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Abstract

This paper analyses cointegration in structural error correction
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the structural parameters in Bayesian structural vector autoregressions
(BSVAR). When we apply these methods to simulated data, Bayes fac-
tors are able to select the appropriate cointegrating vectors, and the
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vectors among the six variables.
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1 Introduction

It is well known that when a vector autoregressive (VAR) model is repre-
sented as an error correction model, it can be employed for the analysis
of cointegration. Pioneered by Granger (1981), Granger and Weiss (1983)
and Engle and Granger (1987), cointegration is intuitively attractive for
economic modelling, particularly for macroeconomic time series. Because it
allows clear differentiation between the short-run variation and adjustment
towards long-run equilibrium among the economic series, and because the
estimated long-run relationships can often be given a theoretical interpreta-
tion, cointegrated VAR models have become one of the major workhorses in
applied macroeconomics. Recent work in this area has extended and refined
Bayesian methods of analysis for cointegrated VARs. Kleibergen and Paap
(2002), Sugita (2001), and Amisano (2003) discuss different ways of detect-
ing the presence of cointegration. Strachan (2003) provides a procedure for
providing valid estimates for the cointegrating vectors. Kleibergen and van
Dijk (1994) discuss the consequences of local non-identification. Bauwens
and Giot (1997) use Gibbs sampling to estimate the cointegrating relations.

If, however, one is interested in the structural analysis, one can only
analyse the structural from the reduced-form parameters (See Johansen and
Juselius (1992), Johansen (1995), Fisher et. al. 2000). Just like any system
of simultaneous equations, this approach is characterized by an identification
problem; there is not enough information in the reduced model to recover
all the structural parameters. If one is to follow Sims’s (1980) type of iden-
tification, i.e. recovering the structural parameters from the reduced-form
covariance matrix, at least n(n — 1)/2 structural parameters have to be re-
stricted before the rest of the structural parameters can be imputed, where
n is the number of equations in the system. Recent papers on structural
vector autoregression (SVAR) models by Leeper et. al. (1996), Sims and
Zha (1998), Sims and Zha (1999) and Waggoner and Zha (2003) allow the
structural parameters in SVARs to be estimated directly using Bayesian
methods.

In this paper, we focus on the analysis of cointegration and the struc-
tural parameters for a SVAR model in a Bayesian framework. We represent
the SVAR as a structural error correction model , and show that the analy-
sis of cointegration for the SECM follows that of the ECM. We adopt the
methods of Kleibergen and Paap (2002) in analysing cointegration in the
ECM and apply it to the SECM. A parameter is constructed from a singu-
lar value decomposition that reflects the presence of cointegration. For the
estimation of structural parameters, we employ the methods of Waggoner
and Zha (2003) in which a Gibbs sampler is used to estimate the structural
parameters in a BSVAR. Two by-products arise from this paper. First, we
generalise a theorem of Waggoner and Zha (2003) to allow for non-zero prior
means for the structural parameters. Second, we provide a more efficient



way drawing from the posterior distributions in which we circumvent the
use of the Metropolis-Hastings algorithm.

The organisation of this paper is as follows. In Section 2, we present
the structural error correction model. We derive the SECM from the SVAR
model. In Section 3, we apply the methods of Kleibergen and Paap (2002) to
analyse the presence of cointegration. We specify priors for the parameters
of the linear SECM, and translate these priors to those of the unrestricted
and the restricted SECM. We then derive the posterior distributions for
the parameters of the different models. In Section 4, we provide a Gibbs
sampler for drawing from the posterior pdfs of the structural parameters.
We consider selecting the possible number of cointegration relations using
Bayes factors in Section 5. In Section 6, we provide two illustrations of the
model. The first is a simulated example, while in the second example we
apply the model to the data analyzed by King, Plosser, Stock and Watson
(1991). Section 7 concludes the paper.

2 Structural Error Correction Model

This section shows how a SVAR can be represented as a SECM. One advan-
tage of this specification is that both contemporaneous relationships among
the endogenous variables and the analysis of cointegration can be presented
in a single model. Consider a structural vector autoregressive model

k
AYi=d+> Al +e, t=1,2,..,T, (1)
i=1

where k is the number of lags, Y;,Y; 1,...,Y;  are (n x 1) vectors of ob-
servations, Ag is a (n x n) structural coefficient matrix, Ai, Ao, ..., Ay are
(n x n) lag coefficient matrices, d is a (n x 1) vector of constant terms, and
gt is a vector of i.i.d structural shocks that is assumed to be distributed as

et|Yies ~ N(0,1) for0<s<t.

By subtracting AjY;—1 from both sides of equation (1), and adding and
k=1 k
subtracting > > A%Y:; on the right hand side of equation (1), we arrive
i j=i
at a structural error correction model (SECM)!.

! Alternatively, Johansen (1995) shows that the SECM can be derived from the Error
Correction Model (ECM). The ECM takes the following form

AYy=c+dBYia+) B AYiit+p,

where p, = (Ah) " &s, ¢’ is the adjustment matrix. Multiply the ECM by Aj to get the
SECM



k—1

AGAY, =d+ 1Y + ZBé AY; i +e, (2)
i=1
k k
where II' = ;A; — Aj, and B! = _j=§r1 Al i=1,..,k — 1. The charac-

teristic equation for equation (2) is
k
Y= (45" S0 A @
i=1

Denoting L to be the lag operator, such that L¥Y; = Y;_;, then the above
equation can be written as

k
(A" S AL~ 1YY, = 0.
i=1

To determine the existence of cointegration, we evaluate the rank of

k
(451 YAl = I, (4)
i=1

If equation (4) has zero rank, the series Y; contains n unit roots. On the
other hand, if it has full rank n, the univariate series in Y; are all stationary.
Cointegration is present only when the rank of equation (4) lies between

k
0 and n. Equation (4) can be re-arranged into rank <(Aal)'(z Al — A6)>
i=1
k
and since Y Al — Ay = I, it simplifies to
i=1
rank ((HAEI)') .
The rank is clearly dependent on

rank (HAEI) < min {rank'(Aal), rank(IT) } .

Since by assumption Ay !'is a nonsingular matrix and so has full rank, the
determination of cointegration depends solely on I1. Henceforth, the analysis
of cointegration follows that of the ECM. We can decompose II into two full
(n X r) matrices, § and o :

II = Ba,

A AYi=d+dBYia+ Yy BiAYiite

where d = Ajc, o' = Ajc’and B] = AjB}’. Note that 3 is invariant to this transformation.



where 3 contains the cointegration vectors that reflects the long-run relations
between the univariate series in Y;, and « is the adjustment matrix that
indicates the speed of adjustment to the equilibria 3'Y;.

