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Abstract

We use the Survey of Doctorate Recipients to examine the question of who in U.S. universities is
patenting. Because standard methods of estimation are not directly applicable, we use a zero-
inflated negative binomial model to estimate the patent equation, using instruments for the
number of articles to avoid problems of endogeneity. We also estimate the patent model using
the generalized method of moments estimation of count data models with endogenous regressors.
We find work context and field to be important predictors of the number of patent applications.
We also find patents to be positively and significantly related to the number of publications. This
finding is robust to the choice of instruments and method of estimation. The cross-sectional
nature of the data prelude an examination of whether a tradeoff exists between publishing and
patenting holding individual characteristics constant over time. But the strong cross-sectional
complementarity that we find suggests that commercialization has not come at the expense of
placing knowledge in the public domain,
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Section One: Introduction

In recent years we have learned a considerable amount about university patenting.
For example, we know which universities produce the most patents, which receive the
most in licensing revenue, and in what fields patents are being issued. We also know
something about the incentive structure related to royalty payments. What we don’t know
is who in the university is patenting and how patent activity relates to personal
characteristics. This paper takes a first step at addressing this deficiency. Drawing on
data from the 1995 Survey of Doctorate Recipients, we analyze the patent activity of a
sample of 10,962 doctoral scientists and engineers working in institutions of higher
education.

Technology transfer is the subject of numerous studies (Agrawal and Henderson
2002; Colyvas et al. 2002; Geuna and Nesta 2003; Henderson, Jaffe and Trajtenberg
1998; Jensen and Thursby 2001, 2003; Lack and Schankerman 2002; Murray 2002;
Mowery et al. 2001; Owen-Smith and Powell 2001, 2002; Thursby and Kemp 2002,
Thursby and Thursby 2002a, 2002b).' These studies provide important insight into
institutional factors that relate to patent activity and the importance (or unimportance) of
the Bayh-Dole Act” to the dramatic increase in university patenting. Thursby and Kemp,
for example, show that technology transfer offices play an important role in determining
the number of disclosures that are made on a campus. The work of Owen-Smith and
Powell (2002) suggests that academic medical centers can play a facilitating role in
technology transfer. Lack and Schankerman investigate how differences in the structure
of royalty payments affect the quantity and quality of inventions coming out of
universities. Mowery and coauthors suggest that Bayh-Dole did not cause the dramatic
increase in university patent activity but rather that the “principal effect of Bayh-Dole
was to accelerate and magnify trends that already were occurring” in academe (Mowery
et al., 2001, p. 2). Jensen and Thursby provide theoretical insight into whether changes
in patent policy have been detrimental to academic research and education.

The institutional focus of technology transfer studies precludes insights
concerning personal characteristics that affect patent activity and the interplay between
these personal and institutional factors. We know remarkably little about who in the
university is patenting and personal characteristics related to patenting, including life-
cycle effects. We also know little about how individual-level patent and publishing

" The number of patents issued to academic institutions has grown dramatically in recent years. For
example, in 1965, fewer than 100 U.S. patents were granted to 28 U.S. universities or related institutions.
By 1992 almost 1500 patents were granted to over 150 universities or related institutions. This dramatic
increase in patenting activity occurred during a time in which total U.S. patenting increased by less than
50% and patents granted to U.S. inventors remained almost constant (Henderson, Jaffe and Trajtenberg,
1998). This trend has continued throughout the 1990s, with more than 3000 patents being issued to
academic institutions in 1998.

* The Bayh-Dole Act of 1980 gave universities the right to retain title to and license inventions resulting
from research supported on federal grants.



activities are related and the role played by unmeasured or unobservable characteristics.”
By contrast, we know considerably more concerning the publishing activity of university
scientists and engineers. We know, for example, that the activity itself is highly skewed;
that publishing and co-authorship patterns vary considerably by field; and that life-cycle
effects are generally present in a fully specified model that controls for individual fixed
effects such as motivation and ability (Levin and Stephan 1991, Stephan 1996, Stephan
and Levin 1992).

Standard methods of estimation are not directly applicable in the analysis of
patent-publication data because of the presence of non-linearity due to the non-negative
discrete values of the data. There is also the question of the role played by unobserved or
unmeasured characteristics, noted above. Just as the question of who in the university is
patenting deserves further investigation, these features of the patent/publication data and
the implied modeling strategies also deserve further investigation.

This paper examines university patenting at the individual, as opposed to
institutional, level. Our goal is four-fold: (1) to examine the distribution of patents and
compare it to the distribution of publications; (2) to examine how patent activity relates to
individual and institutional characteristics; (3) to investigate the relationship between
publishing and patenting; (4) to examine patent activity using data that contains an excess
of zeros and endogenous regressors.

Expanding on point (4), the modeling approach used here relies on nonlinear
instrumental-variable estimation of models of individual patent and publication behavior
using two methods. First, using a likelihood-based method, we estimate a zero-inflated
negative binomial (ZINB) model of patents allowing for potential endogeneity in
publications. Second, using the count data method developed by Mullahy (1997), we
estimate the relationship between patenting and publication activities by the generalized
method of moments (GMM). These methods are suitable for the analysis of patent data
with the special features noted above. In particular, our rationale for using zero-inflated
count data models stems from the observation that some individuals who would patent if
the interval of analysis were longer are not observed patenting in the five-year period
available in the data. Ignoring this potential error in recording leads to misspecification.
But the ZINB imposes restrictions that the GMM addresses, albeit at the cost of not-
inflating the zero counts.

In section two we discuss factors leading university scientists and engineers to
patent and discuss why we expect complementarity between patenting and publishing. In
section three of the paper we discuss personal as well as institutional characteristics
hypothesized to be related to patenting activity of academics. We also comment on why
we expect these relationships to differ by field. Section four summarizes the data used
for this study and the methodology employed. Patent and publishing distributions are

? Scientific productivity is characterized by extreme inequality, suggesting that patent productivity might
also be related to “unobserved heterogeneity,” as a measure of motivation. If unobserved heterogeneity is
correlated with observed characteristics such as the number of publications, then the estimates of the
parameters of interest in the patent model are inconsistent.
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compared. Alternative modeling strategies are presented from the individual-level
patent data application point of view. Section five presents our results and research
findings. Our work suggests that strong differences in patenting exist among fields. We
also find strong complementarity between patenting and publishing. The cross sectional
nature of our data preclude our examining whether a tradeoff exists between publishing
and patenting holding individual characteristics constant over time. But the strong cross-
sectional complementarity that we find suggests that commercialization has not come at
the expense of placing knowledge in the public domain.

Section Two: Incentives to Patent in Academe

Two key factors lead scientists to engage in research: an interest in solving the
puzzle and in winning the game (Stephan and Levin 1992). The distinction between the
two is that puzzle solving involves a fascination with the research process itself, while
winning the game offers recognition among fellow scientists as well as financial rewards.
The puzzle solving nature of research is addressed by the historian of science Robert Hull
(1988, p. 306) who speaks of the innate curiosity of scientists, noting that science is “play
behavior carried to adulthood.” * But, extrinsic rewards also play a strong motivating role
in science. Robert Merton (1957) and the sociologists and philosophers of science who
followed him have demonstrated that recognition is one of the main factors leading
scientists to do research. Clues concerning the importance of reputation as a motivating
force in science are readily apparent. The order of authors on articles is often carefully
negotiated; speaker order at conferences can be hotly debated. Nowhere is the
importance of reputation more apparent than in issues concerning priority of discovery.
Scientific reputation is based on being first. (Merton 1957, Stephan 1996). A necessary
condition of establishing priority is the sharing of the research findings with the scientific
community through publication.

Economic gain also plays a strong motivating role in science. Productive
scientists are financially rewarded by their own institution (Stephan and Levin 1992).”
Scientific productivity is also rewarded by institutions other than the employing one.
Moreover, within academe, the awarding of tenure is largely based, at least at research
institutions, on the research productivity, and related grant getting ability, of the scientist
and engineer (Stephan and Levin 1999).

Scientists and engineers in academe are thus not only motivated to do research
that is published; they are expected to publish their research. Recognition among their
peers requires that they share their research findings in a timely fashion with the scientific
community through publication. Promotion and the reward structure in academe
reinforce the importance of publication.

* Hull continues (1988, p. 46): “The wow-feeling of discovery, whether it turns out to be veridical or not,
is exhilarating. Like orgasm, it is something anyone who has experienced it wants to experience again
often as possible.”

* Productive faculty not only receive higher salaries. In recent years it has become increasingly common to
reward faculty receiving external funding with bonuses (Mallon and Korn 2004).
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Patenting can be a logical outcome of this research-focused environment. Three
factors lead to such a conclusion: First, the results of research, especially research in
what Donald Stokes (1997) identifies as Pasteur’s Quadrant, can often be patented, being
a joint product along with publications of the research; Second, the increased
opportunities that academic researchers have to work with industry encourage patenting;
Third, the reward structure also encourages patenting.

