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Abstract

This paper deals with issues of identification in parametric dis-

crete choice panel data models with fixed effects when the number of

time periods is fixed. I show that, under fairly general conditions, the

common parameters in a model of discrete probabilities containing a

nonparametric “fixed effect” will be non-identified unless the para-

metric probability distribution obeys a hyperplane restriction for at

least some value of the explanatory variables. Alternatively, if such

a hyperplane restriction holds with probability zero, the semipara-

metric information bound is shown to be zero. I use these results to

investigate identification in a variety of panel binary choice models.

I show how identification and estimation of several classes of known

identified models fit into a unifying framework; I show how to check

identification in models with additional parameters including models

with factor loadings, random trends, and heteroskedasticity; I show
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that the semiparametric information bound is zero for a panel pro-

bit model with fixed T; and I derive a new functional form that is a

generalization of logit that allows identification when T ≥ 3.

1 Introduction

This paper deals with issues of identification in parametric discrete choice

panel data models with fixed effects when the number of time periods T is

small. Fixed effects models provide a useful way to deal with unobserved

heterogeneity that may be correlated with the explanatory variables. The

conventional first-difference or within estimators work for linear models, but

for non-linear models it is less clear how to proceed. 1 In particular, this is

an issue with models of discrete dependent variables, which are nonlinear by

their nature. For example, consider a parametric binary choice panel data

model, where the outcome yit takes on the values 0 or 1, and is assumed to

result from an unobserved latent variable y∗it:

y∗it = αi + xitβ + εit, yit = 1(y∗it > 0). (1.1)

In the absence of individual effects, such a model would usually be estimated

by maximum likelihood. In a panel setting, it is still possible to perform max-

imum likelihood estimation, treating the αi as parameters to be estimated,

but the estimates will in general be inconsistent unless both T and N go to

infinity. This is the well known “incidental parameters problem” described

by Neyman and Scott (1948). If T remains fixed, the common parameters

may in many cases not even be identified. Because T is small and fixed in

many panel data sets, this is an important issue.

Several identification results for specific models exist in the literature.

For the panel data binary choice model, two of the most notable approaches

are conditional maximum likelihood estimation (CMLE) for the fixed effects

1Honore (2002) gives a good overview of the issues that arise in non-linear panel data
models.
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logit model (Rasch 1960, Chamberlain 1984), and the panel version of the

maximum score estimator (Manski 1987). The CMLE estimator uses the ap-

proach suggested by Andersen (1970) of conditioning on a minimal sufficient

statistic for the incidental parameters, in order to construct a function that

depends only on the common parameters. For the logit functional form, the

sum of the outcomes yit is a sufficient statistic for αi, and the common pa-

rameters can be esimated by using the CMLE. Manski (1987) showed that in

model (1.1) with T ≥ 2, β can be consistently estimated up to scale without

assuming a functional form for εit by using a panel version of the maximum

score estimator. However, this estimator requires stronger support conditions

on the x variables, and it converges at a rate slower than
√

n.

The literature contains few general approaches to checking identification

in discrete choice panel models. The approach of conditioning on a sufficient

statistic only works for certain special cases. Furthermore, the non-existence

of a sufficient statistic does not imply that the model is not identified, nor

does it in general rule out
√

n-consistent estimation.2 There are also very

few results in the literature showing which models are not identified. The

approach of finding semiparametric information bounds can be useful, but

even an information bound of zero does not imply that consistent estimation

is impossible, as illustrated by the maximum score estimator. It would be

useful to have a general approach for showing when a model is not identified.

This paper makes a contribution in that direction. I develop an approach

that can often be used to show when identification is possible or impossible

in these types of models. It may also suggest new classes of models that are

identified, as well as providing some intuition about these questions. The

approach applies to models with discrete dependent variables generally, but

the main focus here will be on binary choice models. The paper proceeds

as follows. Section 2 develops some necessary conditions for identification

2Although Magnac (forthcoming) shows that in the case of a standard binary choice
latent variable model with two periods,

√
n-consistent estimation is ruled out unless the

sum yi1 + yi2 is sufficient for αi.
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in models with discrete outcomes and fixed effects. Section 3 applies these

results to examine binary panel data models where the outcomes are condi-

tionally independent across time. Section 4 concludes.

2 Conditions for Identification

Consider a model in which for each individual i, a dependent variable d is ob-

served to take on one of the K discrete outcomes in the set Ω = {ω1, ..., ωK}.
We are concerned with the identification of the parameter θ in a parametric

model that gives the probabilities of the K outcomes conditional on an ob-

served matrix of explanatory variables x and an unobserved individual effect

α. (In this section the i subscripts are suppressed.)


Pr(d = ω1|x, α)

...

Pr(d = ωK−1|x, α)

 =


p1(x, θ, α)

...

pK−1(x, θ, α)

 = p(x, θ, α) (2.1)

where p1(), ..., pK−1() are known parametric functions, and θ ∈ Θ is a param-

eter vector that is common across individuals. We place no restriction on the

distribution of α, other than perhaps restricting it to lie in some convex set

A; in particular, the distribution α may depend on x. Because probabilities

sum to one the function p(x, θ, α) only specifies the first K − 1 independent

probabilities, omitting outcome ωK .

In a panel data setting, Ω would consist of the possible values taken by

the dependent variable vector yi. For example, if there are J discrete values

taken by yit at each of T time periods 1, ..., T , then there are JT possible

outcomes for each individual i, so K = JT . The matrix x would consist of

the explanatory variables for each time period {x1, ..., xT}. The model is not

limited to this case; for example, it also accommodates models where the set

of possible values for the outcome yit is different in different periods, as well

as dynamic discrete choice models. In fact, everything in this section applies
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even to a non-panel model with K distinct outcomes, although a panel-like

structure will usually be necessary for identification.

Assume that the distribution of x is such that, as the sample becomes

large, we can find the reduced form distribution p∗(x) = Pr(di = w|x) for

x ∈ X , where X denotes the support of x. 3 This reduced form function

is an average over the different values of α in the population. We wish to

investigate for what class of models we can identify the common parameters

θ if we know the reduced form distribution, p∗(x), even when the distribution

of α is unknown. First, formally define what is meant here by identification:

Definition 2.1. Given a model p(x, θ, α), we say a particular value θ0 is

identified if there does not exist a value θ′ 6= θ0, along with distributions

F ′(α|x) and F (α|x), such that the reduced form distributions p∗(x) generated

by {θ0, F (α|x)} and {θ′, F ′(α|x)} are identical. If there does exist such a

value and distributions, then we say that θ0 is non-identified relative to θ′.

Intuitively, a value of θ0 is identified if there is no other value that could

have produced the same reduced form. Note that the definition requires this

to hold for any possible distribution F (α|x) over the set A.