Rewriting the SECM in matrix notation gives

AYA() =Y II+XB+ g, (5)

where AY = (AYk—i—l AYT)/, Y_l = (Yk YTfl)/, g = (Ek—i-l ET)/,
X = (X34 .. Xp), Xe = (LAY, .. AY} 1), B=(d By ... By_1)', B
is a (¢ x n) matrix, and ¢ = (k — 1)n + 1. As is well known, the individual
parameters in Sa (for a given rank 7), are only identified up to a rotation.
Normalisation is carried out so that a and 3 are estimable. One common
way of normalising a and (3 is

f= ( - ) 6)

3 Method of Kleibergen and Paap: Singular Value
Decomposition Approach

Following the methods of Kleibergen and Paap, we decompose II as follows:

I = Ba+p (7)

(s (5 ) (0 ):

The attractiveness of this decomposition is that when A is restricted to
zero it reflects the presence of cointegration. The matrices ajand B are
perpendicular to a and § (i.e. a o/ = '8, =0), and o &/, =3, =
I,—r. The decomposition in equation (7) corresponds to a singular value
decomposition of II, which is

I=USV (8)

where U and V are (n x n) orthonormal matrices (U'U = V'V = I,,), and
S is an (n x n) diagonal matrix containing the non-negative singular values
of IT (in decreasing order). Partition U, S and V, respectively, as

U11 U12 Sl 0 Vll V12
U= .S = ,and V = .
< Ua Uz > < 0 5 > o < Vo1 Vo )
Kleibergen and Paap (2002, Appendix A) show that

a = UnSi(Vi1Va),
By = —UaUg', (
A = (UbUn) 2UnS2V3y(VaaV3,) 2. (1

=~
=]
N—

—_
~—



The number of non-zero singular values in S determines the rank of IT and
hence the number of cointegrating vectors. When \ is restricted to zero, and
because (U22U§2)7%U22 and ‘/2/2(‘/22‘/2/2)7% are orthonormal matrices, this
means that Sy is restricted to zero as well (and so implies rank reduction in
IL.)

The model in equation (5) can be reparameterised as

AYAO:Y,lﬁa—l-Y,lBl)\cu—i-XB-i-s. (12)

Using the terminology of Kleibergen and Paap, from here on, when ) is not
restricted equation (12) will be known as an unrestricted SECM. When X is
restricted to zero it will be denoted as a restricted SECM, and we will refer
to equation (5) as a linear SECM.

3.1 Prior Specification

Denote a;, b;, and 7; to be the i'® column of Ay, B and II respectively. We
assume that the joint prior pdfs for the parameters of the models are

n

p(1, Ao, B) = []p(mi)p(ai)p(bila:) for linear SECM,
i=1
p(a, A, By, Ao, B) = pla, A, Bs) Hp(ai)p(bi|ai) for unrestricted SECM,
i=1
p(a, By, Ao, B) = pla,Bs) Hp(ai)p(bi|ai) for restricted SECM.
i=1

3.1.1 Prior for (a;,b;)

The priors for a; and b; are specified such that p(a;) and p(b;|a;) are multi-
variate normal distributions.

a; ~ N(EZ',OZ'),
bi|a¢ ~ N(Piai,Hi),

where @; is an (n x 1) vector of prior means of a;, O; is an (n x n) prior
covariance matrix.of a;, H; is a (¢ x q) conditional prior covariance matrix
of b;, P; is a (¢ x n) matrix that allows for different interactions of a;. If P;
is null, then p(b;|a;) is independent of a;. One advantage of having this prior
specification is that the random walk for Bayesian SVARs can be applied,
as in Sims and Zha (1998). Essentially, we can nudge the SECM towards
a random walk model in AY; ;. In this paper, we also adopt the methods
of Waggoner and Zha (2003) dealing with linear parameter restrictions in
the SVAR model. Instead of assuming the prior means of the structural



parameters to be zero as in their paper, we extend the prior mean of Ag to
take a general form (having non-zero or zero mean).

Following Waggoner and Zha (2003) assume that some elements in a;
and b; are restricted,

Qiai = 07

Rib; = 0,
where ); is an (n X n) matrix of rank p;, and R; is a (¢ X ¢) matrix of rank
r; that impose the restrictions. We make the assumption that the diagonal
elements of Ay are unrestricted which guarantees that Ag is a nonsingular
matrix. Suppose that there exists F; (an (n X p;) matrix) and M; (a (g x ;)
matrix) such that the columns of F; and M;, respectively, are orthonormal
for the null space of (); and R;. a; and b; can then be expressed as

ai = Iy,
bi = Mg;.

Waggoner and Zha (2003) consider priors on 7; of the form y; ~ N (0, O;).
We prove in Appendix A that if the prior is more general, the prior of ~,
and the conditional prior of g; given +, are, respectively,

Yi ™~ N(Ea% 61)7
and o
9ilvi ~ N(Pyys, Hi),
~ o~ 1~ — 1 J S s R
where F; = O;F/0; ',0; = |F/O; 'F, + F/P,H, 'P,F, — P\H;'P,| , H; =

— -1 ~ ~ — —
(MZ-’HZ- lMi) and P, = H;M/H; 'P,F,.

3.1.2 Prior for m;

The prior for 7; is assumed to be a multivariate normal distribution with
mean 7; and an (n X n) covariance matrix ®;.

i ~ N(fi, (Di)-

For ease of derivation of the prior for (a, A, 3) and («, 3), we express the
above equation in term of II

n

p(D) = [[p(m)

i=1

— 1 1 —
= (2m)7 3" S| 7 exp —§(vec(H)—7)'an(vec(ﬂ)—7) ,

where 7= (7 .. 7, ) and Xy = diag(®, ..., D).

n



3.1.3 Prior for (a, A, )

Instead of placing priors on «, A and (35, the joint prior for (a, A\, 3) can be

derived from p(II)

oIl

pla, A, By) = P(H)‘m

o exp [—%(vec(ﬁa + 6y ) — 7)'5{11 (vec(Ba+ 5 Aay ) — 7)] ‘

3.2 Prior for (o, ()

In the restricted SECM, p(a, 35) is a conditional prior of (a, A, 3) given

A=0

oIl
3(&, A) 62) A=

p(a, /\7 52) |)\=0
P(N)a=0

p(a, 52) =

o exp [—%(vec(ﬁa) —7)Eq (vec(Ba) — ﬁ)} | 5/5\%<n—r> ‘aa/‘ém—m ‘

Here p(A)|a=0 = [ [ p(a, A\, B2)|a=00a03, is a normalising constant, which
plays a crucial role in the determination of cointegration as it is part of the
marginal likelihoods. Since p(\)|x=¢ is analytically intractable, we estimate
it using the simulation techniques of Chen (1994). See Appendix B for de-

and ‘

tails. For a derivation of the Jacobian terms a—H
A(a,\,B9)

refer to Appendix B of Kleibergen and Paap (2002).