By-product. In their interviews of mechanical and electrical engineering faculty
who held at least one patent, Agrawal and Henderson (2002) find that most faculty report
that their goal is to engage in a research stream they find interesting. The fact that patents
follow is a by-product. Fiona Murray (2002), in her study of tissue engineering, finds that
many research results are both patented and published. The by-product nature of patents
with publication relates in part to the low marginal cost of disclosure when draft
manuscripts are used as the means of communicating to the technology transfer office
(TTO). Owen-Smith and Powell (2002, p. 11) report that “invention disclosures made by
academic inventors to university technology transfer offices often take the form of article
manuscripts.” °

One reason that patents and publications can flow from the same line of research
relates to the fact that scientists and engineers can selectively publish research findings
while at the same time monopolizing other elements of research. Rebecca Eisenberg
(1987) argues that such behavior is more common among academics than might initially
be presumed. This ability of faculty to have one’s cake and eat it too is not only
manifested in patenting and publishing from the same line of research. It is also
manifested when professors refuse to share data or cell lines. It is facilitated by the fact
that publication is not synonymous with providing the ability to replicate and that
techniques can often be transferred only at considerable cost, in part because their tacit
nature makes it difficult, if not impossible, to communicate in a written codified, form.

Interaction with industry. Interest in patenting among university scientists and
engineers may be piqued through interaction with industry, not only because industry
often has a patent focus and patent “know-how” but also because industry directs its
research to questions that are well suited to patenting. Mansfield’s work (1995)
demonstrates that scientists and engineers often gain inspiration for their research through
interaction with industry. By inference, such interaction could increase faculty interest
and knowledge of patenting. Agrawal and Henderson (2002) suggest that interaction with
industry may steer scientists and engineers towards patenting.’

The rewards to patenting. Economic gain is clearly one reason academic
scientists and engineers seek patent protection for their research findings. Considerable
evidence exists concerning the large financial returns that have been realized by certain

®Another reason that patents and publications may be complements is that the university share of royalty
income can be used to support research.

’ An engineer told Agrawal and Henderson (2002, p. 58): ... It is useful to talk to industry people with
real problems because they often reveal interesting research questions—but sometimes they try to steer you
towards patenting Sometimes that research results in something patentable, sometimes not.”



academic scientists engaged in technology transfer (Stephan and Everhardt 1998). These
returns, like other returns in science, are, however, highly skewed, being heavily
concentrated on a handful of scientists at a small number of institutions. Other factors
play a role in encouraging patenting. Owen-Smith and Powell (2001) find that “many
inventors reveal that they patent, in part, because they feel it increases their academic
visibility status by “reaffirming” the novelty and usefulness of their work.” Patents can
also be used to leverage existing research by creating a chit to trade with industry. This
may be particularly the case in the physical sciences where inventions tend to be
incremental improvements on established processes or products. By exchanging patents
on incremental innovations with industry, scientists can receive proprietary technology,
such as access to equipment or other opportunities (Owen-Smith and Powell 2001).
Altruism can also play a role. Patents can be seen as protecting discoveries from being
put in the private domain by others. Owen-Smith and Powell (2001) report that several
university scientists gave this as a reason for seeking patents in the interviews that they
conducted.

The above discussion suggests that patents can be a logical outcome of research
activity that is designed first and foremost with an eye to publication. It does not,
however, suggest a one to one relationship between patenting and publishing. A great
deal of research that results in publication is unpatentable or is but one piece of a line of
research, producing numerous articles but upon which at most only one patent is based.
Moreover, as changing patterns in authorship demonstrate so well, increasingly scientists
work in teams (Adams et al. 2002). But the article team is generally larger than the
patent team. Recent research by Ducor (2000) matches 50 article-patent pairs and reports
that the average number of authors was 10 while the average number of inventors was
three. Murray (2002) reports similar results in her study of patent-paper pairs in tissue
engineering.

There are other reasons that research may not be patented that relate not to the
nature of the research, but the opportunity cost of seeking patent protection. In their
survey of TTOs at 62 universities, Jensen, Thursby and Thursby (2003, p. 2) find that
TTO directors reported that “educating and convincing faculty to disclose inventions is
one of their major problems.” The authors go on to say that many directors believe that
“substantially less than half of the inventions with commercial potential are disclosed to
their office.” The authors attribute this unwillingness to disclose to several factors: not
realizing the invention has commercial potential; unwillingness to take time away from
research; unwillingness to get involved in licensing because, as they find in the survey,
“faculty involvement in further development (even after a license 1s executed) is
necessary for commercial success for 71% of inventions licensed.” Some of these
obstacles to patenting involve learning costs of a fixed nature that can be diminished if
and when the individual faculty member makes a disclosure; others are costs of a variable

® In this respect views have changed considerably during the past 90 years. In 1917 T.Brailsofrd Robertson
patented a substance thought to promote growth, and donated the patent rights to the University of
California, where he was head of the biochemistry department. Weiner recounts how this action was
perceived as tarnishing Robertson’s reputation (1996).
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nature and continue regardless of the number of disclosures the faculty member has under
her belt.

Section Three: Characteristics Related to Patent Activity

We expect the patent activity of faculty to be related to institutional as well as
individual characteristics. The institutional characteristics most likely to affect patent
activity are the culture of the university and the field of specialization. The work by
Thursby and Kemp (2001) concerning the role that technology transfer offices play in
determining the number of disclosures at a university is consistent with the observation
that although academic scientists don’t need to be taught how to publish they do need to
be educated concerning the patent process. A strong technology transfer office can
facilitate that process and create an entrepreneurial culture on campus.” We expect this
culture to be proxied by the number of patents that the institution has received in the past.

We also expect patent activity to be related to field of specialization. For
example, in certain fields patenting is not the preferred means of intellectual property
protection. In computer sciences, by way of example, it is much more common to
copyright than to patent research in the area of software. In other fields with a strong
emphasis on applied research, such as engineering, it is fairly common to apply for
patents for intellectual property protection. Murray (2002) makes the case that in the
field of biomedical research the marginal cost of patenting can be quite low and may flow
directly out of a line of research. This is one reason why the majority of both issued
patents and revenues resulting from innovation at most universities come from
innovations in the biomedical field (Powell and Owen-Smith 1998, Henderson, Jaffe and
Trajtenberg 1998.)'° A related reason is that much of the research in the life sciences can
be characterized as falling in Pasteur’s quadrant (Stokes 1997), where research has both
an applied and basic nature. This is not the case in basic fields such as theoretical particle
physics. Consequently, we would expect individuals working in such basic fields to
engage in little patent activity.''

Personal characteristics expected to relate to patent activity include age (or some
variant of age such as the number of years since receipt of the Ph.D.) in a non-linear

® Owen-Smith and Powell (2001) report that Jim Helfenstein, a faculty member who has never disclosed an
invention, though his research has many potential commercial applications, stated to them that “For people
like me it [awareness of patenting] is essentially zero. I probably know less about that than I do about
Medieval European social history. Really, that happens to be something I’m interested in. It just — there’s
no information provided here, no advice urged upon us. If we wanted to do anything about this we’d have
to be very highly motivated to go out and seek the information, get the advice. We’d have to, I think, be
more sophisticated than most of us are — than I certainly am - to know when to do that or what sort of thing
should trigger it.”

" This is not to downplay the tremendous importance of demand factors in leading scientists to seek patent
protection in areas of biomedical research.

"' This is not to say that basic researchers never patent. In the course of basic research, equipment may be
developed to address a research problem that eventually is patented. Colyvas ef af (2002) report a case
study of a patent granted for a “proof of concept” for a process generating light of a particular wavelength.
The discovery occurred in the course of a funded basic research project in the field of astrophysics.



form, citizenship status, gender and receipt of federal funding. To the extent that the
incentive to do patentable research is no different than that to do publishable research, we
would expect the rate of patenting to decline (or eventually decline) following a pattern
similar to that observed in age-publishing profiles (Levin and Stephan 1993)."* But,
these effects may be mitigated by career-stages events. Early in the career, while
working to obtain tenure, activities that take time away from publication may be
eschewed; while late in the career, the faculty member may ““cash in,” allocating time
towards activities that produce a stream of revenues subsequent to retirement (Audretsch
and Stephan 1999; Dasgupta and David 1994; Thursby and Thursby 2001). These effects
may also be mitigated by cohort effects since, in cross sectional analysis, age is also a
proxy for cohort. To the extent that the culture of the university has changed most
dramatically with regard to patenting in recent years, one might expect younger faculty to
be more likely to patent than older faculty, having been educated after this culture change
occurred. Moreover, faculty from newer cohorts may be considerably more familiar with
the disclosure process than are faculty from older cohorts.

Citizenship status may be a factor because certain research opportunities,
especially related to defense, require citizenship. We include it here for this reason and
because of the widespread interest in issues related to citizenship in science and
engineering (Levin and Stephan 1999). The large number of studies examining
publishing differentials between men and women (see Levin and Stephan 1998 for a
summary) leads us to include gender as well. Federal support is included to see if,
holding other variables constant, individuals who receive federal support for research are
more likely to patent than those who do not.

We also expect patent productivity to be related to what we call “the right stuft.”
It is well-established that science has extreme inequality with regard to scientific
productivity and the awarding of priority. One indication of this is the highly skewed
nature of publications, first observed by Alfred Lotka (1926) in a study of nineteenth
century physics journals. The distribution that Lotka found showed that approximately
six percent of publishing scientists produced half of all papers. Lotka’s “law” has since
been found to fit data from several different disciplines and varying periods of time (Price
1986)."7 Recent case studies of patenting behavior of scientists and engineers show that
patenting activity is highly skewed as well. Narin and Breitzman (1995) examine the

"2 Levin and Stephan (1993) analyze six areas of science. They find that, with the exception of particle
physicists employed in Ph.D.-granting departments, life-cycle effects are present in the fully specified
model that controls for fixed effects such as motivation and ability. They do not, however, interpret this to
mean that the human capital model provides a completely satisfactory explanation of life-cycle research
activity. Stephan (1996, p. 1219) attributes the human capital model’s lack of explanatory power to the
“fact that the production of scientific knowledge is far more complex than the human capital model
assumes and that these complexities have a great deal to say about patterns that evolve over the life cycle.”
She argues that a further reason human capital models come up short is that they place undue emphasis on
the declining value of economic returns over the life cycle. It is not that scientists are not interested in
economic rewards. They are. But, as Stephan and Levin (1992) argue, scientists also value priority of
discovery and the intrinsic returns that come from engaging in puzzle-solving behavior.