The reduced form distribution p∗(x) is a vector-valued function in K − 1

dimensional space, p∗ : X 7→ RK−1. This distribution depends on both θ and

on the distribution of individual effects F (α|x). Since the function expresses

a vector of probabilities, it can only take values such that each element is

positive and the sum of the elements does not exceed one.

As α varies (holding x and θ fixed), the function p(x, θ, α) defines a set

of points in RK−1.

Cxθ = {q ∈ RK−1 : ∃α ∈ A such that q = p(x, θ, α)}

If p() is continuous, then Cxθ will trace out a continuous curve in K − 1

dimensional space, showing how the probabilities of the outcomes change as

α changes.

3More precisely, assume we can find a function p∗(x) that equals Pr(di = w|x) almost
surely.
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The reduced form distribution p∗(x) is given by the expected value of

p(x, θ, α), taken over the distribution of α conditional on x:

p∗(x) =

∫
α∈A

p(x, θ, α)dF (α|x)dα

Therefore, the reduced form distribution at x is a weighted average of points

in the set Cxθ, weighted according to F (α|x). For a given x, the set of values

that p∗(x) could possibly take is equal to the convex hull of Cxθ. Denote this

convex hull as Hxθ. With no restriction on F (α|x), each point p∗(x) could

potentially lie anywhere in the set Hxθ. In other words, the only restriction

that θ places on the observables is that for each value of x, p∗(x) must lie

somewhere in the set Hxθ. If an observed outcome p∗(x) lies in two different

convex hulls generated by different values of θ, then identification is not

possible. Identification is only possible if the sets Hxθ for different values of

θ don’t overlap.

More formally, if

∃ θ′ 6= θ0 such that ∀x ∈ X , Hxθ0 ∩Hxθ′ 6= ∅

then θ0 is not identified relative to θ′.

Note that the distributions F (α|x) are not identified. In fact, according

to Caratheodory’s theorem, every point in the convex hull of a set in RK−1

can be generated by a convex combination of at most K points from the

set. Therefore, every possible reduced form function p∗(x) can be generated

by some set of K-point discrete distributions F (α|x), and without further

restrictions we can never distinguish between those distributions and other

distributions that may have more than K points of support.

I now show that a necessary condition for identification under general

assumptions is that the set of values Cxθ that can be taken by p(x, θ, α) as

α varies must lie entirely in a K− 2 dimensional hyperplane, for at least one

value of x ∈ X .

Theorem 2.2. Assume the following assumptions hold for a model such as

equation (2.1), and let θ0 be some particular value of θ:
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1. The K − 1 dimensional function p(x, θ, α) is continuous in x, θ and

α, at θ = θ0.

2. The set A of values that may be taken by α is convex.

3. The limits limα→inf(A) p(x, θ0, α) and limα→sup(A) p(x, θ0, α) exist and

are continuous (or constant) functions of x.

4. For any sequence θn → θ0, with θn 6= θ0, p(x, θn, α) converges uniformly

in x and α to p(x, θ0, α), and at least one such sequence exists.

5. The support of x is confined to a compact set X .

Then a necessary condition for θ0 to be identified is that the set of points

Cxθ0 = {q ∈ RK−1 : ∃α ∈ A, such that q = p(x, θ0, α)} is contained within

some K−2 dimensional hyperplane for some value of x ∈ X . In other words,

for some x there must exist constants c0, ..., cK−1, not all zero, such that

∀α ∈ A,
K−1∑
j=1

cjpj(x, θ0, α) = c0. (2.2)

PROOF: Assume that the necessary condition is not met, so that the set

of points Cxθ0 never lies in a hyperplane for any value of x ∈ X . Then the

convex hull Hxθ0 must always have some K − 1 dimensional volume. Define

the “thickness” of the convex hull Hxθ0 to be the supremum of the radii of

all the K − 1 dimensional open balls that lie within Hxθ0 . The assumption

that Cxθ0 does not lie in a hyperplane guarantees that this thickness is never

zero. Because of assumptions 1 and 3, the boundary of the convex hull will

move in a continuous fashion as x changes. This implies that the thickness

of Hxθ0 will also be a continuous function of x. Because X is compact, there

is some minimum thickness. Therefore there exists some ε > 0 such that, for

every x, there is an open ball of radius ε entirely within Hxθ0 .

For each value of x, let a(x) denote a K − 1 dimensional point that is

the center of some open ball with radius ε within Hxθ0. By Caratheodory’s
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theorem, we can always write a(x) as a convex combination of K points from

the set p(x, θ, α):

a(x) =
K∑

m=1

wm(x)p(x, θ, αm(x)),
K∑

m=1

wm(x) = 1, w1(x), ..., wK(x) ≥ 0

where the points αm(x) and the weights wm(x) may depend on x, .

By assumption 4 there exists some θ′ 6= θ0 such that ∀x ∈ X , α ∈
A, ‖(p(x, θ′, α) − p(x, θ0, α)‖ < ε. For each value of x define the point

a′(x) =
∑K

m=1 wmp(x, θ′, αm). Using the triangle inequality,

‖a′(x)− a(x)‖ = ‖
K∑

m=1

wm(p(x, θ′, αm)− p(x, θ0, αm))‖

≤
K∑

m=1

wm‖p(x, θ′, αm)− p(x, θ0, αm)‖ < ε

Therefore a′(x) lies in the convex hull Hxθ0 for each value of x. So the reduced

form represented by the point a′(x) could have been generated by θ′ or θ0,

and θ0 is not identified.

The reason that the theorem is true should be easy to see: if the set of

points defined by varying α does not lie in a hyperplane, then the convex hull

of those points contains some K-1 dimensional volume. And if the bound-

aries of these sets move continuously with θ, then they must overlap. The

assumptions in the theorem serve to rule out cases where the convex hulls

get arbitrarily thin, or where the boundaries move arbitrarily quickly, which

might otherwise allow identification. All the assumptions on the functional

form of p(x, θn, α) are met for most functional forms encountered in practice,

including panel logit and panel probit models. Some of the assumptions of

the theorem could be relaxed. In particular, the set A of α could be allowed

to depend on x, as long as the boundaries of this set move continuously as x

changes. It would also be possible to have more than one individual effect,

i.e. α could be a vector. The assumptions would have to be suitably modified
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to ensure that the convex hulls do not become arbitrarily thin and that their

boundaries move continuously.

Notice that the theorem rules out even up-to-scale parameter identifica-

tion, since we can use a sequence θn converging to θ0 from any direction.

The necessary condition in Theorem 2.2 requires that the hyperplane

restriction holds for some value of x ∈ X . If a hyperplane restriction holds

only for a set values of x which occur with zero probability, we cannot rule

out identification using Theorem 2.2, but we may be able to rule out
√

n-

consistent estimation because the semiparametric information bound will be

zero, as shown in the following theorem. The following theorem also allows

us to handle cases where the support X is not compact.