3.3 Likelihood functions

Linear SECM: The likelihood function for AYi, AYs, ... AYr conditional

on the initial observations AYp, AY_q1,... AY g9 is

p(AY|Ag, B,TI) = (2m)7 277 | Ag|”

exp [—%tr((AYAO— T = XB)(AY Ao — Y411 - XB))}

which can be written in terms of the free parameters,

p(AY |y, g,10) oc |[Evy || Enyn]l" %

1 n
exp [—5 > (AY Fyy; = Yoam — X Migs) (AY Fry; = Yoam; — X Mig:)

=1

/ /!

where y = (7 .. 7, ),andg=(g1 .. g, ).

a(aa )‘7 52) ‘

e, )\32)

|



Unrestricted and Restricted SECM: The likelihood function for the
unrestricted SECM is

p(AY|fYaga a, )‘7 62) = p(AY|fYaga H)|H:[3a—|—[3l/\al7

and the restricted model is

p(AY |y, 9,a,B9) = p(AY |y, 9,11)|n=ga-

3.4 Posterior Distributions and Sampling Schemes

We consider the respective posterior distributions for the parameters of the
three models.

Linear SECM: It can be shown that the marginal posterior pdfs for ~
is

n T R r R
P AY) o |[Fryy ] By [ [ exp <—5 (%- - Fl) o;! (% - Fz)) ;
=1

the conditional posterior pdfs for II given ~

Py, AY) ocﬂexp (~3(m - @mye(n - Q).

and the conditional posterior pdfs for g given I and ~
n 1 ,
plgly, T, AY) o [ [ exp [—5 (gz' - Pz'gi) H (gz' - Pigi)] :
i=1

In these expressions, we have used the following:

1 ~
-1 —1
O~ = ?Oz ,

K2

O; = (F;AY’AYE+6;1+15;H 'P — Pl H; 1Py — Q) 16211) :
F,= [ Fi; ﬁm},
Fi; = 0,0, 'F,
Fy; = CA)z'QIu@;lez‘,

_ | @
11' - T ’

—_ —1
o, = (Yily_l +3; — PLH” 1P22) :

2



Qi=1]Qu Qu ],
Qi = &Y\ AYF, + Py, H ' Py,

-1
Q2 = ©; 0,

")/.
==

~ —1
H; = (MZ-’X’XMZ- +H;1) ,

Pi=[ Py Py,

— |
i |

P, = Hi(M/X'A\YF; + H; ' B),

I

and
Py = —HiMZ-'X'Y_l.

See Appendix C for derivation.

As p(IT}y, AY) and p(g|y,II, AY) are multivariate normal, sampling of
these distributions is straightforward. The only difficulty lies in sampling
p(y| AY) because it is not of any known distribution. It turns out that
when the prior mean of Ag is equal to zero, the methods of Waggoner and
Zha (2003) can be applied. They show that using a Gibbs sampler to draw
from p(y| AY'), drawing 7, conditional on +y;, j # 7 is equivalent to drawing
independently from a multivariate normal distribution with zero mean and
variances % and a univariate distribution which is equivalent to taking square
roots of the draws from a gamma distribution.

We further show that when the prior mean of Ag is not equal to zero
results similar to those of Waggoner and Zha (2003) hold. Specifically, the
draws of v; conditional on vy}, j # i are equivalent to independent draws from
a multivariate normal distribution with a nonzero mean and variances %
and a univariate distribution. As far as we know the univariate distribution
cannot be transformed into any recognisable form. In the next section,
we provide a strategy for drawing from this univariate distribution. For
the moment, let assume that it is possible to draw from the univariate
distribution. A sampling scheme for the linear SECM is then

Fori=1,...,n.

1. Specify starting values for 7.

(j+1)

2. Draw ~y from p(y;| AY) using the methods described in section 4.

3. Draw 7TZ(-j+1) ~ N(x,, <I>i|'yl(-j+1)) fori=1,...,n.

10



4. Draw gl-(jﬂ) ~ N(g,, Hi|fy§j+1),7rl(-j+1)) fori=1,...,n.
5. Set j = j + 1. Return to step 2.

Unrestricted SECM: The posterior pdfs are similar to those found in
the linear SECM, except that II is expressed in terms of a, A and 3,

oIl
8(&, )\7 52)

)

pla, A, Boly, AY) ac p(T|y, AY)) ln=ga+ 5, Aas

and
p(g|r)/7 Q, 627 AY) & p(gh/a H7 AY) |H=,30¢+,3L)\ai

As shown by Kleibergen and Paap (2002),obtaining the draws for a, A and
B9 are relatively straightforward, we simply decompose the draws of IT using
equation (8) and compute a, A\ and 3, using (9), (10) and (11).
Restricted SECM: For the restricted SECM, the posterior pdfs are
similar to those of the unrestricted SECM. In this case, A is restricted to

Zero

Ol
a(aa A)ﬁQ)
p(g|r)/7 @, 527 AY) X p(g|ry’ Ha AY)|H=,30¢7

where 3/ = ( I, —p, )/. As p*(a, Bolv, AY) is not of any recognisable
distribution, one approach to drawing this conditional distribution is to
employ a Metropolis-Hastings (MH) algorithm for each draw of . This
approach is rather inefficient due to the fact that for every draw the MH
algorithm requires a burn-in period. A more efficient approach is to obtain
the draws of «, 35 from the singular value decomposition of II. In Appendix
D, we show that p(a, A, 85|y, AY) can be expressed as p(A|a, 85,7, AY) x
p*(a, Baly, AY') which implies that «, 55 can be obtained directly from the
decomposition of II.