" Lotka’s law states that if k is the number of scientists who publish one paper, then the number publishing
n papers is k/n*. In many disciplines this works out to some five or six percent of the scientists who publish
at all producing about half of all papers in their discipline.



number of patents per inventor for four companies in the semiconductors business. They
find a Lotka-like distribution in all four cases, with a large number of inventors with their
names on only one patent and a relatively small number of highly productive inventors
with their names on ten or more patents. Ernst, Leptien and Vitt (2000) examine the
patent activity of inventors working in 43 German companies in the chemical, electrical,
and mechanical engineering industry. They, too, find that a small group of key inventors
is responsible for the major part of the company’s technological performance. Agrawal
and Henderson (2002) find a highly skewed distribution of patents for the MIT engineers
in their study: 44% were never an inventor on a patent during the 15-year period; less
than 15% had been granted more than 5 patents; and less than 6% had been granted more
than 10. Thursby and Thursby (2003) report highly skewed distributions for disclosure.
Of the 3,342 faculty in their study, 64.2% never disclosed an invention; 14.8% disclosed
in only one year, and 7.6% disclosed in only two years. Only 2.0% disclosed in eight or
more years.

Scientific productivity is not only characterized by extreme inequality at a point in
time; it is also characterized by increasing inequality over the careers of a cohort of
scientists, suggesting that at least some of the processes at work are state dependent.
Weiss and Lillard (1982), for example, find that not only the mean but also the variance
of publication counts increased during the first ten to 12 years of the career of a group of
Israeli scientists.

Merton christened this inequality in science the Matthew Effect, defining it to be
“The accruing of greater increments of recognition for particular scientific contributions
to scientists of considerable repute and the withholding of such recognition from
scientists who have not yet made their mark.” (1968, p. 58). Merton argues that the effect
results from the vast volume of scientific material published each year, which encourages
scientists to screen their reading material on the basis of the author’s reputation. Other
sociologists (Allison and Stewart 1974; and Cole and Cole 1973, for example) have
argued that additional processes are at work that result in scientists accumulating
advantage, as they leverage past success into future success. While we have yet to
understand these processes completely, a strong case can be made that a variety of factors
are at work in helping able and motivated scientists leverage their early successes and
that some form of feedback mechanism is at work. The right stuft, properly leveraged,
leads certain scientists and engineers to be highly productive.

The “right stuff” suggests that unobservable characteristics related to patenting
may also be related to publishing. This raises the possibility that the publication measure
may be endogenous. Because of this we use instruments for the number of publications.

The only paper to examine patenting activity at the individual level for U.S.
university faculty is by Agrawal and Henderson (2002)."* In their study of engineers at

" Colyvas et al. report case studies of inventions created at Columbia University and Stanford University.
Five of the eleven cases involved publication. IP protection, usually in the form of a patent, was involved
in all of the eleven. Carayol (2004) examines the patenting activity of faculty at a large French university;



MIT in the departments of Mechanical Engineering and Electrical Engineering and
Computer Science, they relate patent activity, in a fixed-effects model, to publishing
activity. They restrict their sample to faculty members who have either patented or
published or done both during the period 1983-1997. They find no evidence that the two
activities are substitutes; neither do they find evidence that they are complements. They
do, however, demonstrate that “increased patent activity is correlated with increased rates
of citation to the faculty member’s publication.” (pp. 58-59). This may be related to the
fact that industry seeks out well-known scientists to work on projects and in the process
the scientists are steered towards patenting. Thursby and Thursby (2003) examine
disclosure activity among a longitudinal sample of faculty working at six research
universities during the period 1983-1999, with variation of period by institution. Faculty
included in the study were listed on the university’s roster for the 1993 NRC survey of
doctoral granting departments. Their research, which is of a preliminary nature, finds
disclosures to be negatively related to age and positively related to tenure status. They
also find that cohort matters but not in the way predicted by the “new culture”
hypothesis. Instead, they find that newer cohorts are less likely to disclose. They also
find disclosure to be positively related to publications and a measure of department
quality.

Section Four: Data and Methods

Data Description

Data for this study come from the biennial Survey of Doctorate Recipients'”,
which in 1995 included a question on patent activity and publishing activity during the
past five years.'® For the purposes of this paper, we use the number of patent applications
made in the past five years as an indicator of patent activity'’ and the number of articles
published in the past five years as a measure of publishing activity. We restrict the
sample to those working fulltime in academic institutions which grant a four year degree
or higher and exclude individuals trained in areas other than science and engineering,
such as the humanities, the social sciences (including psychology) and business. We
further subdivide the sample into four fields: computer sciences, life sciences, physical
sciences and engineering.

Breschi, Lissoni and Montobbio (2004) examine the patenting activity of a sample of university faculty in
Italy.

' National Science Foundation, Science Resources Statistics. Morgan, Kruytbosch and Kannankutty
(2002) use the Survey of Doctorate Recipients to explore characteristics of academics who patent

' The specific patent question was “Since April 1990, have you been named as an inventor on any
application for a U.S. patent?” If the answer to this question was “Yes,” survey participants were asked
“How many applications for U.S. patents have named you as an inventor?” Although the question does not
ask specifically about institutional assignment, we assume that in the vast majority of cases the patent, if
awarded, is assigned to the university.

" Our measure of patent activity over counts inventions that result in issued patents and undercounts
faculty inventions that are licensed but not patented.
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Both the patent and paper measures are highly skewed, as is shown in Table 1.
The distribution of patents is considerably more skewed, however, than that of
publications. For example, while only about 9% of the sample made a patent application
(and only .5% made more than five applications) almost 85 percent published at least one
article and almost 45% published more than five articles in the past five years. Among
the sample, engineers are most likely to patent, computer scientists the least likely to
patent. Computer scientists are also the least likely to publish one or more articles and
have the lowest percent reporting 10 or more articles during the previous five years.'®

Table 2 explores the degree to which patents and publications are related, by
examining the joint distribution of patents and article counts. Approximately 14%
neither publish nor patent; slightly more than 9% do both. The table also demonstrates
that the two measures of productivity are related to each other. Virtually none of the non-
publishers, for example, patent, while a sixth of the “stars” make one or more patent
applications.'’

Variables are defined in Table 3. As explained below, the table also indicates the
component of the model in which a given variable is to be used. Means and standard
deviations by field are given in Table 4. Both the number of patents and publications
exhibit overdispersion with variance substantially higher than the mean, particularly for
publications. The overdispersion phenomenon and skeweness of the distribution of
patent and paper measures may be attributed to both observed characteristics and
unobserved heterogeneity.

Regarding personal characteristics of scientists in academe, Table 4 shows that
about 25% are female, 90% are US citizens, and more than a half are in life science field.
Except for computer scientists, slightly more than 50% of the individuals in the other
fields receive federal research support. The average number of years since receipt of the
Ph.D. by field of training varies from 11 to 15 years. About two-third of the individuals
have tenure or are on tenure tack. The majority of the scientists received their degrees
from schools with Carnegie classification of Research University I. About 45% are
working at research universities, type L.

Estimation Methods

In order to investigate the relationship between patents and publications more
thoroughly, we estimate two families of count data models based on the maximum
likelihood approach and generalized method of moments. These methods, taken together,
are suitable for the analysis of the patent-publication data with special features, including
discreteness of the measures of productivity (i.e., both patent and publication counts),
skewed distribution, extremely high proportion of individuals who don’t patent, and,

" Agrawal and Henderson (2002) find patents to be more highly skewed than publications for the MIT
engineers that they study.

' A Chi Square test of the joint distribution of those who produce one or more patent applications and
publish one or more articles shows that one can reject the null hypothesis of independence in the
distributions at the .0001 level of significance.
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more importantly, potential correlation between publications and unobserved
heterogeneity.

The number of patent applications, denoted as y; = Uspapp95, depends on the
number of articles published (y, = Article95) and other observed and unobserved factors.
In our generic model, the expected number of patents for individual i (i = I, ..., N)
conditional on observed and unobserved heterogeneity, is specified as

?

E(vsi | i Xai vi) = exp(yais + Xoiffo) vi, (1)

where X; is a vector of other explanatory variables and v is the unobserved heterogeneity
component. As argued in section three above, the two measures of productivity of
scientists — patenting and publishing — are likely to be strongly correlated. Since the
latent variable on scientific productivity is unobserved, the variable y;; = Article95 used
as a regressor in patent equation (1) is likely to be endogenous. As such, Article95 is
likely to be correlated with unobservable determinants of the patent equation. Further,
given the features of publication data noted earlier, a linear model for Article95 is
unrealistic. Consequently, in order to provide consistent estimates of parameters of
interest, the basic modeling approach relies on nonlinear instrumental variable estimation
of models of individual patent and publication behavior.

