrap Testing in Non-linear models," International 

Economic Review 40:2 (1999), 487-508.  

Dornbusch, Rudiger, "Expectations and Exchange Rate Dynamics," Journal of Political Economy 84 

(1976), 1161-1176.  

Efron, Bradley, and Robert J Tibshirani, An Introduction to the Bootstrap (Chapman and Hall/CRC, 

1993).  



 31

Eichenbaum, Martin and Charles L. Evans, "Some Empirical Evidence on the Effects of Shocks to 

Monetary Policy on Exchange Rates," Quarterly Journal of Economics 110:4 (1995), 975-1009. 

Faust, Jon and Eric M. Leeper, "When Do Long-Run Identifying Restrictions Give Reliable Results," 

Journal of Business and Economic Statistics 15:3 (1997), 345-353. 

Faust, Jon, and John H. Rogers, "Monetary Policy's Role in Exchange Rate Behavior," Journal of 

Monetary Economics 50 (2003), 1403-1424.  

Forni, M. Hallin, M. Lippi, and Reichlin, L., "The Generalized Dynamic Factor Model: Identification 

and Estimation," The Review of Economic and Statistics 82 (2000), 540-554. 

------------- "Opening the black box: identifying shocks and propagation mechanisms in VAR and 

factor models." CEPR working paper #4133 (2003).  

Forni, Mario, and Marco Lippi, "The Generalized Dynamic Factor Model: Representation Theory," 

Econometric Theory 17 (2001), 1113-1141 

Geweke, J., "The Dynamic Factor Analysis of Economic Time Series," in D.J. Aigner and A.S. 

Goldberger (eds.), Latent Variables in Socio-Economic Models (Amsterdam: North-Holland, 

1977). 

Giannone, D., L. Reichlin, and L. Sala, Monetary policy in real time. mimeo (2004).  

Gonzalo, Jesus and Serena Ng, "A Systematic Framework for Analyzing the Dynamic Effects of 

Permanent and Transitory Shocks," Journal of Economic Dynamics and Control 25 (2003), 1527-

1546.  

Granger, C.W.J., “Macroeconometrics – Past and future,” Journal of Econometrics 100 (2001), 17-19. 

Hall, Peter, and Joel Horowitz, "Bootstrap Critical Values for Testing Based on Generalized-Methods-

of-Moment Estimators," Econometrica 64:4 (1996), 891-916.  

Hall, Robert and Frederic S. Mishkin, "The Sensitivity of Consumption to Transitory Income: 

Estimates from Panel Data on Households," Econometrica 50 (1982), 1029-1054.  



 32

Hausman, Jerry A. and William E. Taylor, "Identification in Linear Simultaneous Equations Models 

with Covariance Restrictions: An Instrumental Variables Interpretation," Econometrica 51:5 

(1983), 1527-1550. 

Hausman, Jerry A., Whitney K. Newey, and William E. Taylor, "Efficient Estimation and 

Identification of Simultaneous Equation Models with Covariance Restrictions," Econometrica 55:4 

(1987), 849-874. 

Horowitz, Joel L., "Bootstrap Methods for Covariance Structures," Journal of Human Resources 33:1 

(1998.), 39-61.  

Joreskog, Karl G. and Dag Sorbom, Advances in Factor Analysis and Structural Equation Models 

(Cambridge, MA: Abt Books, 1979).  

Keating, John W, "Structural Information in Recursive VAR Orderings," Journal of Economic 

Dynamics and Control 20 (1996), 1557-1580  

Kilian, Lutz, "Small-sample Confidence Intervals for Impulse Response Functions," Review of 

Economics and Statistics 80:2 (1998), 218-230.  

Kim, Soyoung and Nouriel Roubini, "Exchange Rate Anomalies in the Industrial Countries" A 

Solution with a Structural VAR Approach," Journal of Monetary Economics 45 (2000), 561-586.  

King, Robert G., Charles I. Plosser, James H. Stock and Mark W. Watson, "Stochastic Trends and 

Economic Fluctuations," American Economic Review 81:4 (1991), 819-840.  