P (e, Baly, AY) o p(Lly, AY )]s, (14)

)
A=0

4 Gibbs Sampler for p(y| AY)

As mentioned in the previous section, when the prior mean of Aq is zero,
p(v|AY) is simulated using the Gibbs simulator of Waggoner and Zha. This
section generalises Theorem 2 of Waggoner and Zha (2003) by allowing the
prior mean of Ag to be non-zero, and provides a sampler for the univariate
distribution.

The generalised theorem is

Theorem 1 The random wvector vy; conditional on 1, ...,¥;_1,Yii1> - Vn

with mean of ﬁili s a linear function of p; independent random variables
kj such that

11



(a) the density function of k; is proportional to

1k1|7 exp <—%(m —21)2>, (15)

(b) for 2 < j < p;, k; is normally distributed with mean %; and variance
1
T.

(See appendix E for proof). Given that Fiy, is known, %; can be com-
puted

K1
= [wn] - [y ] 7 T, iy,
Fp;
where T; is the Choleski decomposition of O;, w; is constructed such that
F;T;w; is perpendicular to the linear combination of Fja;, j # i. See Wag-
goner and Zha (2003, p357) for the construction of w;. Note that, when Fiy,

is zero, implying that &y, ..., Kp, are zero, then the distribution (15) becomes
that of Waggoner and Zha. We compute ~; as

Pi
vi =Ti E Kjw.-
j=1

Drawing from |k1|” exp (=% (k1 —F1)?) is not feasible. It cannot be
translated to any recognisible distribution except when %; is zero, when it
becomes the square root of a gamma distribution. To analyse the properties
of the distribution of k1, we plot this distribution under various values K1 =
0,0.1,0.2,0.3 and 0.4 with 7' = 10 (see Figure 1). It is observed that

e Starting from ®; = 0, the distribution is a symmetric distribution.

e When % # 0, there exists a dominant mode. The region in which the
dominant mode lies corresponds to the sign of %;.

e As |R1| increases, the bimodal distribution tends toward a unimodal
distribution When [%1]| > 3T~ ! the less dominant mode becomes in-
significant.

e The distribution is discontinuous at k1 = 0. This means that the
normalising constants (area under the curve) are approximately.

~0 T T oo . T
C = / |/’{1| exp <_§(/‘{1 _E1)2> dx +/ |[-{1| exp <_§(l‘{1 —E1)2> dr
—> ~0
= C,+C+_

e C_ > (L if k) <0, and vice versa, and C_ = C4 if kK = 0.

e Both tails decay towards zero as k1 goes to —oo or +oo.

12



Using the above observed information, we construct a sampler to draw
from equation (15) that is based on the concepts of the Griddy-Gibbs sam-
pler of Ritter and Tanner (1992). The sampler is as follows:

1. Define the range Ry.and Ry, where Ry is the lower limit and Ry is
the upper limit.

2. Specify a set of gridpoints (k1 < k2 < ..... < kj) within Ry, and Ry.

3. Using numerical integration methods (such as Simpson’s rule), com-
pute the area between k; and kjq for j =1,2,...J —1:

kjt1 T
Areaj = / ’ i |” exp <—E(/{1 —E1)2> dz.

J

4. Compute the normalising constants.
J—-1
C= Z Area;.
J

5. Randomly draw p from a uniform distribution with range between 0
and C.

6. Obtain k% by numerical interpolation of the inverted C.

5 Testing for Cointegration Rank

Unlike the classical approach of selecting an appropriate cointegration rank,
the Bayesian approach compares the degree of evidence for each possible
cointegration rank r. The selection of cointegration rank is then choosing the
strongest evidence. Bayes factors, posterior odds and posterior probabilities
are the common tools used for this purpose. These tools are computed from
the marginal likelihoods. In the SECM, there are n + 1 possible values
of the cointegration rank r. Denote the marginal likelihood of rank r as
p(AY|rank = r) and the prior probabilities that the cointegration vector

n
r is correct as Pr(rank = r) (such that ZPr(rank‘ = 4) = 1.). Then the
i=0
Bayes factor that compares the model with rank r to a model with rank n
is given by

(AY|rank =17) [J] (e, Ba, v, 9)P(AY |e, By, 7, g)dadBsdrydg

BF(r|n) = i
(16)

13
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for r = 0,...,n. Multiplying the Bayes factors (16) by the ratio of prior
probabilities (the prior odds) gives the posterior odds in favor of the rank r
model,

Pr(rank =)

Pr(rank =n)’

Clearly, when Pr(rank = r) = Pr(rank = n), the posterior odds and the
Bayes factors are equivalent. Selecting an appropriate cointegration vector
amounts to choosing the highest BF(r|n) (in the case of equal prior odds)
or highest PO(r|n). However, they do not offer a direct interpretation on
whether model averaging or model selection is desirable, especially so for
comparing more than two models. A better way of selecting an appropriate
cointegration rank is through posterior probabilities:?

PO(r|n) = BF(r|n) x

Pr(rank = r|AY) = p(AY|rank =) _ PO(r|n)

S p(AYrank = i) éﬂ PO(in))

1=0

When all the posterior probabilities are less then one, we would average
measures of interest such as forecasts or impulse responses implied by the
cointegrating vectors according to their probabilities. While, the posterior
probability of one cointegration rank is equal to one, we will then select the
model with that rank:

p(O|AY) = Zp(9|AY, rank = i) Pr(rank = i|AY),
=0

where 6 is the quantity of interest, p(6|AY, rank = i) is the posterior pdf of
6 implied by i cointegrating vectors, and p(8|AY) is the averaged posterior
pdf.

5.1 Computing Bayes factors

In this paper, we compute the Bayes factors by first computing the mar-
ginal likelihoods p(AY |rank = r). However, the marginal likelihoods are
analytically intractable. One common way of estimating them is through
the methods of Gelfand and Dey (1994) that use the draws of posterior pa-

rameters. They show that if f(a, 35,7,¢) is any pdf, then the expectation

of f(eB2.7,9)
p(a,B2,7,9)P(AY |, B2,7.9)
is equal to p(AY|rank = r)~! (this is the harmonic mean estimator of the

marginal likelihood). For proof see Geweke (1999) or Koop (2003, p105).

with respect to the joint posterior pdf of «, 85,7, g

2For example, suppose that the posterior odds for M, Mo and Ms with respect to Ms
are 10, 30 and 1 which implies that Ms is the most likely model. However, expressing
these odds as posterior model probabilities shows that the probability of M> being correct
is about 73%. The overall evidence for M is not as strong as its relative evidence (to
My). In this case model averaging may be preferred.