In implementing both the likelihood and moment-based methods, we have two
choices for instruments. The first choice draws on variables collected in the 1995 SDR,
and includes the Carnegie classification of the university; see table 3 and 4 for definitions
and summary statistics. The instruments also include exogenous factors, X; . These
instruments are available for the entire sample. For a smaller sample, working at
doctoral-granting institutions, we include the variable Articlfld92, which measures the
productivity of the peer group of scientists working in doctoral rated programs and
collected by the NRC for doctoral program rankings produced in 1993. Hence, we expect
Articlefld92 to be correlated with Article95, but to have no direct influence on Uspapp95.
In addition, Giniarticle92, the Gini Coefficient of program faculty publications, is used as
an instrument to provide a measure of inequality of productivity, as measured by papers,
of the peer group of scientists in academia. Thus, the instruments available for the
smaller data include Articlfld92, Giniarticle92, variables on the Carnegie classification of
the university, and explanatory variables in (1), except Article95.

We first present the likelihood-based method. We estimate a zero-inflated
negative binomial (ZINB) model of patents, in which the number of publications is also
specified as an exponential mean regression model. We choose this model given the
discrete nature of the data and the high occurrence of zeros. The ZINB model adds an
additional mass at the zero value of patent applications resulting in higher proportion of
zeros than is consistent with the underlying negative binomial regression. The main
justification for using zero-inflated counts is to allow for the potential of misrecording of
zero patents. The zeros reported by individuals who did not make patent applications may
arise from two sources. Zero patents may be recorded for those who either never made



patent applications or for those who do but did not do so during the past five years.
Ignoring this potential error in recording would lead to misspecification.

To specify the zero-inflated model of patents, let A(y);, H/X,) denote the negative
binomial density with mean exp(X;f3), dispersion parameter ¢, and 6= (')’ Here, X
1s a vector of explanatory variables, including y; = Article95, having direct impact on the
number of patent applications, again defined as y, = Usapp95, and B is the parameter
vector associated with X. The zero-inflated negative binomial density for patent
applications can be presented as

I

A+ (1-%)h(y; =0,0] X)), for y;=0

Pr(y) = 2)
g { (I-2) Ay, Q/XI), for v, =12...,

i

where the parameter A (0 <X < 1) is used to increase (inflate) the proportion of zeros;
that 1s, the proportion of individuals with zero number of patent applications during the

last five years. For generality, we allow the zero-inflation parameter, A, to depend on
observed vector of covariates, W. The parameter is specified as a logit function of W:

A = exp(Wiy) /(1 + exp(Wy)). (3)

This ensures that the inflation parameter is restricted to be between 0 and 1, as it should
be.”” Gurmu and Trivedi (1994) and Cameron and Trivedi (1998), and references therein
discuss zero-inflated and related models.

In order to examine the effects of publications on patents, we need to focus on the
conditional mean of the patent distribution. In the ZINB model, the mean number of
patent applications, given explanatory variables in X; and W, is

(1-24) exp(X;p3). 4)

Using equations 4 and 3, the marginal effect (ME) of a specific explanatory variable, say
u, on the mean number of patent applications takes the form

MEU = (] - }VI) exp()(lﬂ) ﬁu . ﬂ'i (1 '/11) exp(/YIﬁ) }/u, (5)

where B, is the coefficient of # in the main equation; « is in X. Similarly, vy, is the
coefficient of u in the inflation part; u is in W.*' If u is a dummy variable, the marginal

" The density in (2) may be thought of as a mixture of two distributions, a distribution whose mass is
concentrated at zero number of patents and a negative binomial distribution. That is, the density for the
number of patent applications can be represented as v, = 0 with probability 4; and y;; is distributed as
negative binomial with probability (1 — 4; ).

1 So, the first component in (5) gives the direct effect. The first component will be zero if « is not included
in the Uspapp93 equation — as in the case of the variable Instpat in Table 3. The second component in (5)
gives the indirect impact of # on Uspapp95. Note that if y, > 0 (v, < 0) the second component is negative
(positive). The second component of equation 5 will be zero if u is not included in the zero-inflation part of
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effects will be computed for discrete change in (4) from « = 0 to u = /. The elasticity of
the number of patent applications with respect to factor u is

Elasticity, = ME, x w/(predicted # of patent applications), (6)

where predictions are obtained from equation 4. Equations 5 and 6 show that elasticities
are also composed of two components.

In estimation of the ZINB model, the mean number of articles published, given
observed characteristics, is specified as

exp(Z;0), (7)

where Z; is a vector covariates (instrumental variables) affecting Article95 and o is the
associated vector of unknown parameters. We assume that the number of articles
published during the past five years follows a negative binomial distribution. The
resulting prediction for Article95 is used as a regressor in the patent equation. We also
explore nonlinear least squares method to estimate (7).

From implementation point of view, Table 3 shows a list of variables affecting
the components of the ZINB model and, in the light of ‘the right stuff” discussion above,
instruments for Article95. Next, we present the moment-based method.

Consider an exponential regression model for patents given in (1), where again
Article95 is endogeneous. For these types of count and related models, Mullahy (1997)
has proposed suitable orthogonality conditions that provide the basis for consistent
estimation using the generalized method of moments (GMM). Mullahy’s approach is
particularly useful since the procedure does not make assumptions about the reduced
form for the endogenous variable, Article95, in this paper. For instance, since Article95
is a nonnegative discrete variable with relatively heavy tails, it is unreasonable to assume
that the reduced form for Article95 is linear.

To sketch the GMM approach for the exponential mean regression, let X; = (v
X)) and B’ = (o B'7) in equation (1). The appropriate moment restriction underlying the
GMM estimator is:

Efyii exp(-Xp) - 112 =0, 8
where Z; is a vector of instrumental variables and the residual function (v;; exp(-X;f) -1)

=¢ (v, Xi; PB)is uncorrelated with any function of Z;. The GMM estimator of 3
minimizes the objective function

the model (as is the case of Article93 in Table 3). If i is included in both parts of the model, the marginal
effect will be composed of both components in (5).

*? Although, the ZINB model is suitable for the analysis of the patent data with 90% zeros, using a
predicted regressor in this nonlinear model is not a neat approach of correcting for endogeneity. An
alternative approach is considered below.
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g Xi. Zi B)' Ve, Xi. Z; . B), (9)

where g(v;;, X, Z;i. B) = N’z [Z57e( v, Xi; B)] and V is a positive definite weighting
matrix. The optimal GMM uses V = {var[g(vi, Xi, Zi. p)/ N1 ).

For the patent model, the list of regressors and instruments used in the GMM
approach are shown in the last two columns of Table 3.> The optimal GMM is obtained

as follows. First, a preliminary consistent estimator of 3, say 3, is obtained by
minimizing the objective function (9) using the weighting matrix V* =[£Z'Z;/ N]". In
the second step, the weighting matrix is estimated by

A

V == Xy X f)ZZ INT.

Then, the optimal GMM estimator of B3 is obtained from (9) using the estimated

weighting matrix V.

Section Five: Estimation Results and Research Findinegs

Patenting and Publishing

We find patents and publications to be positively and significantly related,
regardless of choice of instruments, using both the ZINB model and the GMM model
(see Table 5). The patent elasticity with regard to publishing is .341 for the large data
sample, using the ZINB model. This indicates that, starting from sample average values
of characteristics, a 1 percent increase in articles published raises the number of patent
applications by approximately .341 percent. The GMM estimate is almost a magnitude
higher, suggesting that a one percent increase in article production raises patent
applications by 2 percent. The large difference between the two estimates speaks
undoubtedly to the quality (or lack thereof) of the instruments. When we use the
preferred instruments, for the smaller data set, the ZINB and GMM models provide
elasticities and marginal effects that are remarkably close to each other. The estimated
patent elasticity with respect to publishing is about 1.2. The ZINB effect is significant at
the one percent level; the GMM at the 10 percent level.

Patenting-publishing elasticities are reported by field in Table A-1. For the life
sciences, we find a significant and positive relationship for both the large data set, using
both the ZINB and GMM models. Again, the GMM elasticity is considerably larger than
the ZINB elasticity. When the preferred instruments are used with the smaller data set,

** Note that any function (e.g., polynomials and interaction terms) of the variables given in the last column
of Table 3 can serve as an instrument.

* For the ZINB model using small data, we have also explored specifications where publications also enter
the inflation part of the model. The coefficient on Article95 in the inflation part is insignificant, but is
positive and highly significant in the main equation. The patent elasticity with regard to publishing is 1.02.
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we again find elasticities that are comparable, although only the ZINB elasticity is
significantly different from zero at traditional levels of significance. We see no
indication of a significant relationship between publishing and patenting in the physical
sciences or in engineering in the larger data set. But, when we combine engineering and
the physical sciences in the smaller data set, we find a significant relationship, with an
elasticity of .78. We are unable to obtain convergence with the GMM model for this
smaller group.

Because these are the first elasticities of patenting with respect to publishing that
we know to have been computed, we cannot compare them with others. But the
estimated magnitudes suggest that technology transfer offices would benefit not only
from encouraging disclosure of existing research but also by encouraging the research
(and publication activity) of faculty, especially in the life sciences.

Individual and Institutional characteristics

The coefficients for other variables are summarized for the ZINB model in Table
6 and the GMM model in Table 7. In the case of the ZINB model a positive coefficient
in the inflation part of the model implies a negative impact on the number of patent
applications; a negative coefficient implies a positive impact. Results are given for “all”
scientists and engineers working in academe regardless of field. Table 6 demonstrates
the gain from estimating the model in two components. Variables included in both the
inflation part and the negative binomial often lack significance in one equation but have
significance in the other. Vuong test statistics in all regressions for academe as well as
for each broad field favor the zero inflated models. The zero-inflation is significant in all
cases. In the case of GMM model, Hansen’s J-test statistic for overidentifying
restrictions shows that, in each case, there is no indication of misspecification at
conventional levels of significance” .