Kose, M Ayhan, Christopher Otrok, and Charles H. Whiteman, "International Business Cycles: World, 

Region, and Country-Specific Factors," American Economic Review 93:4 (2003), 1216-1239.  

Lawley, D.N., and A.E. Maxwell, Factor Analysis as a Statistical Method (London: 

Butterworths,1974).  

Leeper, Eric M., Christopher A. Sims and Tao Zha, "What Does Monetary Policy Do?" Brookings 

Papers on Economics Activity 1996:2 (1996), 1-63.  



 33

Otrok, Christopher and Charles H. Whiteman, "Bayesian Leading Indicators: Measuring and 

Predicting Economic Conditions in Iowa," International Economic Review 34:4 (1998), 997-1014.  

Quah, D., and T.J. Sargent, "A Dynamic Index Model for Large Cross Sections," in J.H. Stock and 

M.W. Watson (eds.), Business Cycles, Indicators, and Forecasting (Chicago: University of 

Chicago Press, 1993).  

Rigobon, Roberto and Sack Brian, "Measuring the Reaction of Monetary Policy to the Stock Market," 

Quarterly Journal of Economics 118:2 (2003), 639-669. 

Sargent, T.J. and C.A. Sims. 1977. "Business Cycle Modeling without Pretending to Have Too Much a 

priori economic theory," in C. Sims et al. (eds), New Methods in Business Cycle Research,  

Shapiro, Matthew D. and Mark W. Watson, "Sources of Business Cycle Fluctuations," NBER 

Macroeconomics Annual (Cambridge: MIT Press, 1988).  

Sims, Christopher A. and Tao Zha, "Does Monetary Policy Generate recessions?" mimeo (1996).  

Sims, Christopher, "Macroeconomics and Reality," Econometrica 48 (1980), 1-48. 

------------- "Interpreting the Macroeconomics Time Series Facts: the Effects of Monetary Policy," 

European Economic Review 36 (1992), 975-1011.  

------------- "Stickiness," Carnegie-Rochester Conference Series on Public Policy 49 (1998), 317-356.  

Stock, J. H. and M. W. Watson, ‘‘New Indexes of Coincident and Leading Economic Indicators,’’ 

NBER Macroeconomic Annual (Cambridge: MIT Press, 1989). 

------------- "Diffusion Indexes," NBER Working paper #6702 (1998). 

Strongin, Steven, "The Identification of Monetary Policy Disturbances. Explaining the Liquidity 

Puzzle," Journal of Monetary Economics 35 (1995), 463-497.  

White, Halbert, Estimation, Inference and Specification Analysis (Cambridge University Press: 1994).  

Wooldridge, Jeffrey M., Econometric Analysis of Cross Section and Panel Data (Cambridge, MA: 

MIT Press: 2003).  



 34

10 Appendix 
PROOF OF PROPOSITION 1. 
The proof follows Wooldridge (2002, Section 12.4). The objective function of the GMM estimator is  

( ) ( )( ) ( ) ( )11 1

1 1

ˆ ˆ ˆ ˆ, , ,
T T

t tT T
t t

L A F A F A−

= =

⎧ ⎫′⎛ ⎞ ⎛ ⎞⎪ ⎪Ψ = Ψ Σ Ψ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ∑Π Π  (8.1) 

The score function of (8.1) is  

( ) ( ) ( )1 1
,

1

ˆ ˆ ˆ, , 2 , ,
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t A t tT
t

s A F A F A−
Ψ

=

⎛ ⎞Ψ = ∇ Ψ Σ Ψ⎜ ⎟
⎝ ⎠
∑Π   (8.2) 

To show that ( ) ( )ˆ ˆ ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  and ( ) ( )ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  have the same asymptotic distribution, I 

need to prove that 

( ) ( ) ( )
1 1

1 1ˆ, , , , 1
T T

t t p
t t

s A s A o
T T= =

Ψ = Ψ +∑ ∑Π Π   (8.3) 

Note that by construction of the moments ( ),
ˆ ,A tF AΨ∇ Ψ  does not depend on tX  and Π . 