14



The only requirement for the harmonic mean estimator is that the space
of a, 85,7, g must be within the support of the posterior space of «, 35,7, g.
We have assumed f(a, 85,7,9) to be a truncated multivariate normal. The
truncation is to ensure that f(« (@) ,6' )) is within the support of the
posterior space for each 4. In short, the eXpressmn for f(a, Ba,7,9) is

e, Ba,,0) = (2 P2 [Sar] e [—% (@ =Pa)Eif (0= @m)] 1(2)

M M
where ¢ = [0/ 5/2 N g ]/, ;ZM _ ﬁZw(i)’ EM = ]\—142 w(z
i—1 =1

V) @D — Py, p € (0,1), w is the number of parameters and I(Z) is
an indicator functlon equal to 1 when (¢ — ¢M) L@ =) < X%_p(w),
and zero otherwise. xi ,(w) is the (1 —p) per cent critical value from a

chi-square distribution.
Thus,

22

M i i
p(AY |rank = 1)~ Z fla ® 52 ’fy ))
i=1 D

(@@, B, ~4(), g))p @SYF%BJLVGLQHD.
6 Two Illustrations

6.1 Simulated Example

To illustrate the methods, we simulated four sets of series, each with 150
observations, from four data generating processes. The four DGPs contain
0, 1, 2 and 3 cointegrating vectors, respectively.

DGP 1
41 17 -0217’ 0.1 01 03 23 7
0 25 03 | AY,=]01]+]02 —-12 24 | AY,q+e,
0 0 25 0.1 13 —0.1 —04
DGP 2
41 1.7 —027 0 1 !
0 25 03 | AY, = [0 ]|+[1 04 07] | 001 | Yy
0 0 25 0 —0.8
01 03 23 7'

+1 02 =12 24 AYi 1 +et,
1.3 -0.1 -04
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DGP 3

!/

41 1.7 —02 0 T 1 0
0 25 03 | AY, = |0 |+ 8? _0(‘)12 81 0 1
0 0 25 0 : e ~15 —0.1
01 03 23 7'
+102 —12 24 | AV +e,
13 —01 —04
DGP 4
41 1.7 —0217' 0 023 019 017 1'T1 0
0 25 03 | AY, = | 0|+ 043 033 032 01
0 0 25 0 0.2 —0.23 —0.23 0 0
01 03 23 7'

+1 02 —-12 24 AYi 1 +et,
1.3 -01 -04

where g; ~ N(0, I3).

The prior means for Ay, B and II are assumed to be a (3 x 3) matrix
of ones, a zero matrix, and a zero matrix respectively. The specification
of covariances for Ay and B are similar to those of Sims and Zha, in that
a set of hyper-parameters is used to control the standard deviations. The
conditional standard deviation for the elements of B associated with lag [
of variable j in equation ¢ is assumed to be

T1T2
T
ol

the conditional standard deviation for the constants is
T1T4,

and the standard deviation for the nonrestricted elements of Ay is
T1
oj

In these expressions, 71 controls the tightness of belief on Ag, 7o controls
overall tightness of beliefs around the random walk prior, 73 controls the
rate at which prior variance shrinks with increasing lag length, 74 controls
the tightness on the constant terms, o; is the sample standard deviation
of residuals from a univariate regression of the j** element of AY; on its
first difference and lagged level. As for the prior covariance matrix of II,
we assume that ®; is equal to 75 (AYLlAY_l)71 . This assumption means
that the elements of II are independent across equations, but within the
equations, the elements are reacting according to 75 (AYilAY_l)fl. The

16
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parameter 75 controls the overall information entering the prior. Since in
this exercise we are concerned with choosing the right cointegrating vectors,
firstly the hyper-parameters are assigned so that the overall priors are fairly
uninformative. Specifically, the assigned values are 71 = 30, 79 = 30,73 =
1,74 = 30 and 75 = 20; Secondly, we give equal prior probability to each
possible value of, r =0, 1, ..., 3.

For each of the models in each of the DGPs, we produce 12 000 draws
and discard the first 2000 draws. All the programs are written in Matlab.
Using a Pentium IV 3.02 GHz, the programs took about 30-40 minutes to
complete the draws for all the models in each of the DGPs.

Table 1 indicates the marginal likelihoods, the Bayes factors and the
posterior probabilities for the four DGPs. Looking at the third column, the
log Bayes factors are able to select the correct rank for each of the DGPs.
The probability of selecting the correct rank are about 0.73 for DGP1, 0.84
for DGP 2 0.53 for DGP 3 and one in DGP 4. For the first three cases, an
averaging process may be performed.

Figure 2 shows the marginal posterior parameters’ pdfs from the SECM
having » = 1 for DGP.2. In the graphs, the vertical lines are the actual
values. The results indicate that the sampling techniques are appropriate
as it can be seen that the estimated marginal pdfs cover the actual values.

As the whole, the SECM together with the Bayesian techniques serve
as a useful tool in handling cointegrating analysis and estimation of the
structural parameters.

6.2 Empirical Example

For an empirical example, we use data from King et. al. (1991; KPSW
hereafter). These data are quarterly U.S. data from 1954(1) to 1988(4) that
consist of per capita real consumption expenditure ¢, per capita gross pri-
vate domestic fixed investment 4, per capita private gross national product y,
real money balances m — p, the interest rate on three-month U.S. Treasury
bills r, and the annualised rate of inflation using the GNP deflator AP.
All variables except the interest rate and inflation are in logarithms. In
their paper, KPSW derived an econometric procedure that uses the cointe-
grating relationships to decompose the structural shocks into permanent ef-
fects and transitory effects. Three cointegrating relationships are suggested
from economic theory; these are a balanced-growth trend (¢ and y), an
inflation/money-growth trend (i and y), and a real-interest-rate stochastic
trend ((m —p), y and ¢). Fisher et. al. (2000) combine the KPSW pro-
cedure with contemporaneous restrictions to identify the structural shocks.
They impose three contemporaneous zero restrictions in Ap: y variable in ¢
equation, y variable in ¢ equation, and AP variable in (m — p) equation.
In this section, we test for the number of cointegrating relationships
together with the three contemporaneous relations suggested by Fisher et.
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al. (2000). We follow the same ordering of variables as KPSW, that is Y =
[ y ¢ i m—p r AP ] . Furthermore, we assume fairly uninformative
priors on the parameters so that the data will be the main determiner of
the posterior outcomes. We assign equal prior probabilities for each of the
possible cointegrating vectors and set the hyper-parameters as follows: 71 =
To =73 =74 = 3 and 75 = 2. We use a model with two lagged differences.