Given that independent variables affect both parts of the zero-inflated negative
binomial models, for ease of interpretation, marginal effects and elasticities are presented
(see Table 8). All marginal effects and elasticities are evaluated at the sample average
values of explanatory variables. The t-ratios for these marginal effects are noisy and thus
not reported. Instead, inferences concerning the significance of a variable are drawn by
looking at the t-ratios for the ZINB coefficients. The general rule of thumb is that if the
coefficient on a variable in either one or both parts of the model is significant, the
marginal effect is significant. If neither coefficient is significant, but both are “close,”
the marginal effect is also significant. Coefficients for the GMM model are presented in
Table 7; marginal effects are provided in Table 8.

Tables 6, 7, and 8 demonstrate that a number of demographic characteristics have
a significant impact on the expected number of patents, although in some instances the
effect depends on the estimating strategy. For example, when the inflation issue 1s

 Estimation of the publication equation using negative binomial model or nonlinear least squares shows
that, when all instruments are included in the exponential conditional mean, the main instruments ratiopub
and most of the variables on Carnegie classification of the school are significant.
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addressed, we find that women patent less than men, although the effect is smaller when
the better instruments are used. Likewise, in both the ZINB and GMM models
individuals who say their primary or secondary work activity is in applied or basic
research, development or design are found to patent more than those who do not report
this to be their primary or secondary activity.

Life-cycle effects are found in the ZINB model and in the GMM model when the
larger data set is used. To wit, we find patent activity to increase with years since the
PhD; there is the suggestion that this is mitigated by the presence of tenure. Caution
must be taken interpreting these results, of course, since it is well known that cross-
sectional data produce biased estimates on variables related to time, such as years since
receipt of Ph.D. (Levin and Stephan 1991).

Where one works has a considerable impact on patent activity. For example, the
number of patent applications is higher for those working in a medical institution
compared to the benchmark, regardless of whether the GMM or ZINB model is used and
regardless of the instrument used, although the size of the medical school effect is smaller
when the better instrument is used. We also find evidence that scientists and engineers
who work in research institutes patent more. The patenting culture of the university also
clearly affects the degree to which individuals patent. Regardless of model or
instruments, we find individual patents to be positively related to the number of patents
received during the past five years by the institution (/nstpat). The size of the estimated
elasticities of individual patent with respect to institutional patent range from .4 to 1.2
percent, for every 10 percent increase in the number of patents received by the institution.

Field of specialization also plays a key role in determining the number of patents.
Consistently we find that engineers make more patent applications than the benchmark of
those working in the life sciences. The difference is statistically significant but the
magnitude is not large; the marginal effects vary between .17 and .32 patents. Physical
scientists are also found to be more likely to patent when the larger data set is used; there
1s some indication that computer scientists are less likely to patent.

Results by field are given in Tables A2-A4. The size of certain fields precludes
analysis or leads us to combine fields. For example, the number of cases in computer
science was too small to allow for model estimation. It was also necessary to combine
the physical sciences and engineering in the small data set in order to estimate the ZINB
model.

Several field findings deserve comment. First, the medical school effects are
present regardless of field or specification. Thereafter, results appear to be quite field and
model dependent. For example, men are more likely to patent in the physical sciences;
but the result is found only in the large data set for the GMM model. Likewise, those
who received a degree from a Research | institution are more likely to patent in the
physical sciences, but the result again holds only in the large data set using the GMM
estimates. Institution of training has a positive impact on patent activity in the life
sciences, but the result is sensitive to the model that is used. The institutional patent
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variable is most relevant to the patenting activity of life scientists and the life cycle/tenure
effects are found predominately in the life sciences as well.

Section Six: Summary and Conclusion

This research uses the Survey of Doctorate Recipients to examine the question of
who 1n the university is patenting. Because standard methods of estimation are not
directly applicable, we use a zero-inflated negative binomial model to estimate the patent
equation, using instruments for the number of articles to avoid problems of endogeneity.
Because the ZINB model imposes certain restrictions, we also estimate the patent model
using the generalized method of moments estimation of count data models with
endogenous regressors.

We find work context and field to be important in predicting the number of patent
applications that a faculty member makes. In particular, we find individuals working at
medical schools to have a higher proclivity to patent as do individuals working at
research institutes. Moreover, those working in institutions that have a rich patent history
are also more likely to patent. Field differences also exist, most notably and consistently
among engineers, who, compared to those in the life sciences, have a higher propensity to
patent. There is a suggestion that those in the physical sciences also patent more, relative
to the benchmark, while those in computer science patent less. We find little evidence of
life-cycle effects but the cross-sectional nature of our data detracts from the robustness of
this result. We do find that tenured faculty in several fields are less likely to patent than
non-tenured faculty.

We find patents to be positively and significantly related to the number of
publications. This finding is robust to the choice of instruments and method of
estimation. When we break the analysis down by specific field, we find the patent-
publishing results to persist in the life sciences; we find some indication that the
relationship exists for the physical/engineering sciences.

Considerable concern has been expressed in recent years that the move towards
commercialization in the university community comes at the expense of the production of
knowledge (Stephan and Levin 1996). There are at least two variants of the crowding-
out hypothesis. One variant argues that in the changing university culture scientists and
engineers increasingly choose to allocate their time to research of a more applied as
opposed to basic nature.”® Another variant of the crowding-out hypothesis is that the lure
of economic rewards encourages scientists and engineers (and the universities where they
work) to seek IP protection for their research results, eschewing (or postponing)
publication and thus public disclosure.”” Much of the work of Blumenthal and his
collaborators (1996) focuses on the latter issue in the life sciences, examining the degree

*® The model examined by Jensen and Thursby (2003) suggests that a changing reward structure may not
alter the research agenda of faculty specializing in basic research.
*7 Clearly, these two variants are not mutually exclusive.
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to which university researchers receive support from industry and how this relates to
publication,

The strong complementarity that we find between patenting and publishing
suggests that commercialization has not come at the expense of placing knowledge in the
public domain. The data clearly preclude our providing a definitive answer to the
question of crowding out, however. For example, we have no information on citations,
either to articles or patents, and thus have no prospect of relating the quality of
publications to the quality of patents. Moreover, our cross sectional data precludes
investigating how changes in the incentive structure affect research outcomes.
Considerably more research is needed to address the issue of whether the Bayh-Dole Act
had unintended consequences of crowding out basic research. It is our hope that this
research whets the appetite of others doing research in the area of technology transfer—
and of data gathering agencies—to continue this line of research.
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Percentage Distribution of Number of Patents and Articles

Table 1

Field 0 1-5 6-10 >10
All Academe 90.9 8.7 0.4 0.1
(N=10,962) 14.4 40.8 20.9 23.9
Computer (N=1,159) 97.8 2.2 0.0 0.0
23.5 47.3 16.7 12.5
Life (N=5,936) 91.6 7.9 0.3 0.1
12.7 40.6 21.5 252
Physical (N=2,156) 90.7 8.7 Fkk *kk
15.5 37.3 20.4 27.1
Engineer (N=1,711) 83.5 15.5 *AE *Hk
12.6 41.8 22.7 23.0

*** Cells with 6 or fewer people have been suppressed at the request of Science Resources Statistics, National

Science Foundation.

Table 2

Patent Applications by Publication Distribution

(All Academe, N=10,962)

Number of 0 1-5 6-10 11-96 Total
Patents Articles Articles Articles Articles

0 14.06 38.38 18.72 19.70 90.85

1-5 0.32 2.42 2.09 3.82 8.05

6-10 Ak KAk Hkk 0.30 0.40

11-42 0.00 Hk ok 0.08 0.10

*%* (Cells with 6 or fewer people have been suppressed at the request of Science Resources Statistics, National

Science Foundation.




Table 3

Definitions of Explanatory Variables Affecting Various Model Components

Variable Description ZINB GMM | Instruments
Uspapp95 Zero- Uspapp9 | used for
Equation Inflation 5 Article in
Part Equation | ZINB and
GMM

Uspapp95 Number of patent
applications during the past 5
years.

Patent Zero-one dummy if one or
more patents applied for
during past 5 years

Article95 Number of articles published x X
during past 5 years

Yrsofphd Years since individual has X X X X
eamned highest degree

Yrsofphdsq Yrsofphd-squared X

Femdum Zero-one dummy if female %

Ctzusdum Zero-one dummy if U.S,
citizen

Fedsupdum | Zero-one dummy if receive x x x X
federal research support.

Lifefield* Zero-one dummy if in field
of life sciences

Compfield Zero-one dummy if in field X X X X
of computer sciences

Phyfield Zero-one dummy 1f 1n field x X X x
of physical sciences

Engfield Zero-one dummy if in field X x x X
of engineering

Univemp* Zero-one dummy for
individuals employed in four-
year college or university,
excluding Mediemp and
Reseremp

Reseremp Zero-one dummy if X X X X
employed in a university
research institute

Medicemp Zero-one dummy if % X X P
employed in a medical school
or center

Tenure Zero-one dummy 1f X X X %
individual works in academe
and has tenure

Tentrack Zero-one dummy 1f % X x X
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individual works in academe
and 1s on tenure track

Nonfaculty*

Zero-one dummy 1f
individual works in
nonfaculty position

Instpat

Number of patents awarded
to academic institution
individual worked for
between 1990-1994

Rddum

Zero-one dummy if primary
or secondary work activity is
in applied or basic research
or development or design

Ruldege®

Zero-one dummy if Carnegie
classtfication of school
awarding degree is Research
University 1.