Theorem 2.3. Assume there exists a sequence of compact sets Xn ∈ X such

that Pr(x ∈ Xn) → 1 and such that no hyperplane restriction (2.2) holds

for any x ∈ Xn. Let assumptions 1, 2, 3, and 4 from theorem 2.2 hold. In

addition assume:

1. p(x, θ0, α) is continuously differentiable in θ in a neighborhood of θ0.

2. There exists some functions qjk(x) such that for some α′ ∈ A,

p
−1/2
k (x, θ0, α

′)∂pk(x, θ0, α
′)/∂θj < qjk(x)

for all θ in a neighborhood of θ0, and E(qjk(x)2) < ∞.

Then the semiparametric information bound for θ0 is zero.

A proof is provided in the appendix. The intuition behind this result is

simple: θ0 is not identified by observations on a compact set Xn, so no “in-

formation” is provided by observations inside such a set. If the probability of

being outside such a set is arbitrarily small, then the expected “information”

(i.e. the square of the score) will also be arbitrarily small, as long as the

score is bounded.

In many cases it may be difficult to show whether the function p(x, θn, α)

obeys a hyperplane restriction. The following lemmas can be useful. (See

the next section for examples).
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Lemma 2.4. Assume that there exists some sequence αn ∈ A such that

limn→∞ p(x, θ0, αn) = (0, ..., 0). (In other words, at the limit the omitted

outcome K has probability 1).

Then the hyperplane restriction (2.2) may hold only with c0 = 0. In other

words, it may only hold if the elements of p(x, θ0, α), considered as functions

of α, are linearly dependent.

PROOF: Since by assumption the hyperplane must come arbitrarily close

to the origin, it must pass through the origin, and there must exist some

vector c normal to the hyperplane.

Lemma 2.5. Call two probabilities pj and pk, which are components of

p(x, θ0, α), limit-incommensurate if one of the limits

limα→inf(A)
pj(x, θ0, αi)

pk(x, θ0, α)

limα→sup(A)
pj(x, θ0, αi)

pk(x, θ0, α)

is either 0 or ∞.

Then if all pairs elements from p(x, θn, α) are limit-incommensurate, the

function p(x, θn, α) is not linearly dependent

PROOF: Linear dependence requires that there exists some vector c 6= 0

such that for all values of αi ∈ A,
∑K−1

j=1 cjpj(x, θ0, αi) = 0. Choose k such

that ck 6= 0, and lim
pj(x,θ0,αi)

pk(x,θ0,αi)
= 0 for all j such that cj 6= 0. Rearrange to

get:
∑

j 6=k cj
pj(x,θ0,αi)

pk(x,θ0,αi)
= −ck. If all probabilities are limit-incommensurate,

the left hand side will converge to 0, a contradiction.

Thus, if for all values of xi ∈ X , all pairs of probabilities in p(x, θn, α) are

limit-incommensurate, and if p(x, θn, α) comes arbitrarily close to the origin,

then identification is impossible.
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Comments

Note that the hyperplane restriction (2.2) in Theorem 2.2 is necessary but

not sufficient for identification of θ0. In any given class of models there may

be additional requirements on the specific functional form, or on the support

of x. For example, in a standard linear panel data model, an intercept

coefficient will not be identified. In addition, there will be requirements on

the support of x to rule out perfect multicolinearity. However, these types of

considerations are often simple to understand in any specific case, and will

not be the focus of discussion in this paper.

If the necessary condition of the theorem holds and p(x, θn, α) lies in

a hyperplane, estimation can often be accomplished by using a method of

moments estimator that imposes this hyperplane restriction. See the next

section for examples.

3 Application: Binary Choice Models

In this section I apply the theorem from the last section to the case of panel

binary choice models, with y1, ..., yT independent of each other conditional

on xi and αi.

The section proceeds as follows: I first lay out some notation and main-

tained assumptions. Next I review some previous literature on these models.

I then use a simple graphical example of fixed effect probit and logit mod-

els to illustrate and give intuition, and I show some results for the probit

model when T 6= 2. Next I discuss some classes of models that are known

to be identified and show how identification and estimation of these models

fit into a unifying framework. I then apply the approach to check identi-

fication in models with additional individual specific parameters, including

factor loadings, random trends, and heteroskedasticity. Finally, I derive a

new functional form that is a generalization of the logit and for which iden-

tification is possible when T ≥ 3.
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3.1 Notation and assumptions

The models discussed in this section have the following form:

Pr(yit = 1|x, αi) = G(xit, αi, θ), (3.1)

where each individual i is observed for T periods, t = 1, ..., T , yit takes on

the values 0 or 1, and G() is a known parametric function. This model can

always be written (in an infinite number of different ways) as a latent variable

model:

y∗it = g(xi, αi, θ) + εit, yit = 1(y∗it > 0). (3.2)

A more restrictive form that appears often in the literature is the linear latent

variable model:

y∗it = αi + x′itθ + εit, yit = 1(y∗it > 0) (3.3)

Hereafter I maintain the following two assumptions:

EXOGENEITY: Pr(yit = 1|xi, αi) = Pr(yit = 1|xit, αi)

INDEPENDENCE: yi1, ..., yit are independent conditional on xi, αi.

To simplify notation in this section, write the function p(x, θ, α) from the

last section as pxθ(α). This function gives the 2T −1 vector of probabilities of

the possible outcomes d = (y1, y2, ..., yT ). Assume that the all-zeros outcome

(0, 0, ..., 0) is omitted. It will be understood that pxθ(α) is a function of

αi, holding the values of xi and θ fixed. Denote the probability of a given

outcome as py1y2···yT
. For example, if T=2, then pxθ(α) is a function that

gives the three probabilities {p01, p10, p11}. Let pj(αi) denote some element

of this vector. Because of the independence assumption, the elements of this

function are just products of the individual probabilities. Let Sj denote the

set of values t for which yit = 1 in outcome j. For example, if outcome j is

(1011), then Sj = {1, 3, 4}, and

pj(αi) ≡ p1011 =
∏
t∈Sj

G(xit, αi, θ)
∏
t/∈Sj

(1−G(xit, αi, θ)).
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For various functional forms I will check if (or when) the function pxθ(α)

obeys a hyperplane restriction necessary for identification according to The-

orem 2.2. To ensure that the assumptions of the theorem are met, all the

functional forms I consider will satisfy the following assumptions on the G()

function.

CONTINUITY: G(x, θn, αi) is continuous in x, θ and αi, and for any

sequence θn → θ0, G(x, θn, αi) converges uniformly to G(x, θ0, αi).

I make the following assumption on the support of xi:

COMPACTNESS: The support of xi is confined to a compact set X .

This is the only assumption that is not standard in models of this type.

I make it here because I’m interested in what identification can be achieved

without strong conditions on the support of xi. Furthermore, one might

doubt the practical usefulness of an estimator that only gives identification

“at infinity.” Without this assumption it is difficult to make general state-

ments ruling out cases where θ is identified at the limits of the support

(although Theorem 2.3 can still be used to rule out
√

n convergence). In

many specific cases, the theorem could be adapted to rule out identification

even when xi is unbounded.