The log-marginal likelihoods, the log Bayes factors and the posterior
probabilities are reported in Table 2. The results suggest that there is no
evidence for three cointegrating vectors. The Bayes factors indicate a strong
evidence for five cointegrating vectors, and the posterior model probability
for this model is almost one. Indeed, the hypothesis test performed in KPSW
rejected the three cointegrating vectors hypothesis at the 10-percent level
but not at the 5-percent level. Nevertheless, they maintained that the exis-
tence of three cointegrating vectors because it provided a good qualitative
description of the cointegrating system.

7 Conclusions

This paper presents a structural error correction model which provides con-
current analysis of cointegration and estimation of the structural parame-
ters. Set in a Bayesian framework, we provide accounts on the specification
of priors for the parameters, derivation of posterior pdfs and the sampling
techniques used. The main methods used in this paper are partially based
on the methods of Kleibergen and Paap (2002) for analysis of cointegration
in the ECM, and the methods of Waggoner and Zha (2003) for estimating of
the structural parameters in BSVAR. Through the simulated series, the esti-
mated results show that the Bayes factors are able to select the appropriate
ranks, and the posterior marginal pdfs cover the actual values. Through the
KPSW empirical example, the estimated Bayes factors indicate existence of
five cointegrating vectors instead of three cointegration vectors suggested by
the theory.
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A Prior of v, and g,

Given that p(a;) and p(b;|a;), respectively, are N(@;,O;) and N(P;a;, H;),
and a; = Fyy; and b; = M,;g;. Then, the joint prior pdf for v, and b; is

1 JEp— _ — 1 —
p(7i,bi) o exp [—5 ((Fi% —a;)'0; (Fyy; —@;) + (Myg; — PiFyy,)' H;  (M;g; — PiFm)ﬂ :

Concentrate on the terms within the exponential and complete the squares

J— _ — 1 —
(Fiy; —a)'O; (Fyy; —@;) + (Migi — PiFyy;)'H;  (Migi — PiFyy;)

= 7,FO; lFi% — 29, FjO; 'a; +a;0; 'a; + g M{H; "Migi —
20/M{H; P;Fy; +,F/P;H; P;iF,

~ . —1
Let H; = (M’H lMi)

——1 —/-15 ——1_ ~
= VWFlO; F;+ F/PH; P;F)y; - 2v,FO; @+ g,H; ‘g —
QQQﬁflﬁiMz(ﬁi_lﬁiE% +525¢_15i

= Y(FO; 'Fi+ FPH; PiF)y; — 29{F/0; '@ + gH; ' g; — 26, H ' Py,
+7£]3i,ﬁ;1f)i'7i - ’Y;f)i/ﬁ;lf)i% +E;6;15i

= (O, F + FP/H; P.Fs — BLH By, — 2 FO;
+(gi = Prvi) H; (9 — Pry) +T0; '@,

1

Let O; = |F'O, 'F,+ F/'P,H, 'P;F; — P'\H'P,|

~_ ~_ 1< —1__ ~ _ ~ _—=—1_
= 7,0; 'y — 29,0; ' OiF{O; @i + (9; — Pry;) H '(9i — Pry;) +@,0; @

2
Let E = 61FZI5;1

= 07 — 20}0; ' Fa; +a;F[O; ' Fa; — a,F{O; ' Fa;
~ L~ ~ =1
+(g9i — Pry;) H; Ygi — Pry;) +@0; @
~ = ~_ ~ ~ a1l s 1
= (v, — F@)'0; Y(v; — @) + (9 — Pryy) H Y9 — Pry;) + @ (05 — FO; 'F;)a;

2

Replace the above expression back into the exponential and absorb @ (O; T

E’ 61_ 1E)az~ into proportionality gives

1 - - - B -
p(7i, bi) o exp [—5 ((%- — E@)'O0; *(v; — Fi@) + (9: — Pryy) H; * (95 — Pm))] :
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Then, it can be shown that the prior of v; and conditional prior of g; given
v, are

Yi ™~ N(Fiaia 61)7

and
gilvi ~ N(Pry;, Hy).

B Computing normalised p(\)| -

For computation of normalised constant, we follow technique of Chen (1994).
We know for the fact that

pla, A, o1l
oot = JJEGRLE ], o
oo =[x Bl Tor | e
I ple, X, Ba) | a= 0‘ ow\ﬁz) dadﬁQ

JJJ pla, A ﬁz)dad/\dﬁz
S ple, A, By)a= 0‘ VA (fh/\|a,6’2)d)\)dad52
SIS pa, A, /32)dad/\d52
ST ples ) Bo)la-o | gy ||, h, Ba)dadAds,

- JIJ ple A, 52)dad/\d52 (17)

where [h(Ma, B5)dX and [[[ p(a, A, By)dadAd, will integrate to 1. h(A|a, B5)
is a proper conditional density which appropriate the conditional prior of A.
Henceforth, to estimate p(A)|x=o , we

o draw II) from p(II) for i=1,2,..., M,
e svd II into a®, A9 and ﬁg) for i=1,2,... M

e and average the following to get an estimate for

M p(a(z) AD 5())|/\7 m A h()\(i)|0¢(i),ﬁg))

A)|r=o = —
M Z pla®, A gy

An appropriate h(M|a, £5) is found to be

h(Na, By) o (QW)’%(”*TF ‘E/\‘_% exp {—% (vec(X) — X)Ii/:l (vec(X) — X)] ,
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where A = i)\(a’l@)ﬁl)’iﬁl(ﬁ—vec(ﬁa)), and Xy = ((ai ® BL)’iﬁl (o, ® BJ_)) 1(See
the subsection for detail).