Ruldege*

Zero-one dummy if Carnegie
classification of school
awarding degree is Research
University 11

Docldege

Zero-one dummy if Carnegie
classification® of school
awarding degree is Doctoral
Granting .

Doc2dege

Zero-one dummy if Carnegie
classification of school
awarding degree 1s Doctoral
Granting 11

Medicodege

Zero-one dummy if Carnegie
classification of school
awarding degree is Medical
school or anything besides
Rul, Ru2, Docl and Doc?2
dummies.

Partphys

Zero-one dummy if physical
scientist with field in particle/
elementary physics

Rulempc

Zero-one dummy 1f working
for school with Camegie
classification of Research
University L

Rulempc

Zero-one dummy if working
for school with Carnegie
classification of Research
University II

Doclempc

Zero-one dummy 1if working
for school with Carnegie
classification of Doctoral
Granting 1.
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DocZempc Zero-one dummy if working x
for school with Carnegie
classification of Doctoral
Granting I1.

Medicempc | Zero-one dummy if working X
for school with Carnegie
classification of a Medical
school.

Otherempc* | Zero-one dummy if Carnegie
classification of school
employed at is anything
besides Rul, Ru2, Docl,
Doc2, Medic dummies

Articlfld92 Ratio of the total number of X
program publications to the

number of program faculty
between 1988-92

Giniarticl92 | Gini coefficient of program x
faculty publications between
1988-1992

* Indicates the benchmark or control group. For some regressions by field, dummy variable
categories with insufficient observations have been combined. Thus, slightly different dummy
variable groups, particularly dummy variables with various Camegie classifications, have been
used in some regressions.

x Means the variable is an explanatory variable included in the equation

a) We use the Carnegie classification as coded in the Survey of Earned Doctorates.
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Table 4
Means and (Standard Deviations) of Variables by Field

Variable Academe Life |Computer| Physical [Engineering
Total Sciences | Sciences | Sciences
Big Data:
Uspapp95 0.196 0.167 0.033 0.218 0.376
(0.96) (0.80) (0.25) (1.09) (1.45)
Patent 0.091 0.084 0.022 0.093 0.165
(0.29) (0.28) (0.15) (0.29) (0.37)
Article95 8.090 8.358 4.969 9.093 8.013
(10.43) (10.36) | (7.44) | (11.91) (10.06)
Yrsofphd 13.898 13.946 | 14.890 | 15.422 11.136
(10.13) (9.98) (9.98) | (10.83) (9.20)
Femdum 0.242 0.324 0.201 0.151 0.099
(0.43) (0.47) (0.40) (0.36) (0.30)
Crzusdum 0.896 0.933 0.852 0.891 0.802
(0.31) (0.25) (0.35) (0.31) (0.40)
Fedsupdum 0.524 0.541 0.279 0.575 0.565
(0.50) (0.50) (0.45) (0.49) (0.50)
Lifefield 0.542 1.000 0.000 0.000 0.000
(0.50) (0.00) (0.00) (0.00) (0.00)
Compfield 0.106 0.000 1.000 0.000 0.000
(0.31) (0.00) (0.00) (0.00) (0.00)
Phyfield 0.197 0.000 0.000 1.000 0.000
(0.40) (0.00) (0.00) (0.00) (0.00)
Engfield 0.156 0.000 0.000 0.000 1.000
(0.36) (0.00) (0.00) (0.00) (0.00)
Univemp 0.628 0.499 0.895 0.728 0.767
(0.48) (0.50) (0.31) (0.44) (0.42)
Reseremp 0.121 0.077 0.081 0.215 0.178
(0.33) (0.27) (0.27) (0.41) (0.38)
Medicemp 0.252 0.423 0.024 0.057 0.055
(0.43) (0.49) (0.15) (0.23) (0.23)
Tenure 0.467 0.434 0.646 0.467 0.458
(0.50) (0.50) (0.48) (0.50) (0.50)
Tentrack 0.192 0.191 0.217 0.130 0.255
(0.39) (0.39) (0.41) (0.34) (0.44)
Nonfaculty 0.341 0.375 0.136 0.403 0.287
(0.47) (0.48) (0.34) (0.49) (0.45)
Instpat 56.142 59.717 | 39.006 | 56.923 54.365
(109.16) | (111.00)| (94.45) | (116.42) | (101.23)
Rddum 0.769 0.767 0.686 0.779 0.819
(0.42) (0.42) (0.46) (0.42) (0.38)
Ruldege 0.790 0.777 0.747 0.810 0.838
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(0.41) | (0.42) | (043) | (039) | (0.37)

Ruldege 0.101 0.095 0.126 0.110 0.091
(0.30) (0.29) (0.33) (0.31) (0.29)
Docldege 0.044 0.037 0.091 0.040 0.040
(0.20) (0.19) (0.29) (0.20) (0.20)
Doc2dege 0.028 0.026 HAE 0.032 0.026
(0.16) (0.16) (0.18) (0.16)
Medicodege 0.038 0.065 rokx 0.008 0.005
(0.19) (0.25) (0.09) (0.07)
\Partphys 0.011 0.00 0.00 0.058 0.00
(0.11) (0.00) (0.00) (0.23) (0.00)
Rulempc 0.454 0.488 0.325 0.415 0.475
(0.50) (0.50) (0.47) (0.49) (0.50)
RuZempc 0.080 0.077 0.084 0.070 0.098
(0.27) (0.27) (0.28) (0.25) (0.30)
Doclempc 0.042 0.033 0.070 0.045 0.052
(0.20) (0.18) (0.26) (0.21) (0.22)
Doc2empc 0.057 0.043 0.063 0.059 0.098
(0.23) (0.20) (0.24) (0.24) (0.30)
Medicempc 0.081 0.137 0.008 0.017 0.016
(0.27) (0.34) (0.09) (0.13) (0.12)
Otherempc 0.286 0.222 0.450 0.394 0.261

(0.45) | (0.42) | (0.50) | (0.49) | (0.44)

Sample Size 10962 5936 1159 2156 1711

Selected Variables for Small Data®:

*

Uspapp95 0.234 0214 | 0.051 | 0211 0.401
(1.07) | (0.88) | (0.34) | (1.05) | (1.65)
Patent 0.110 0.109 | 0.030 | 0.089 | 0.169
(031) | (0.31) | (0.17) | (0.29) | (0.37)
Article95 9.966 9.748 | 7.105 | 12358 | 9.569
(11.42) | (11.24) | (7.91) | (13.20) | (10.86)
Articlfld92 8.226 9273 | 3.873 | 9376 | 5.847

(4.41) (4.00) | (1.60) | (4.61) (4.10)
Giniarticl92 101.762 | 92.245 1102921 | 91.116 | 141.043
(83.09) | (80.56) | (85.56) | (56.94) | (99.48)
Sample Size 5976 3258 493 1141 1084

** Cells with 6 or fewer people have been suppressed at the request of Science Resources Statistics,

National Science Foundation.

a)

Observations on two instrumental variables - Articlfld92 and Giniarticl92 - are available only
for 5976 scientists. Consequently, we will call this sample with 5976 observations ‘small
data’. Summary statistics for the other variables in the small data are given in an appendix
available upon request. Summary statistics for key variables from the small data set are
largely consistent with those from the large data with 10962 individuals.
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Table 5
The Impact of Publishing (A4rticle95) on Patenting (Uspapp95)
Estimates from ZINB and GMM Models — Academe Total”

Model Coefficient Marginal | Elasticity
(t-ratio) Effect
Big Data with Set B Instruments®, N = 10962
ZINB | 0.0421%* (2.15) 0.0066 0.3411
GMM | 0.2680** (1.96) 0.0512 2.1685

Small Data with Set A Instrumentsb, N = 5976
ZINB 0.1073*** (4.44) 0.0248 1.0700

GMM 0.1383* (1.65) 0.0258 1.3823
* (**) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.

a) See Table 3 for a complete list of other explanatory variables included in each model.

b) Set A instruments include Articlfld92, Giniarticl92, Rulempc,Rulempe, Doclempe, Medicempe and
exogenous variables in the model; set B instruments are Rulempc,Ru2empe, Doclempe, Medicempce and
exogenous variables in the model. Observations on two instrumental variables - Articlfld92 and
Giniarticl92 - are available only for 5976 scientists.

¢) The reported marginal effects and elasticities are evaluated at the sample mean values of the explanatory
variables. We have also computed elasticities at various values of the explanatory variables and predicted
number of articles. For the small data, where we have reasonably strong instruments, these elasticities vary
from as low as 0.1% to over 5%, and results are consistent across estimation methods.