3.2 Previous literature

I now discuss in more detail two of the most notable results for models of

these types: the conditional maximum likelihood estimator (CMLE) for the

fixed effects logit model, and the panel maximum score estimator.

The fixed effects logit estimator uses the approach suggested by Andersen

(1970) of conditioning on a minimal sufficient statistic for the incidental

parameters, in order to construct a function that depends only on the other

parameters. It is well known that for the panel logit model, the required

sufficient statistic exists, and the common parameters can be identified by
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using a conditional maximum likelihood estimator. The panel logit model is

given by:

Pr(yit = 1|xi, αi) =
eαi+x′itβ

1 + eαi+x′itβ

In this case the sum of the number of ‘1’ outcomes for an individual is a

sufficient statistic for αi. Conditioning on the number of ‘1’ outcomes leads

to an expression that does not depend on αi. For example, if T=2, then we

can write:

Pr(yi0 = 1, yi1 = 0 | yi0 + yi1 = 1,xi, αi) =
1

1 + e(xi2−xi1)′β

Maximizing this likelihood using the subset of observations where yi0+yi1 = 1

yields consistent estimates of β (with the exception of an intercept term,

which is not identified). The CMLE is somewhat analogous to a linear first-

differences estimator, in that only the differences in the values of x over

time are used. However instead of using simple differences in y, we use the

probabilities of observing (1,0) versus (0,1).

Manski (1987) uses a clever insight to show that in a latent variable model

such as 3.3 with a linear index g() = αi +xitβ and T ≥ 2, β can be identified

up to scale without assuming a functional form for εit by using a panel version

of Manski’s maximum score (MS) estimator. Identification is accomplished

by conditioning on the cases where yi1 + yi2 = 1, just as in the fixed effects

logit estimator. The basic insight is that when yi1 + yi2 = 1, the probability

of observing (0,1) will be the same as the probability of observing (1,0) if

and only if xi1β = xi2β. Therefore if we can observe the set of values of x

for which (1,0) and (0,1) are equally likely, we can identify the effects of one

x variable relative to another.

One might think that with the panel maximum score estimator, the iden-

tification question has been answered, since it allows identification with only

weak assumptions on the error terms. However, the maximum score iden-

tification result is weaker than the CMLE result in three important ways.

First, the MS estimator identifies the parameters only up to scale—that is,
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we can only observe the effects relative to each other. 4 Second, the MS esti-

mator requires that x have support in some region where xi1β = xi2β, with

xi1 6= xi2. There are common situations where this condition may not be

met. For example, the support condition may fail to hold if only one of the

variables changes for an individual, if the changes are always all in the same

direction, or if all the x variables are discrete. Flexible functional forms, such

as those containing several interaction terms, might also present a problem.

By contrast, the fixed effects logit approach only requires that the x variables

differ over time periods, and that these differences have full rank. Finally,

the MS estimator converges at a rate slower than
√

n. This is makes intuitive

sense, because given the weak assumptions in the model, as n gets large only

observations near the region where xi1β = xi2β are informative about β.

Other researchers have extended one or both of these approaches to find

consistent estimators in related settings. Chamberlain (1984) generalizes the

conditioning approach to the multinomial logit model. Honore and Kyri-

azidou (2000) use a similar approach to show how to estimate a dynamic

logit model with serial dependence when the panel is at least four time peri-

ods long. Johnson (2004) applies a similar method to a panel ordered logit

model. Other researchers have developed new approaches that depend on

strong restrictions on the joint distribution of xi and αi to gain identification

(for example Honore and Lewbel 2002, Altonji and Matzkin 2001).

4It is well known that all standard discrete choice models, such as probit or logit,
involve a normalization on the variance of the error term. However, general statements
about parameters being identified only “up to scale” or “up to location” can be misleading.
Given exogeneity assumptions, a standard parametric probit or logit model, even though
it contains a normalization, allows predictions about the marginal effects on outcomes of
the changes in explanatory variables. In effect, the scale of the parameters is identified
relative to all the omitted factors that make up the error term. Such predictions are
impossible from methods such as MS that only find the scale of parameters relative to
each other. They do not yield a model of probabilities such as (3.1), and cannot be used
for prediction. In fact, the estimates from the MS model place no restrictions at all on
the magnitudes of the effects of the x variables on the probabilities.
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Figure 1: Logit pxθ(α) for three different values of (xi2 − xi1)
′β

3.3 Illustration: logit vs. probit

In applying the theorem in Section 2, it will be helpful to start with a simple

graphical example. Consider the fixed effects logit model when T=2 and the

index is linear:

Pr(yit = 1|xi, αi) =
eαi+x′itβ

1 + eαi+x′itβ
(3.4)

With this specification β can be consistently estimated using the CMLE.

According to Theorem 2.2, this means pxθ(α) must obey a hyperplane re-

striction for some value of xi. In fact pxθ(α) is linearly dependent for every

value of xi, because for any value of xi, the ratio

p01

p10

= e(xi2−xi1)′β

does not depend on αi.

The situation is illustrated graphically in Figure 1. The figure traces

out two views of the locus of points in 3-dimensional space representing the

values pxθ(α) may take on, or in other words the combinations of p01,p10,

and p11 that are possible, as αi varies from −∞ to ∞, for 3 different values

of (xi2 − xi1)
′β. The observed reduced form p∗(x) will be some point in the

convex hull of the set of points defined by pxθ(α).
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Figure 2: Probit pxθ(α) for three different values of (xi2 − xi1)
′β

For each value of (xi2 − xi1)
′β, the function lies entirely within a plane,

as can be seen in the “side view” graph on the right. The top curve in each

figure shows the case where (xi2 − xi1)
′β = 0. In this case, the points for

both functions lie on the plane where p01 = p10.
5 The lower curves show

the values p01 and p10 can take when (xi2 − xi1)
′β = .75 or (xi2 − xi1)

′β =

1.5. Conditional on (xi2 − xi1), different values of β partition the set of

observable reduced forms into non-overlapping hyperplanes. By observing

which hyperplane the reduced form falls in, we can determine β. The only

requirement on the support of xi is the standard assumption that (xi2− xi1)

may not exhibit perfect multicolinearity.

By contrast, for the probit specification, pxθ(α) generally does not lie

in a hyperplane. Figure 2 graphically depicts the pxθ(α) function for the

fixed-effect probit specification:

Pr(yit = 1) = Φ(αi + x′itβ) (3.5)

As before, the three curves depict pxθ(α) for different values (xi2−xi1)
′β.