Given this observation, I take mean value expansion of (8.3) around Π : 
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Hence to show equivalency of asymptotic distributions, it is sufficient to show that 

( )( ), , 0E s AΠ∇ Ψ =Π . To prove this, plug , ,
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= −∑∑ into (8.2). Because 

( ),
ˆ ,A tF AΨ∇ Ψ  and Σ  do not depend on tX  and Π , observe that for elements of ( ),F A∇ ΨΠ  

corresponding to diagonal elements of Ω  I have: 
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by the condition ( )1 1 ... 0 1,...,t t p t p t kE X X X X k p− − −⎡ ⎤− Π − −Π = =⎣ ⎦  and the same result holds for 

all off-diagonal entries of Ω . Hence, ( )( ), 0E F A∇ Ψ =Π  implying ( )( ), , 0E s AΠ∇ Ψ =Π .  
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QED 
 
PROOF OF PROPOSITION 2.  
In proposition 1 I show that ( ) ( ) ( )ˆ, , , , 1t t ps A s A oΨ = Ψ +Π Π  thus I will treat Π  as known. To 

simplify notation, I define ( ) ( )vec A diagβ
′⎡ ⎤′ ′= Ψ⎢ ⎥⎣ ⎦
 so that I can write ( ) ( ), , ,t ts A s βΨ ≡Π Π . 

The estimate β̂  solves the first order condition for minimizing GMM objective function, i.e.  

( )
1

ˆ, 0
T

t
t

s β
=

=∑ Π    (9.1) 

Since by construction ( ),ts β Π  is a polynomial function of β , ( ),ts β Π  is twice 

continuously differentiable in β . Hence I can expand (9.1) around β :  
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where tH  is the Hessian of the objective function with respect to β , and each tH  is evaluated at a 

different mean value. Since by consistency of GMM ˆlimp β β= , I have ( )
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t
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implying by the Slutsky theorem that  
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provided ( )E H  is positive definite (⇔  ,A Ψ  is locally identified).  

From (9.1) and (9.2), I then have ( ) ( )
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limit theorem,  
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provided ( )( ), 0E s β =Π  (i.e. model is correctly specified) and ( ),s β Π  has finite second moment 

(e.g. ( )4
tE < ∞u ).  
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Let ( ) ( )1 1
E E

− −
Φ = Ξ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦H H . Then by combining (9.3) and (9.4) I have by the continuous 

mapping theorem that 
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If the optimal weighting matrix is used in the objective function, i.e. 

( ) ( ){ }, ,t tE F A F A ′Σ = Ψ Ψ , covariance matrix Φ  simplifies to ( ) 11D D
−−′Φ = Σ  where 
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 is an ( )( ) ( )( )1
2 1 1 An n k n r+ × + −  matrix.  

Note that 1D D−′Σ  is invertible if each column of D has a non-negative entry. Put differently, if there 

are indeed k factors so that each column of D has a non-zero entry, 1D D−′Σ  is invertible.  

QED. 
 
PROOF OF PROPOSITION 3 (CONSITENCY OF THE CRITERION). 

Observe that if 0k̂ k> , then ( ) ( )* 0 * 0:k k S k S k∃ > ≤ . Hence, ( ) ( ) ( )( )
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because ( ) ( ) ( )* 0,f T g k g k→∞ <  and ( )0 , ,J k A Ψ  is distributed asymptotically as 
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For 0k̂ k< , observe that  
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QED



 37

Table 1. Parameter estimates of contemporaneous responses under the reduced rank identification.  