Table 6
Results from Zero-Inflated Negative Binomial Regression
With Instruments for Article95" — Academe Total
Dependent Variable: Uspapp95°

Model* Variable Big Data Small Data
Uspapp95 Estimates| t-ratios |Estimates| t-ratios
Articl95 0.042%* | 215 | 0.107*** | 444

Yrsofphd 0.069*** | 363 | -0008 | -0.32

Yrsofphdsq | 0005 | -1.10 | 0.0010% | 1.70

Femdum 0116 | -0.63 | 0320 | 157
Crzusdum 0033 | 019 | 0046 | 023
Fedsupdum | 0008 | -054 | 0272 | -1.34
Compfield 0244 | 057 | -0481 | -0.86
Phyfield 0.391%** | 263 | -0295 | -121
Engfield 0.885%** | 577 | 0.561*** | 3.0l

Reseremp 0.478*** | 313 | 0.559%** | 263

Medicemp 0279* | 1.84 | -0.104 | -0.51

Tenure 0056 | 024 | -0286 | -0.94
Tentrack 0.171 0.88 | -0.235 | -0.99
Rddum 0.443 126 | -0545 | -1.31
Ruldege 0.082 042 | -0207 | -0.83
Docldege 0010 | 0.03 0.358 0.63
Doc2dege 0015 | 004 | 0391 | -1.03
Medicodege | 0270 | 079 | 0.181 0.45
Constant 23.333%%% | 663 | -1.708*** | -2.96
Inflation (Logit) Estimates t-ratios |[Estimates| t-ratios
Yrsofphd 0.063 103 | 0002 | 0.02
Yrsofphdsq | .0.0007 | -0.61 | 0.0001 | 0.10
Femdum 1.333%%% | 204 | 1.664*** | 208
Crzusdum 0864 | -134 | -0412 | -0.62

Fedsupdum | 1 413%%= | 424 | 0973* | -1.83

Compfield | 1 gagx*x | 273 1.108 1.14

Phyfield 0222 0.68 0.215 0.40

Engfield 1322%% | 243 | -1.683** | -2.16

Reseremp 20.033 | -0.08 0.750 1.10
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* (*¥*) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.
(a) t-ratios are based on robust standard errors.

(b) For the small data, the instruments used for article include Arniclfld92, Giniarticl92, Rulempc,
RuZempc, Doclempc, Medicempc and exogenous variables in the model. For the big data, the
Instruments used are Rulempc, Rulempe, Doclempe, Medicempe and exogenous variables in the

(c)

Medicemp |y 153%x | 308 | .1.403%% | .2.48
Tenure 1.100% | 1.83 | 0415 | 0.77
Tentrack -0.155 | -0.22 | -4.453 | -121
[nstpat 20.004%* | -1.98 | -0.003** | -1.84
Rddum S1.331%%% | -3.07 |-2.389%*%% | 292
Ruldege 0223 | 057 | -0472 | -0.73
Docldege -0.768 | 054 | 0989 | 0.68
Doc2dege 0.232 028 | -0934 | -0.80
Medicodege | o500 | 071 1.428 1.42
Constant 1.261 121 | 2.641%% | 212
Ln-alpha 1.693%** | 10.22 | 1.708*** | 11.55
Log-

likelihood | -4424.20 -2834.20

N 10962 5976

model. Except for using robust t-ratios, all regression results from the ZINB model are not corrected
for the inclusion of a predicted explanatory variable.

The Uspapp95 part of the ZINB model gives estimates of the parameters in §3; the inflation part

provides estimates of the y's.
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Table 7
Optimal GMM Results from Exponential Mean Regression— Academe Total
Dependent Variable: Uspapp95

Variable Big Data with Set B Small Data with Set A
Instruments” Instruments®
Estimates t-ratios Estimates t-ratios

Articl95 0.268** 1.96 0.138* 1.65
Yrsofphd 0.046* 1.81 0.018 0.89
Yrsofphdsq -0.0008 -1.19 0.0002 -0.39
Femdum -0.340 -1.60 -0.178 -0.88
Ctzusdum 0.128 0.44 -0.069 -0.31
Fedsupdum 0.122 0.65 0.165 0.75
Compfield -0.294 -0.84 -0.759* -1.88
Ph)fﬁeld 0.541%* 2.06 0.032 0.13
Engﬁeld 1.522%** 7.15 0.936*** 5.17
Reseremp 0.474%* 2.15 0.197 1.02
Medicemp 0.601*** 3.04 0.315*% 1.82
Tenure -0.737*** -3.44 -0.194 -0.70
Tentrack 0.086 0.42 0.390** 2.09
[nslpat 0.001** 1.90 0.001*** 2.79
Rddum 0.358 1.07 0.483 1.64
Ruldege 0.221 0.95 -0.115 -0.47
Doc]dege 0.722 1.34 0.207 0.46
Dochege -0.587 -1.01 -0.990* -1.83
Medicodege -0.013 -0.03 -0.539 -1.26
Constant -5.052%** -10.53 -4.560%** -8.33
GMM J-test 2.98 6.87

statistic (d.f. =3, p-value=0.395) | (d.f.=5, p-value =0.231)
N 10962 5976

* (RF) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.

a) Set A instruments include Articlfld92, Giniarticl92, Rulempc, RuZempce, Doclempc, Medicempe and
exogenous variables in the model.

b) Set B instruments are Rulempc, Rulempc, Doclempce, Medicempe and exogenous variables in the
model.



Table §
Marginal Effects and Elasticities:
Estimates from ZINB and Optimal GMM
Dependent Variable: Uspapp95*™*

| Variable | Big Data l Small Data J
ZINB GMM ZINB GMM
Articl95 0.007 0.051 0.025 0.026
(0.341) (2.169) (1.070) (1.382)
Yrsofphd 0.006 0.005 0.004 0.003
(0.545) (0.336) (0.253) (0.181)
Femdum -0.093 -0.065 -0.024 -0.033
Ctzusdum 0.057 0.025 0.028 -0.013
Fedsupdum 0.067 0.023 -0.019 0.031
Compfield -0.088 -0.056 -0.129 -0.141
Phyfield 0.052 0.103 -0.070 0.006
Engfield 0317 0.291 0222 0.174
Reseremp 0.093 0.091 0.107 0.037
Medicemp 0.117 0.115 0.020 0.059
Tenure -0.056 -0.141 -0.081 -0.036
Tentrack 0.038 0.016 0.027 0.073
Instpat 0.0003 0.0002 0.0001 0.0003
(0.092) (0.068) (0.038) (0.123)
Rddum 0.126 0.068 0.051 0.090
Ruldege 0.025 0.042 -0.028 -0.021
Docldege 0.042 0.138 0.027 0.039
Doc2dege -0.012 -0.112 -0.057 -0.185
Medicodege 0.008 -0.003 -0.048 -0.100
Sample 10962 10962 5976 5976
Size

* (**) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.
a) The underlying coefficient estimates and t-ratios are shown in tables 6 and 7.
b) Figures within brackets indicate elasticities of the number of patent applications with respect to the
variable.
¢) For a dummy variable, the marginal effect is for discrete change from 0 to 1.



Appendix A

Table Al
The Impact of Publishing (Article95) on Patenting (Uspapp95)
Estimates from ZINB and GMM Models — By Field of Training®

Model Field Coefficient Marginal  Elasticity®
(Sample Size) (t-ratio) Effect
Big Data with Set B Instruments’
Life Science (5936)
ZINB 0.1020***(3.24) 0.0141 0.8516
GMM 0.3924** (2.29) 0.1125 3.2794
Physical Science
(2156)
ZINB 0.0131 (0.29) 0.0035 0.1188
GMM 0.0260 (1.36) 0.0031 0.2364
Engineering (1711)
ZINB 0.0650 (1.60) 0.0290 0.5232
GMM 0.0735 (0.98) 0.0209 0.5891
Small Data with Set A Instruments”
Life Science (3258)
ZINB 0.1693*** (4.50) 0.0356 1.6415
GMM 0.1465 (1.00) 0.0243 1.4284
Physical & Engineering
Sciences (2225)
ZINB 0.0712%** (3.14) 0.0195 0.7830

* (F*) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.

a) See Table 3 for a complete list of other explanatory variables included in each model.

b) Set A instruments include Articlfld92, Giniartici92, Rulempc,Ru2empe, Doclempe, Medicempe and
exogenous variables in the model; set B instruments are Rulempc,Rulempc, Doclempc, Medicempc and
exogenous variables in the model. Observations on two instrumental variables - Articlfld92 and
Giniarticl92 - are available only for 5976 scientists.

¢) The reported marginal effects and elasticities are evaluated at the sample mean values of the explanatory
variables.



Table A2
Results from Zero-Inflated Negative Binomial Regression
With Instruments for Article95* — By Fields of Training
Dependent Variable: Uspapp93°

Big Data Small Data
Life |Physical Life |Engineer
Model° Variables Sciences | Science | Engineer Sciences& Physics
Coeff | Coeff Coeff | Coeff | Coeff
Uspapp95 (t-ratio) | (t-ratio) | (t-ratio) |(t-ratio)| (t-ratio)
Articl95 0.102%** 0.013 0.065 0.169*** | (.07]***
(3.24) (0.29) (1.60) | (4.50) | (3.14)
YrSijh([ 0.089%** 0.093 0.007 -0.005 0.023
(3.46) (1.47) (022) | (-0.16) | (0.62)
Yrsofphdsq -0.001* -0.001 0.001 0.001 0.001
(-1.88) | (-0.77) (0.98) (0.83) | (0.85)
Femdum -0.035 -0.529 -0.209 0.525%* -0.131
(-0.18) | (-0.56) | (-0.54) | (2.21) | (-0.23)
Ctzusdum 0.080 0.408 -0.214 0.029 -0.682*
(0.39) (0.46) (-0.75) | (0.13) | (-1.93)
Fedsupdu;n -0.070 -0.409 -0.010 -0.427 -0.131
(-038) | (-0.46) | (-0.03) | (-1.60) | (-0.35)
Phyfield -0.513
(-1.50)
Reseremp 0.190 | 0.729%** | -0.048 | 0.751* | 0.101
081 | (2.62) (-0.17) | (1.68) | (031
Medicemp 0.056 | 1.262%** | 1.055%** | _0.108
(0.34) (3.11) (2.85) | (-0.45)
Tenure -0.574*%* -0.207 -0.151 -0.865%* 0.334
(-2.13) | (-0.54) | (-039) | (-237) | (0.82)
Tentrack -0.061 -0.011 -0.305 -0.313 -0.013
(-0.33) | (-0.01) | (-091) | (-1.03) | (-0.02)
Rddum 0.652* | -0.876 0.032 0.235 | -0.139
(1.89) | (-1.17) (0.09) | (-049) | (-0.23)
Ruldege 20.179 0.019 0.624 0415 | 0475
(-0.72) | (0.02) (1.56) | (-0.82) | (1.25)
Allodege 0,014 0.184 0.072
(-0.04) | (0.29) (-0.13)
Docjdege 1.027 1.253*
(1.54) (1.86)
Doczdege -0.346 -0.062
(-0.49) (-0.10)
Partohys -1 188*** -0.270
PRy (-2.61) (-0.25)
Constant 3906% | -1.861 | -1.742%%*% | 2.178%* | 1,632
(-8.30) | (-0.88) | (-3.20) | (-2.55) | (-1.03)
Inflation
Logit
Yrsofphd 0.506 0.118 0.037 0.056 | 0.087