The lower two curves on the right side of Figure 2 are curved, so the function

5 The scale of the axes makes the curve appear to be steeper than its true 45 degrees.

17



pxθ(α) does not lie within a hyperplane for these values of (xi2−xi1)
′β. 6 The

only value of xi for which pxθ(α) does lie in a plane is when (xi2 − xi1)
′β =

0, which makes p01 = p10. If the support of xi includes values such in a

neighborhood such that p01 = p10 for some xi1 6= xi2, then it is possible to

identify θ up to scale. This is the principle behind the panel maximum score

estimator. If the support of xi does not include points where (xi2−xi1)
′β = 0,

then identification of β is impossible (even up to scale). 7 Even if the support

does contain such points, if the distribution of any element of xi is continuous

such that these points have probability zero, then Theorem 2.3 applies, the

semiparametric information bound is zero, and
√

n-consistent estimation is

impossible.

Probit when T ≥ 3

When T = 2 it is easy to see that the panel probit model (3.5) does not obey

the hyperplane restriction by examining the graph in Figure 2. For values of

T larger than 2, we can use Lemma 2.5. Consider a generalized panel probit

model with a possibly non-linear index:

Pr(yit = 1) = Φ(αi + g(xit, θ))

Let mj denote the number of 1’s in some outcome j, and let Sj denote the set

of values of t for which yit = 1 in outcome j. Let g(xit) denote the function

g(xit, θ). Consider the probabilities for two outcomes j and k:

lim
αi→∞

pj

pk

= lim
αi→∞

∏
t/∈Sj

Φ(−αi − g(xit))∏
s/∈Sk

Φ(−αi − g(xis))

6Obviously the functions do not curve very much, meaning that the convex hulls in-
volved are quite “thin.” This suggests that even though the parameters are not formally
identified in the panel probit model, it would be theoretically possible to identify fairly
tight bounds on them. This is not surprising, since the probit specification is quite close
to logit, and the logit specification is identified.

7Note, however, that the value of β0 = 0 is identified. This is typical—if the probability
of the outcome does not depend on xi at all, we can detect that fact.
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We can find the value of this limit by observing that the limit

lim
x→∞

1
2x
√

2π
e−x2/2

Φ(−x)
= 1

Therefore we can replace each Φ(−αi − g(xit)) term in the limit (3.3) with

e−(αi+g(xit))
2/2/(αi + g(xit)), which leads to:

lim
αi→∞

pj

pk

= lim
αi→∞

∏
t/∈Sj

e−
1
2
(αi+g(xit))

2∏
s/∈Sk

e−
1
2
(αi+g(xis))2

= lim
αi→∞

e
1
2
(−mjα2

i−2αi
P

t/∈Sj
g(xit)−

P
t/∈Sj

g(xit)
2)

e
1
2
(−mkα2

i−2αi
P

s/∈Sk
g(xis)−

P
s/∈Sk

g(xis)2)

Clearly the probabilities for two outcomes j and k are limit-incommensurate

if mj 6= mk. Furthermore, they are limit-incommensurate unless
∑

t/∈Sj
g(xit) =∑

s/∈Sk
g(xis) (or, equivalently, unless

∑
t∈Sj

g(xit) =
∑

s∈Sk
g(xis)). This is

clearly impossible if T = 3 unless two of the g(xit) are identical, just as when

T = 2. Even for T > 3, we see that pxθ(α) for the probit specification does

not generally lie in a hyperplane except perhaps for certain discrete values

of xi. Therefore the model is not identified unless the support of xi contains

those discrete values, and even in this case, if some element of xi has a con-

tinuous distribution, then Theorem 2.3 applies and
√

n-consistent estimation

is impossible.

3.4 Some identified models

This section catalogs some simple classes of models that are known to be

identified, and shows how identification and estimation of each fits into the

framework of this paper. They each have the strong property that pxθ(α)

lies in a hyperplane for all values of xi. This is important, because it allows

consistent estimation that does not depend on xi having support in some

special region. In addition, in each of the following models identification is

possible with only two time periods.
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Additive separability (linear probability model)

One simple case in which identification can be achieved is when the fixed

effect is additively separable within the probability function:

Pr(yit = 1|xi, αi) = h(αi) + g(xit, θ).

The most popular example of this is the linear probability model, where

Pr(yit = 1) = αi + xitθ. In this model the fixed effect can be removed using

standard first differencing methods.

It is easy to verify that the probability function lies in a hyperplane, as

long as the distribution of αi is restricted such that h(αi) + g(xit, θ) stays

within [0,1]. If T = 2 there is a single hyperplane restriction is given by:

p10 − p01 = g(xi2, θ)− g(xi2, θ). (3.6)

This can be rewritten as

E(y1 − y2|xi) = g(xi2, θ)− g(xi2, θ).

Which is the familiar condition underlying standard differencing methods.

Multiplicative separability (Poisson-quasi-CMLE)

Another known case is when the fixed effect is multiplicatively separable in

the probability function:

Pr(yit = 1|xi, αi) = h(αi)g(xit, θ).

Wooldridge (1999) shows how θ in this model can be consistently estimated

using a quasi-CMLE, treating yit as if it were a Poisson random variable with

E(yit|xi, αi) = h(αi)g(xit, θ). We can verify that for this class of functional

forms, pxθ(α) once again lies in a hyperplane for all values of xi, assuming

the Pr(yit = 1|xi, αi) function does not go out of the [0,1] bounds. If T = 2

the hyperplane restriction can be written as:

p01 + p11

p10 + p11

=
g(xi2, θ)

g(xi1, θ)
.
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This condition can be rewritten as:

E

(
yi1

g(xi1)
− yi2

g(xi2)
|xi

)
= 0

Again this can be used to construct a method of moments estimator by using

instruments that are functions of xit.
8

This model provides an example where
√

n-consistent estimation is pos-

sible, despite the fact that the no sufficient statistic for αi exists (other than

the data itself), so the conditioning approach is impossible.

Multiplicative separability in the odds ratio (logit)

A limitation of both models above is that they imply restrictions on either

the joint support of xit and αi or the functions h() and g() in order to keep the

predicted probabilities between 0 and 1, assumptions that may be unnatural

in many applications.