It can then be shown that ratio of the integrands in equation (17) can
be simplified to

B.1 Approximating the conditional prior of )\ given «, (3,

Concentrate on the terms within the exponential in p(a, A, 55)

vee(Ba+ i Aar) — 7Sy (vee(Ba + B Aar) = 7)

vec(fa) + vec(S | Aoy ) — 7)'Eﬁl(vec(ﬁa) +vec(B Ay ) —T)

vec(f Ay ) — (T — vec(ﬁa)))'fﬁl(vec(ﬁa) — (T — vec(Ba))

(o, ® B Jvec(A) — (7 — vee(Ba))) Sy (o, ® B Jvec(A) — (7 — vec(Ba)))

= wee(N) (oL @ 8,)'Ty (o)) @ B Jvee(A) — 2vee(N) (o), © B,)'Sp (T — vee(fa))
+(7 — vec(ﬁa))'iﬁl(f —vec(Ba))

(
(
(
(

_ —1 -1
Let 5 = ((o, © 6,)/' (o, @ 6.)

= vec(/\)'fglvec(/\) — ZUec(/\)’i;li)\(a’l ® 5l)'§ﬁl(f —vec(Ba))
+(7 — vee(Ba))'Syy (7 — vec(Ba))

Let A=, (a/, ® BL)’iﬁl(ﬁ —vec(Ba))

= vec()\)’iglvec()\) - 2vec()\)'§;1X + X’E;IX - X’§;1X
+(7 — vee(Ba))'Syy (7 — vec(Ba))

= (vec(N) — X)Ii;l (vec(N) = X) — XI§;1X
+(7 — vee(Ba))'Sy (7 — vec(Ba))

Thus an appropriate conditional prior for A would be

h(\|ay, By) o (27r)_%(n_7")2 ‘f)\‘_% exp —% (vec(N) —X)Ii;l (vec(X) — X)
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C Marginal and Conditional Posterior Pdfs of Lin-
ear SECM

The joint posterior distribution is given as

p(IL,v,9| AY)
n n
o p(AY|y,g,M)p(y, 9)p(Tl) o< p(AY |y, g,10) [ [ p(vi)p(gilve) [ [ p(mi)
=1 =1
1 n
o |[F1yy|e | Fuy,,]|F exp -3 (AY Fyy; — Yo1m; — X M;gi) (AY Fyy, — Y_qm; — XMZ-gZ-)] x
=1

_1
5 ~ ~

~ -3 1 ~ o~ ~ _ ~
H;| *exp {—5 ((% — Fa;) O7 (s — Fiai) + (95 — Prys) Hy g3 — Pi%))] X

n ~

[T|o

i=1

no 1 1 .

[T1%i] 2 exp [—5(%' =)' ®; (i —72')]
i=1

o |[F1y | Byl x
n (AYE’)/Z -Y_ 1m — XMzgz)/(AYF‘z% — Y_~17Ti — XMzgz)+

1 = ~— T — iy —
eXP |75 (v — Fi@;)' O ' (s — Fyay) iflgz — Piy,)'H; Y(gi — Pry;)
= +(7TZ - ﬁi)l(ﬁi (7'('2‘ — 72')

Concentrate on the terms of the it equation within the exponential

(AY Fyy; = Yoam — XMygi) (AY Fry; — Y ami — XMigi) + (v; — Fiao)' O; ' (v; — Fiay)

> ~ ~ _ =1 —
(9: — Prv;) H, 1(9@' — Pry;) + (mi =)' @ (m; — )

= AN FAY'AY Fpy; — 2nlY \AY Fyy; — 29I M X' AY Fyry; + 2g:M XY 1y + 7Y Yy
+giM{X' X Migi +4;0; 'y, — 240, Fai + @, FO; ' Fias + giH, g
—2g/H: Py + 2, PLH; Py, + 78, 'm; — 20/, 7 + D, T
= 4 (MZ-’X’XMZ- + ﬁ[;l) gi — 24, ((M{X’AYFZ- n ﬁ[;lé-) ;= M;X’Y,m)
! (Yily_l 1+, 1) 7w — o) (YilAYFm +3; 1@)
HVHFAY'AY Fy + O + PIH; ' P))y; — 2410, ' Fa

) TNl = 1_
+a§FZ-'Oi lFiai +7T;<I>Z- T

~ -1
Let Hy = (MX'XMi+H; '), P = [Py Pu] and g,

I
| —
a2
| I
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Where Py = Hy(M!X'AY F; + H; 'P;) and Py = —H;M!X'Y ;
= gH;'g;—2giH; 'P,g, + gP/H, 'Pg, — g,P/H; ' Pig,
+ (YilY,l +§;1) 7 — 27, (YilﬁYFi'yi + 6-7171-)
Y (EAY'AYF; + O + PLH ' Py)y; — 29407 Fia,
+a,FlO; \Fa; + 7%, 7

/
= (gi - Pigi) Ht <9¢ - Pz'g-)
ta! (YilY_1+$Z- — PyH” 1P21) T — o ;(YilAYFera‘lm)
W (FAY'AYF+ O, + PIH; ' — PH; ' Py)y; — 29,0; 'Fia;
T T
+a, F;O; 'Fa; +T®, T
Let ®; = (YilY_1 +$Z~ — Py,H; 1P27,) , Qi = Qu Q] and m; =

{;Z} Where Qy; = ®;Y! | AYF; + Py H; ' Py; and Qo = ®;®; |

i

!/
(Sh’ - Pig.) H! (gi - Pigi)
+mi®; g — 2ml Qi + T QP Qi — mQi0; Qi
A (FEAY'AYF; 4+ O + P/ H; ' Py — PJ;H ' Pyi)y; — 27,07  Fa
V@ PO Fa, + 78, 7

/
- (gi - Piﬂz') H! (gi - Piﬁi) + (M — Qi)' (mi — Qimy)
A FIAY'AYF +O; ' + PIH7 Py — Pl,H; ' Py — Q1,9 Qui) s
—290;  Fia; + @, FlO; ' Fa;, + 7, ( <_’ — Q5@ Zlez) T

Let Oy = (F/AY'AYFi+O0; '+ PUH;'P, = PLH; P = Q4,9; 1Qh) ,
a;

= {ﬁh ﬁgz} al’ldli: |:_

Uy

fes))

} Where F\li = /O\ZGZ_IE and F\Qi =
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le 7 1Q2Z
!
= (gi - Pz'g-) H (gi - Rig-) + (mi — Qim;)' @; (1 — Qim;)
+7,07 1y — 29,07 Fry, + 4/ FO7 ' Fry, — o/ FO7 ' Fiy
+a,FlO; ' Fa; + 7, <__ — Qb D, 1Q21) T

!
= (gi — Pz-gi) H! (gi — Pz-gi) + (mi — Qimy)' @7 (m; — Qim;)
!~

+ (%‘ - E’Y) 0, (%‘ - ﬁﬁ) - V{ﬁ'[a-ﬁlﬁiji

+E,ILEIO lF e +7/ <__ - QZ'L i IQQZ) Uy
Replace the above expression back into the exponential term and absorb
Egﬁgéi—lﬁﬁi, ZQE'O 1FZ’y and T, ( —Q5,9; IQQZ) 7; into proportion-
ality.