(1.46) (0.14) (0.40) (0.62) (0.72)
Yrsoﬁ)hdsq -0.008 -0.002 0.0002 -0.001 -0.001
(-1.40) (-0.13) (0.13) (-0.42) (-0.68)
Femdum 3.856%* 1.476 0.727 1.878%* 0.959
(2.11) (0.57) (0.70) (2.18) (0.97)
Ctzusdum -4.322 4,780 -1.362%* -0.781 -1.637
(-1.37) (0.77) (-2.42) (-0.80) (-1.34)
Fedsupdum -2.458* -3.308 -0.368 -0.722 -0.473
(-1.60) (-0.95) (-0.59) (-0.69) (-0.75)
Phyﬁeld 1.059%*
(2.37)
Resere]np -0.703 0.622 -1.796 1.084 -0.373
(-0.65) (0.46) (-1.48) (0.78) (-0.66)
Medicemp -3.961%*% | -0.471 0.425 -2.024x*
(-2.21) (-0.20) (0.48) (-2.40)
Tenure 0.580 1.227 -0.128 -0.756 0.964
(0.67) (1.42) (-0.17) (-0.76) (0.55)
Tentrack -2.478 -0.868 -0.737  |-5.685%**  .0.524
(-1.46) (-0.12) (-0.86) (-4.00) (-0.31)
Instpat -0.012%%* 1 0.001 -0.004 -0.001 -0.002
(-2.62) (-0.10) (-1.11) (-0.65) (-0.99)
Rddum -3.405* -4.015 -1.176*%  1-3.165%* ) -0.709
(-1.95) (-1.05) (-1.76) (-2.35) (-0.99)
Ruldege -2.485* -2.165 14.526%** | -1.233 0.526
(-1.70) (-1.64) (5.99) (-0.69) (0.60)
Allodege 0.901 -1.448 1.839
(0.66) (-0.78) (0.80)
\Docldege 15.267%** 1.216
(5.76) (0.806)
\Doc2dege 12.250%* -1.755
(2.11) (-0.16)
Partphys -1.283 1.199
(-0.51) (0.92)
Constant 1.793 -0.896 | -12.735%**% | 3.549* -0.290
(0.50) (-0.06) (-5.30) (1.65) (-0.08)
Ln-alpha 2.017*%% | ] 828¥*Fx | 1 220%FK | 1TO1F** ) 1.271%F
(36.18) (4.42) (4.60) (10.62) (2.006)
Log-likelihood | 19871 | -892.18 | -1151.01 |-1502.59| -1229.68
N 5936 2156 1711 3258 2225

* (F%) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.

(a)

t-ratios are based on robust standard errors.

{b) For the small data, the instruments used for article include Articlfld92, Giniarticl92, Rulempc,

(c)

RuZempc, Doclempc, Medicempc and exogenous variables in the model.  For the big data, the
instruments used are Rulempe, Rulempe, Doclempe, Medicempe and exogenous variables in the
model. Except for using robust t-ratios, all regression results from the ZINB model are not corrected
for the inclusion of a predicted explanatory variable.

The Uspapp95 part of the ZINB model gives estimates of the parameters in B; the inflation part
provides estimates of the y's.



Table A3
Optimal GMM from the Exponential Mean Regression — By Field of Training
Dependent Variable: Uspapp95

Small Data
with Set A
Big Data with Set B I nstruments’ |Instruments®
Life Physical Life
Sciences Science Engineer Sciences
Variable Coeff Coeff Coeff Coeft
(t-ratio) (t-ratio) (t-ratio) (t-ratio)
Articl95 0.392** 0.026 0.074 0.147
(2.29) (1.36) (0.97) (1.06)
Yrgoﬁ)hd -0.015 0.058 0.040 -0.0005
(-0.41) (1.43) (1.18) (-0.01)
Yrsofphdsq 0.001 -0.0002 -0.0003 0.0003
(0.65) (-0.22) (-0.42) (0.34)
Femdum 0.021 -1.249%*%* -0.269 0.037
(0.07) (-3.56) (-0.89) (0.12)
Ctzusdum 0.109 -0.630 0.112 0.168
(0.26) (-1.22) (0.50) (0.57)
Fedsupdum -0.038 0.947*** 0.112 -0.061
(-0.18) (4.02) (0.38) (-0.20)
Resere;np -0.087 0.920%** 0.619%* -0.147
(-0.22) (3.34) (2.46) (-0.38)
Medicemp 0.485%* 1.507%%* 0.594% 0.343%*
(2.15) (3.90) (1.83) (1.85)
Tenure -0.484% -0.005 0.195 0.208
(-1.71) (-0.01) (-0.53) (-0.49)
Tentrack 0.451 1.699*** 0.031 0.797%**
(1.36) 3.97) (0.10) (2.84)
Instpat 0.001 0.003* 0.002 0.0004
(0.84) (1.86) (1.43) (0.57)
Rddum 0.702%** 1.399%*** 0.491 1.007**
221 (3.37) (1.48) (2.42)
Ruldege 0.500 1.345%% 0.074 0.126
(1.45) (2.65) (-0.25) (0.43)
Allodege 0.674 1.198 -0.290 -0.615
(1.08) (1.41) (-0.62) (-1.55)
Constant 5.714%%% -5.886%** 281 1%** 4560+
(-7.65) (-7.65) (-6.10) (-8.33)
GMM J-test 391 10.15 1.86 6.89
Statistic (d.f =3, (df =3, (df =3, (df. =5,
p-value = 0.271)jp-value = 0.017)jp-value =0.602) p-value = 0.229)
N 5936 2156 1711 3258

* (**) [***] Statistically significantly different from zero at the 10% (5%) [1%] level of significance.

a) Set A instruments include Articifld92, Giniarticl92, Rulempe, Rulempe, Doclempe, Medicempe and

exogenous variables in the model.

b) Set B instruments are Ru/lempc, RuZempc, Doclempc, Medicempe and exogenous variables in the
model.



Table A4.
Marginal Effects and Elasticities by Field of Training
Estimates from ZINB and GMM

Dependent Variable: Uspapp95*"*
Big Data Small Data
ZINB GMM ZINB GMM
Engineer
Life Physical Life Physical Life & Life
Sciences | Science | Engineer | Sciences | Science | Engineer | Sciences | Physics | Sciences
Articl95 0.014 0.004 0.029 0.112 0.003 0.021 0.036 0.020 0.024
(0.852) (0.119) (0.523) (3279) | (0.236) | (0.589) (1.641) (0.783) (1.428)
YrSOfphd 0.008 0.016 0.009 0.001 0.006 0.009 0.002 0.005 0.001
(0.781) (0.901) (0.228) (0.023) | (0.780) | (0.354) (0.137) (0.246) (0.118)
Femdum -0.020 -0.179 -0.125 0.006 -0.150 -0.076 0.055 -0.129** 0.006
Crzusdum 0.055 0.033 0.008 0.031 -0.076 0.032 0.025 0.040 0.028
Fedsupdum -0.005 0.078 0.015 -0.011 0.114 0.032 -0.078 0.016 -0.010
Phyﬁeld -0.255
Reseremp 0.029 0.200 0.039 -0.025 0.111 0.176 0.164 0.069 -0.024
Medl'cemp 0.014 0.691 0.723 0.139 0.182 0.169 0.020 0.057
Tenure -0.078 -0.108 -0.061 -0.139 0.001 -0.056 -0.159 -0.011 -0.034
Tentrack -0.006 0.026 -0.098 0.129 0.205 0.009 -0.018 0.048 0.132
Instpat 0.00002 | 0.00002 | 0.0002 0.0002 0.0003 0.0005 | 0.00002 | 0.0002 0.0001
(0.007) (0.004) (0.023) (0.041) | (0.151) | (0.088) (0.009) (0.049) (0.037)
Rddum 0.087 0.125 0.093 0.201 0.169 0.139 0.093 0.045 0.167
Ru]dege -0.017 0.135 -0.064 0.143 0.162 -0.021 -0.057 0.069 0.021
Allodege -0.004 0.101 0.193 0.144 -0.082 -0.072 0.073 -0.102
Docldeg -0.453 0.228
Doc2deg -0.469 0.107
Partphys -0.187 -0.166
N 5936 2156 1711 5936 2156 1711 3258 2225 3258

a) The underlying coefficient estimates and t-ratios are shown in tables A2 and A3.

b) Figures within brackets indicate elasticities of the number of patent applications with respect to the
variable.

¢) For a dummy variable, the marginal effect is for discrete change from 0 to 1.
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