A case that allows more natural assumptions is when αi is multiplicatively

separable in the odds ratio:

Pr(yit = 1|xi, αi)

1− Pr(yit = 1|xi, αi)
= r(xit, αi, θ) = h(αi)g(xit, θ)

where the functions and/or distributions are restricted to keep r() in the

range [0,∞). We can write this model as:

Pr(yit = 1|xi, αi) =
h(αi)g(xit, θ)

1 + h(αi)g(xit, θ)
(3.7)

8 Compare this formula to the first order conditions from the Poisson-Quasi-MLE:

1
n

∑ (
yi1

g(xi1)
− yi2

g(xi2)

) (
gθ(xi1)g(xi2)− g(xi1)gθ(xi2)

g(xi1) + g(xi2)

)
= 0.

where gθ(xit) denotes ∂g(xit)
∂θ . Note that this Quasi-CMLE estimator does not have the

usual efficiency properties, since the true distribution of yit is by assumption not Poisson.
The true optimal instruments will depend on the distribution of αi. A two- step procedure
could be used to improve the instruments and yield an estimator asymptotically more
efficient than the Quasi-CMLE.
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It is easy to see that this includes the standard logit specification (3.4). In

fact, we can always re-parameterize equation (3.7) without loss of generality

to look like a generalized form of the logit model with a possibly non-linear

index:

Pr(yit = 1|xi, αi) =
eα∗

i +g∗(xit,θ)

1 + eα∗
i +g∗(xit,θ)

Once again this model obeys a hyperplane restriction for all values of xi. If

T = 2, there is a single hyperplane restriction that can be written:

p01

g(xi2, θ)
− p10

g(xi1, θ)
= 0

We can rewrite this condition as follows:

E

(
(1− yi1)yi2

g(xi2)
− yi1(1− yi2)

g(xi1)
|xi

)
= 0

Once again this can be used to construct a method of moments estimator by

using instruments that are functions of xit.
9

For the case of T = 2 the logit model has a unique property. Consider the

class of models that meet the following condition, that I will call “unbounded

types:”

limαi→inf(A) G(x, θ0, αi) = 0

limαi→sup(A) G(x, θ0, αi) = 1.

9 In this case the optimal instruments do not depend on the distribution of αi and can
be calculated. Let ψ(θ) = (1−yi1)yi2

g(xi2)
− yi1(1−yi2)

g(xi1)
. Then the optimal instruments are:

E(∂ψ(θ)/∂θ|xi)[V (ψ(θ)|xi)]−1 =
gθ(xi1)g(xi2)− g(xi1)gθ(xi2)

g(xi1) + g(xi2)

∣∣∣∣
θ0

These are the same asymptotic weights implied by the first order conditions from the
standard fixed-effects logit CMLE estimator, which can be written as:

1
n

∑ (
(1− yi1)yi2

g(xi2)
− yi1(1− yi2)

g(xi1)

) (
gθ(xi1)g(xi2)− g(xi1)gθ(xi2)

g(xi1) + g(xi2)

)
= 0

They are also the same weights used by the Poisson-quasi-CMLE estimator.
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This assumption says that the model allows the population to contain in-

dividuals for which the outcome is always 0 or always 1, even for extreme

values of xit. (It does not require the population to contain such types, only

that the model does not rule them out.) A model that appears often in the

literature that has this property is the linear index latent variable model

(3.3), along with the assumption that αi may take any value in (−∞,∞).

For models in this class with T = 2, the logit assumption is the only one

for which pxθ(α) lies in a hyperplane for every possible value of xit. The

unbounded types assumption implies that pxθ(α) comes arbitrarily close to

the origin (where the probability of all zeros is 1), and to the point where

p11 = 1. By Lemma 2.4, the necessary condition is that there must exist

constants {c01, c10, c11} 6= 0 such that for all values of αi ∈ A,

c01p01 + c10p10 + c11p11 = 0 (3.8)

But since the unbounded types assumption ensures that pxθ(α) comes arbi-

trarily close to the point where p11 = 1, we must have c11 = 0. Therefore

equation (3.8) requires p01/p10 = −c10/c01, i.e. the ratio is a function of xi

only, and does not depend on αi. Because of the independence assumption,

p01

p10

=
(1−G(xi1, αi, θ))G(xi2, αi, θ)

G(xi1, αi, θ)(1−G(xi2, αi, θ))
=

r(xi1, αi, θ)

r(xi2, αi, θ)

where r(·) represents the odds ratio G(·)/(1−G(·)).
So the “unbounded types” assumption requires that

r(xi1, αi, θ)

r(xi2, αi, θ)

doesn’t depend on αi. For this to be true for all values of xi, r() must be

multiplicatively separable, implying the generalized logit form. 10

10Chamberlain (1992) apparently proved something very similar to this, but I have not
yet been able to obtain a copy of his unpublished paper.
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Comments

In each of the specifications above, the necessary condition for identification

places little restriction on the functional form of the g() function. In fact,

given sufficient variation in xi2−xi1, we can often nonparametrically identify

the g() function up to a level or scale parameter. The identification results

presented here depend on how the individual effects αi enter, placing little

restriction on the form of how p(xi, αi, θ) varies with xi.

3.5 Models with additional parameters

Time specific coefficients on individual effects (factor loadings)

Much like we did for the probit model, we can use the approach in Lemma

2.5 to check for identification in variations of the binary panel data model

that have additional parameters. Consider a binary choice latent variable

model with time specific coefficients on the fixed effects:

y∗it = δtαi + g(xit, θ) + εt, yit = 1(y∗it > 0)

where δt is a positive parameter that may take a different value for each

time period, and αi may take any value in (−∞,∞). Arellano and Honore

(2001) briefly discus a model with such coefficients, which they call “factor

loadings.” They observe that neither the CMLE nor the maximum score

approaches will work, but they state that it is “less clear” if such a model

is identified. Using the approach in this paper, it is simple to show that the

answer is negative.

Consider two possible outcomes j and k. Then,

lim
αi→−∞

pj

pk

= lim
αi→−∞

∏
t∈Sj

G(δtαi + g(xit))∏
s∈Sk

G(δsαi + g(xis))

where G() is the CDF of εt. Because limαi→−∞ G(δtαi + g(xi)) = 0, Lemma

2.4 applies, so we need to check whether pxθ(α) is linearly dependent.
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It will suffice to examine the case where εt is logistic. In this case

Pr(yit = 1|xi, αi) =
eδtαi+g(xit,θ)

1 + eδtαi+g(xit,θ)

so we have

lim
αi→−∞

pj

pk

= lim
αi→−∞

∏
t∈Sj

eδtαi+g(xit)∏
s∈Sk

eδsαi+g(xis)
= lim

αi→−∞

e
αi
P

t∈Sj
δt+
P

t∈Sj
g(xit)

eαi
P

s∈Sk
δs+
P

s∈Sk
g(xis)

.

Clearly the two probabilities will be limit-incommensurate unless
∑

t∈Sj
δt =∑

s∈Sk
δs. Since it normally wouldn’t make sense to impose this restriction,

pxθ(α) is not linearly dependent by Lemma 2.5, and θ is not identified. A

similar result will hold if we choose the distribution of εit to be any distribu-

tion that has a density of the form

f(x) = axbexp(−cxd), d > 0,

a class that in addition to the logistic includes the normal, gamma (including

exponential and chi-squared), and weibull distributions. For this class, it can

be shown that:

lim
x→∞

xb−d+1exp(−cxd)/cd

1− F (x)
= 1

and so in the limit the ratio of probabilities will still behave like an exponen-

tial function, and the same non-identification result will follow in a similar

way. Of course in the absence of any distributional assumption, θ remains

non-identified.