Py, gl AY) o< [[Fiy|Fava]|” %
/
n 9 — Pig, H' (g — Py,
exp _%Z (( Qz) )/ S - QT ))
=1 +(%—Fﬁi) 5 (’yz lei)

It can then be shown that

Pl ) <l R Tl (=5 (3= P 0" (3= Fn) ).

b1t AY) < [Lexp (5 = Qo (= @iz ).

i=1

and

n
1 A
p(g|IL, v, AY) Hexp <—§ (gi - Pigi) H! (gi - Pzgl)> )

i=1

-1_ 1A
where O = TO
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D PI‘OOfOfp(Oé, )‘7 62|77 A}/) X p*(Oé, 62|77 AY)p()\‘Oé, 627 7 AY)

Given that the conditional posterior of «, 3, given 7 is

o1l
p(av )‘752|77 AY) x p(Hh/’ AY))|H:'Ba m A=0
" 1 . oIl
o gexp <—§(7Ti — Qim)'®; (i — Qﬂi)) =g A(a, X, By) || o
) o1l
o exp <—§(vec(ﬂ) - 1)’Zﬁ1(vec(ﬂ) - ﬂ)> =g m A=0

1

o exp <—%(U€C(ﬁa) —E)'Zﬁl(vec(ﬁa) _£)> ‘6/5‘%(71—7") ‘aa/P(n—r) ,

where 7 = ( (Qimy)" ... (Qnm,) ) and Xp = diag(Pq, ..., p).
Now, consider the conditional posterior of o, A, 55 given 7y
(@M, Aol AY) o (T, AY)| L
pla, A, Do, p v, I=pa+B, Aay 8(&, )\’ 52)
1
ot exp (—5oeel) = 725 weelTD) = ) ) -0, 30
Ol
>< -
a(aa )‘7 62)
(@M Aol AY) o p(TT, AY)| L
pla, A, Do, p v, I=pa+B, Aay 8(&, )\’ 52)
1 _ Oll
ot exp (5 oeel) = 75 w6l = ) ) I1-s05530 [ 57255
o exp <—%(vec(ﬁa + B ay) — ﬂ)’Eﬁl(veC(ﬁa + B ) — ﬂ))
Ol
X —_—
a(aa )‘7 62)
o exp [—%(vec(ﬁa) +vec(f | Aay) — ﬂ)'Zﬁl(vec(ﬁa) +wvec(f Aay) — 1)}
Oll
>< -
8(&, A) 52)
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o exp ——%(vec(ﬁa) — )2 (vee(Bar) — 1)] X

& exp —%(vec(ﬁa) — ﬂ)/zﬁl(vec(ﬁa) _ K)] ‘5/5‘%(717@ ‘aa/‘%(nfr) y

< |8 H acr|HO,

= p()‘|a7 527 %> AY)p* (O[, 62|’77 AY)

where

1
p(Ma, 83,7, AY) & exp [—5vec(wan’znlvec(ﬁmu —vee(, ML )'S

" ‘ oIl
a(aa )‘7 62)

This implies that «, 85 can be computed from singular value decomposition
of II.

0

E Proof of Generalised Theorem of Waggoner and
Zha

Given that we define

pi
v =T  rjw;, (18)
i=1
and
Ry
= [wi- - |wp,] T iy,
Kop;

The immediate preceding equation implies that
R Pi
F, =T;) Fjuwj. (19)
i=1

Then, the conditional posterior pdf of v; given vq,...,%;_1,%it1s -, ¥ and
;18

T PN
p(72|’717 sy Vi1 Vit "'7’7n7H7 AY) X |[F171|"'|Fn’7n]|TeXp |:_§ ('7@ - EZZ) O;

26

exp —%vec(ﬁj_)\ai)’Zﬁlvec(ﬁl)\al) — vec(ﬁj_)\ou)/zﬁl(vec(ﬁa) - Z)} ‘m

exp | gvec(5L L) Sy vec(B, o) — vee(5, dar 'Sy (vee( o) — E)} ‘W

oIl

oIl

i eelio) — )]



Replace 7, and ﬁﬁi with the expressions found in equations (18) and (19)
respectively into the above equation, then it can be proof that

i T

[Fiv |- AT ) gl | Fay,)
i=1

. . ! . .
T Pi Pi _ . Pi Pi B
exp [—E (E Z K)j’ll)j — T'z Z Kjﬂ)j) Oz (E Z K)j’ll)j — Tz Z K)j’ll)j
i=1 =1 i=1 i=1
T Z T
T — \2 —\2
o |k|" exp <—§(/€1 —R1) ) [exp (-5(@ — %) > :

=2

X
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Figure 1.Distributions of x1
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Figure 2 Marginal posterior parameters’ pdfs and

ues for r =1 and DGP 2
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Figure 2 continues....
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Figure 2 continues
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Figure 2 continues
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Table 1: Marginal likelihoods, Bayes factors and posterior probabilities

Log Marginal  Log Bayes Posterior
r  Likelihoods  Factors (r|3) Probabilities

DGP 1
0 277.27 8.06 0.73
1 276.02 6.82 0.21
2 274.74 5.54 0.06
3 269.20 0 0
DGP 2
0 222.19 -3.34 0
1 231.31 5.78 0.84
2 229.66 4.12 0.16
3 225.53 0 0
DGP 3
0 237.52 -10.84 0
1 256.45 8.09 0.47
2 256.57 8.21 0.53
3 248.36 0 0
DGP 4
0 185.19 -46.01 0
1 202.87 -28.33 0
2 210.99 -20.21 0
3 231.20 0 1

Table 2: Marginal likelihoods, Bayes factors and posterior probabilities for
the KPSW example
Log Marginal  Log Bayes Posterior

r  Likelihoods  Factors (r|6) Probabilities
0 2415.7 13.699 0

1 2410.8 8.7578 0

2 2426.6 24.641 0.008

3 2422.5 20.457 0

4 2415.2 13.209 0

) 2431.5 29.514 0.992

6 2402 0 0
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