Standard asymptotics Bootstrap 

variable coefficient 
estimate Standard 

error 

Bias 
corrected 
estimate 

95%  
confidence interval 

Technological shock TECHε : the first column of A in (7.2)  
RGDP a11 0.098 0.010  0.105 [0.032, 0.268] 
PGDP a21 0.007 0.001  0.009 [-0.016, 0.032] 
CRB a31 0.511 0.053  0.552 [0.367, 0.660] 

EXRUS a41 -0.136 0.016  -0.150 [-0.331, 0.028] 
FFR a51 0.217 0.022  0.254 [0.186, 0.283] 

Policy shock POLε : the second column of A in (7.2)  
CRB a32 -0.257 0.043  -0.305 [-0.419, -0.104] 

EXRUS a42 0.369 0.114  0.425 [ 0.222, 0.566] 
FFR a52 0.150 0.062  0.161 [0.096, 0.239] 

 
 
Note: The table presents estimates of the matrix A in (7.2). Bootstrap procedure is described in the 
text. BCα bootstrap with re-centering bootstrap moments (2000 replications) is used.  
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Figure 1. Impulse response functions.  
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Note: The figure presents impulse response functions to a one-standard-deviation structural innovation to monetary policy. Time (the horizontal 
axis) is in months. The ordering in the Cholesky factorization is [RGDP,PGDP,CRB,EXRUS,FFR].  
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Figure 2. Response of EXRUS and CRB to identified innovation in monetary policy.  
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Note: β  in each panel shows the estimated coefficient and associated standard error (in parentheses) from regression of a VAR residual on 
identified shocks to monetary policy. The ordering of variables for the Cholesky identification is [RGDP,PGDP,FFR,CRB,EXRUS].  
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Figure 3.  
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Note: ρ  in each panel shows the estimated correlation coefficient between VAR innovations in FFR equation and identified monetary policy 
shocks. The Cholesky identification has the baseline ordering [RGDP,PGDP,CRB,EXRUS,FFR].  
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1 If a VAR model has a few financial variables, there can be only one common innovation in the series 

and other shocks in these series are idiosyncratic. Factor models (e.g. Bai and Ng, 2002) typically find that 

this is a fairly good description of reality.  

2 Henceforth, terms "fundamental" and "structural" are used interchangeably provided there is no space for 

misinterpretation.  

3 For other interpretations of shocks vt consult Gianonne et al (2004) and references therein.  

4 If I abstract from slopes in the VAR and focus on the covariance structure of ut, I consider a model 

similar to the error component models in Abowd and Card (1987, 1989).  

5 Note that it is possible for Ψ  to have zeros on the diagonal and Ω  to still be positive definite.  

6 The reduced rank identification is similar to reduced rank regressions (including cointegration), but the 

similarity is limited to imposing reduced rank on certain matrices. Reduced rank regressions impose 

reduced rank on slope matrices in VARs while the reduced rank identification imposes approximately 

reduced rank on the covariance matrix of innovations.  

7 Non-zero restrictions on A can also be imposed. Identification requirements for non-zero restrictions are 

much stricter (see Joreskog and Sorbom, 1979, Chapter 3), yet they can be satisfied in certain applications. 

Placing zero restrictions on the entries of the matrix A is often called exploratory, confirmatory or simple 

structure factor analysis. For more details see Lawley and Maxwell (1971) and Joreskog and Sorbom 

(1979). 

8 Condition R3 is mandated by the simple fact that any factor is identified only if at least three signals are 

available, otherwise one cannot separate common factor from idiosyncratic noise in the variables. 

9 For example, if k=2, it is enough to fix one of the factor axes and then the second is fixed by 

orthogonality to the first.  
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10 It is instructive to compare (3.2) and R1-R3/R4 with identification conditions in simultaneous 

equations. Condition (3.2) corresponds to the order condition and conditions R1-R3/R4 correspond to the 

rank condition.  

11 Maximum likelihood estimator (MLE) is a popular alternative estimator. GMM and MLE are equally 

popular in the structural VAR literature. In contrast, factor models are typically estimated by MLE 

although minimum distance estimators, which include GMM, possess the same asymptotic properties 

(Anderson (2003) and Cragg and Donald (1995)). In comparison to MLE, GMM requires less structure 

but it can be sensitive to normalization.  