Random trend model

Consider a latent variable model in which in addition to an individual fixed

effect αi in the index function, there is an unobserved individual time trend

βi:

y∗it = αi + βit + g(xit, θ) + εt, yit = 1(y∗it > 0).

where both αi may and βi may take any value in (−∞,∞). If y∗it were

observed, and we had at least 3 time periods, we could estimate θ by twice
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differencing to remove both individual effects. If only the discrete outcome

yit is observed, at least 4 periods are required for identification, as I will

now show. Again, it suffices to consider the case where εt has a logistic

distribution.

Because there are now two unobserved effects for each individual, this

model doesn’t precisely fit the assumptions of Theorem 2.2. We can still use

the theorem by assuming that one of the two fixed effects is observed, and

considering the functions pxθβ(αi) or pxθα(βi). If there is no restriction on the

joint distribution of αi and βi, then a necessary condition for identification

is that there must be some value of xi such that both these functions must

lie in a hyperplane, for all values of αi and βi.

Consider two different outcomes j and k:

pj

pk

=

∏
t∈Sj

eαi+βit+g(xit)∏
s∈Sk

eαi+βit+g(xis)

=
e

αimj+βi
P

t∈Sj
t+
P

t∈Sj
g(xit)

eαimk+βi
P

s∈Sk
s+
P

s∈Sk
g(xis)

= e
αi(mj−mk)+βi(

P
t∈Sj

t−
P

s∈Sk
s)+
P

t∈Sj
g(xit)−

P
s∈Sk

g(xis)

Thus the two outcomes will be limit-incommensurate unless they have the

same number of “1” outcomes (mj = mk), and unless these “1” outcomes

come in the periods such that
∑

t∈Sj
t =

∑
s∈Sk

s. Clearly this is impossible

if T=3, so unlike the continuous model, identification is impossible when

T=3. However, if T=4, then the outcomes (1001) and (0110) will not be

limit-incommensurate. In fact we can write:

p1001

p0110

= exp(g(xi1, θ)− g(xi2, θ)− g(x3, θ) + g(x4, θ))

which does not depend on αi. Thus, given sufficient variation in the x vari-

ables, θ can be estimated by weighted least squares imposing this moment

restriction, or by using conditional maximum likelihood on the subset of

observations for which the outcome is (1001) or (0110).

26



Heteroskedasticity

Consider a latent variable model in which in addition to an individual fixed

effect αi in the index function, the disturbance term has individual specific

variance:

y∗it = αi + g(xit, θ) + σiεt, yit = 1(y∗it > 0).

where σi may take any value in (0,∞). Again, it suffices to consider the case

where εt has a logistic distribution.

Consider two different outcomes j and k:

pj

pk

=

∏
t∈Sj

e(αi+g(xit))/σi∏
s∈Sk

e(αi+g(xis))/σi

= e
1
σi

(αi(mj−mk)+
P

t∈Sj
g(xit)−

P
s∈Sk

g(xis))

Thus the two outcomes will be limit-incommensurate unless they have

the same number of “1” outcomes (mj = mk), and unless
∑

t∈Sj
g(xit) =∑

s∈Sk
g(xis. This is much like the fixed effects probit case: identification is

only possible using the maximum-score principle, and
√

n-consistent estima-

tion is impossible.

3.6 Another identifiable functional form when T ≥ 3

Section 3.4 presented three classes of functional forms that obey a hyperplane

restriction for every value of xi, and that allow identification when T =

2. However, for T≥3, these forms impose much stronger restrictions than

are required for identification by Theorem 2.2. In fact they impose several

independent hyperplane restrictions, when only one is required. The question

remains whether there are more flexible functional forms besides those in

section 3.4 that exhibit the property of having pxθ(α) lie in a hyperplane for

every value of xi.

Consider only the class of specifications where αi is additively separable

within the latent variable model, so that Pr(yit = 1) = G(αi+g(xit, θ)). This

is not as restrictive as it might first appear, because we can re-parameterize
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the model in various ways. If we assume that A = (−∞,∞), then the

“unbounded types” assumption holds and identification requires that pxθ(α)

be linearly dependent.

We will look for functional forms that obey a hyperplane restriction of

one the following forms:

c001p001 + c010p010 + c100p100 = 0 (3.9)

c011p011 + c110p110 + c101p101 = 0. (3.10)

Assume the first case is true, divide through by p000, and rearrange to get

k1r(αi + g(xi1, θ)) + k2r(αi + g(xi2, θ)) = r(αi + g(x3, θ)) (3.11)

where k1, k2 are constants, and r(·) is the odds ratio G(·)/(1−G(·)).
Now consider the choice of xi such that g(xi2, θ) − g(xi1, θ) = g(x3, θ) −

g(xi2, θ) = ∆. In other words, the g() index functions are evenly spaced. If

pxθ(α) is linearly dependent for all xi, it must also be linearly dependent for

this specific choice of xi. Rewrite equation (3.11) as

k1r(αi + g(xi1, θ)) + k2r(αi + g(xi1, θ) + ∆) = r(αi + g(xi1, θ) + 2∆).

Since this equation must hold for any choice of αi, it must be true when

αi = n∆− g(xi1, θ) for any n. So it must be that:

k1r(n∆) + k2r((n + 1)∆) = r((n + 2)∆)

Write this expression as a difference equation, sn+2 = k1sn + k2sn+1, where

sn = r(n∆). The solutions of this difference equation have the general form

sn = a1b
n
1 + a2b

n
2 . Therefore

r(x, αi, θ) = a1b
αi+g(x,θ)
1 + a2b

αi+g(x,θ)
2

which we can re-parameterize without loss of generality to get:

r(x, αi, θ) = λ
αi+g(x,θ)
1 + cλ

αi+g(x,θ)
2
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Solving for the probability function G() gives us:

G(αi + g(x, θ)) =
λ

αi+g(x,θ)
1 + cλ

αi+g(x,θ)
2

1 + λ
αi+g(x,θ)
1 + cλ

αi+g(x,θ)
2

Logit is a special case of this, with λ1 = e and c = 0.

If we assume instead that c011p011 +c110p110 +c101p101 = 0, divide through

by p111, and follow similar reasoning, we get:

1

r(x, αi, θ)
= λ

αi+g(x,θ)
1 + cλ

αi+g(x,θ)
2

G(αi + g(x, θ)) =
1

1 + λ
αi+g(x,θ)
1 + cλ

αi+g(x,θ)
2

which is really the same functional form as before, but with opposite con-

ventions for labelling the outcomes 1 or 0.

We derived this functional form to be linearly dependent for choices of

xi such that g(xi2, θ)− g(xi1, θ) = g(x3, θ)− g(xi2, θ). It can easily be shown

that pxθ(α) for this form is linearly dependent for all possible choices of xi. If

we start with the assumption in equation (3.9), we can write the hyperplane

restriction as:

(λ∆2
2 − λ∆2

1 )p100 + (λ∆2
1 λ−∆1

2 − λ−∆1
1 λ∆2

2 )p010 + (λ−∆1
1 − λ−∆1

2 )p001 = 0

where ∆1 = g(xi2, θ)− g(xi1, θ), and ∆2 = g(xi3, θ)− g(xi2, θ).

As in previous cases, estimates could often be obtained by imposing this

moment condition in the sample. Notice that this condition does not depend

on the constant c. I assume that λ1 and λ2 are known, but it may also be

possible to estimate these parameters, although it would likely be difficult

numerically. Clearly the constant c cannot be estimated this way. These

functional forms are quite similar to logit for most purposes, and are probably

of little use to practitioners.
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4 Concluding Remarks

The main contribution of this paper is to present a general approach to

checking for identification in discrete choice panel data models. As seen

in Section 3.4, the approach brings together previous results and provides

a unifying framework, and some intuition about where the identification is

coming from. Sections 3.5 and 3.6 show how the approach can be used both

to prove non-identification, and to suggest new models that may be identified.

For the examples in Section 3, we were able to rule out identification using

limit-incommensurability as in Lemma 2.5. In other cases this approach

may not work. Linear dependence of the function pxθ(α) requires that the

determinant: ∣∣∣∣∣∣∣
p1(x, θ, α1) ... pK−1(x, θ, α1)

...
...

p1(x, θ, αK−1) ... pK−1(x, θ, αK−1)

∣∣∣∣∣∣∣
is equal to zero for all possible values of {α1, ..., αK−1}. For some functional

forms it may be possible to show non-identification by computing this deter-

minant numerically. For others, such as probit, that are “close” to identified,

it may be hard to distinguish a true zero determinant from numerical error.

This paper deals only with strict identification of the common parameters

in a parametric model. As suggested in section 3, it may be possible to

place tight bounds on parameters even when a model is not identified. (See

Honore and Tamer (2003) for a related discussion of bounds in random effects

models).

This paper also does not deal directly, with estimation of average marginal

effects across the distribution of αi in the population. (This is a weakness of

fixed-effects models in general.) Although assuming a logit specification is

enough to identify the parameters in a panel logit model, it is clear that it

is not enough to identify the marginal effects. On the other hand, it is clear

that it would be possible to place some bounds on the sizes of the marginal

effects. For example, because the probability derivative for an observation

in a logit model is given by βP (1 − P ), a very simple upper bound on the
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population average probability derivative for a linear model is 0.25β. The

approach in this paper suggests ways that tighter bounds than these could

be identified in principle (including lower bounds). More examination of this

issue is a goal of future research.

A Appendix

Proof of Theorem 2.3
Following Chamberlain (1986), we first specify a class of parametric models

λ(δ) for the distribution of αi, where δ is a unidimensional parameter. Let the
true distribution F (α|x) be a discrete distribution with a finite number of points
αo

m, each taken with probability wo
m > 0 (similar to the proof to Theorem 2.2),

where both αo
m and wo

m may depend on x. Then the true reduced form p∗o(x) =∑K
m=1w

o
mp(x, θ0, αo

m). Assume that for each x ∈ Xn, p∗o(x) is at the center of
some open ball of radius ε > 0 entirely within the convex hull Hxθ0 . Note that this
also implies that all elements of p∗o(x) are bounded away from zero.

For any x ∈ Xn, we can always choose a finite set of values αo
m such that

the K − 1 dimensional space is spanned by affine combinations of p(x, θ0, αo
m).

Therefore for any element θj of θ, we can choose affine weights w′m (which may
depend on x) such that:

K∑
m=1

w′mp(x, θ0, αo
m) =

K∑
m=1

wo
m[p(x, θ0, αo

m)− ∂p(x, θ0, αo
m)/∂θj ]

Since the derivatives are continuous and Xn is compact, the weights w′m are
bounded. For x ∈ Xn the parametric submodel is given by:

p∗(x, θ, δ) =
K∑

m=1

(wo
m(1− δ) + δw′m)p(x, θ, αo

m).

The weights (wo
m(1 − δ) + δw′m) will be strictly positive and will sum to 1 in the

neighborhood of the true value δ0 = 0, so they specify a valid discrete distribution
for α. The weights are constructed so that at (θ0, δ0) a small change in δ has the
same effect as a small change in θj . For x /∈ Xn we can simply let F (α|x) be a
degenerate distribution at α′, so p∗(x) = p(x, θ, α′) for some value α′.
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The conditional likelihood function for a single outcome d is given by:

f(d|x, θ, δ) =
K∑

k=1

1(d = ωk)p∗k(x, θ, δ)

Next we show that f(d|x, θ, δ) is mean-square differentiable. It suffices to show
that p∗k(x, θ, δ) is mean-square differentiable. In other words,

p
∗1/2
k (x, θ + h, δ)− p

∗1/2
k (x, θ, 0) = h′ψθ + δψδ + r(x, h, δ)

such that
lim

h→0,δ→0

∫
r(x, h, δ)2dµ/(‖h‖+ |δ|)2 = 0 (A.1)

with
ψθ =

1
2
p
∗−1/2
k (x, θ0, 0)∂p∗k(x, θ0, 0)/∂θ

ψδ =
1
2
p
∗−1/2
k (x, θ0, 0)∂p∗k(x, θ0, 0)/∂δ

A sufficient condition for mean square differentiability is that there exists func-
tions qj(x) and qδ(x) such that |ψθj

| < qj(x) and |ψδ| < qδ(x) in a neighborhood
of θ0, δ0, with E(q2j (x)) < ∞ and E(q2δ (x)) < ∞. Then condition (A.1) holds by
the dominated convergence theorem.

For x ∈ Xn we have:

ψθ =
1
2
p
∗−1/2
k (x, θ0, 0)

K∑
m=1

wo
m∂pk(x, θ0, αo

m)/∂θ

ψδ =
1
2
p
∗−1/2
k (x, θ0, 0)

K∑
m=1

(w′m − wo
m)pk(x, θ0, αo

m)

These are bounded, since p∗k(x, θ0, 0) is bounded away from zero by assumption,
∂pk(x, θ0, αo

m)/∂θ is continuous, and Xn is compact.
For x /∈ Xn we have:

ψθ =
1
2
p
−1/2
k (x, θ0, α′)∂pk(x, θ0, α′)/∂θ, ψδ = 0

which is bounded by the assumption in the theorem.
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To show that the semiparametric information bound for some element θj of θ is
zero, it now suffices to show that we can choose a submodel to make E(ψθj

−ψδ)2

arbitrarily close to zero. This is the case, since

E(ψθj
− ψδ)2 = E((ψθj

− ψδ)2|x ∈ Xn) Pr(x ∈ Xn)

+ E(ψ2
θj
|x /∈ Xn) Pr(x /∈ Xn)

For x ∈ Xn, the difference is zero by construction, and for x /∈ Xn, ψθj
is bounded

by assumption, and the probability Pr(x /∈ Xn) can be made arbitrarily small.
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