12 Restrictions on covariance structures can imply that certain residuals can be used as instruments to 

estimate parameters of the matrix A. For details on this interpretation, see Hausman et al (1983) and 

Hausman and Taylor (1987), and for empirical implementation Shapiro and Watson (1988). Historically, 

covariance structures have been used mostly for panel micro level data, e.g. Hall and Mishkin (1982) and 

Abowd and Card (1988, 1989).  

13 It is easy to show the same result for quasi-maximum likelihood estimator. See theorem 6.12 in White 

(1994).  

14 For distributions with considerable skewness and/or kurtosis, he suggests using a truncated estimator of 

variance, i.e. observations above or below certain threshold are excluded from the analysis.  

15 The idea of k-step bootstrap is simple and powerful. Instead of iterating optimization routines (like 

Gauss-Newton) until convergence, one can make only k iterations and incur op(n-k) difference between 

parameter estimates from converged optimization and parameter estimates from k iterations of the 

optimization routines. The starting values in both cases are parameter estimates from initial estimation. 

The parameter k can be as small as 5 for most applications.  

16 Note that VAR of a sufficiently high order makes reduced error term ut approximately serially 

uncorrelated. Thus, one can use bootstrap for independently distributed observations instead of block 

bootstraps. See Kilian (1998) and Bose (1988) for details.  



 43

                                                                                                                                                                            
17 Note that if the model is overidentified, one has to recenter bootstrap moments as in Hall and Horowitz 

(1996).  

18 See section 6.8 in Basilevsky (1994) for details.  

19 Informal methods like scree plots are also often used.  

20 This may be violated sometimes since different weighting matrices are used for different number of 

factors. However, this is easily corrected by using the same matrix when comparing two options for k.  

21 Approximate factor models can utilize N →∞  to find the number of factors (e.g. Bai and Ng, 2002). I 

have fixed N equal to the number of variables in a given VAR.  

22 Degrees of freedom must be adjusted accordingly, i.e. decreased by .5k(k-1). 

23 The term nk in the penalty function g is different from degrees of freedom or free parameters by a 

constant independent from the number of factors k.  

24 An alternative strategy is to sequentially test if k factors account for observed covariance until J-test 

cannot reject the null of k-factor structure or d becomes negative. A drawback of such a procedure is that 

there always is a possibility of type I error and it accumulates as k increases. See Cragg and Donald (1997) 

for details. 

25 With panel data, one can get limited identification as in Kose et al (2003). Also, Giannone et al (2004) 

and Forni et al (2003) using long run restrictions can identify shocks with permanent effects and shocks 

with transitory effects. Identification and inference through long run restrictions, however, can be very 

sensitive to choice of lags. In addition, economic interpretation of the shocks is limited. See Faust and 

Leeper (1997) for details.  

26 There have been other attempts to merge factor models and VARs (Bernanke and Boivin (2003) and 

Bernanke et al (2004)). These are, however, focused on controlling for larger information sets than those 

represented by the lags of endogenous variables in a VAR.  

27 These two series are from Bernanke and Mihov (1998).  

28 Other orderings, e.g. [RGDP,PGDP,FFR,CRB, EXRUS], produce essentially identical results.  
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29 Giannone et al (2004) find in the context of factor models that two-fundamental-shock structure is a 

good description of the US economy .  

30 I do 2000 bootstrap replications with re-centering bootstrap moments. I use BCα –method to construct 

confidence intervals to have good coverage properties and have transformation respecting confidence 

intervals (see Efron and Tibshirani (1993) for details).  

31 I focus on point estimates and do not present confidence bounds for the sake of clarity.  

32 Structural shocks are normalized to have unit variance.  

33 This conclusion is confirmed by unreported Monte Carlo simulations when the Cholesky identification 

is applied to data generating process of ut characterized by reduced rank structure.  

34 To emphasize the point, I use the baseline ordering [RGDP,PGDP,CRB,EXRUS,FFR] that minimizes 

correlation between VAR residuals in FFR equation and the Cholesky-identified structural shocks in 

monetary policy.  
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