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Abstract 
 

 This paper investigates the impact of imposing monotonicity and concavity 
restrictions on the precision of elasticity estimates, firm efficiency scores, and forecasting 
accuracy of cost frontiers.  In particular, the paper focuses on the affect of imposing these 
restrictions in an application forecasting 1999 costs of electricity generating plants using 
Kleit and Terrell’s (2001) sample 1996 plants.  Results indicate improvements in the 
precision of elasticity estimates, efficiency estimates, and forecasting accuracy.  The 
results also suggest that the gains in precision come at no cost in terms of bias. 
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1.  Introduction 

 Economic theory provides strong restrictions on the cost frontier that are often 

ignored in empirical applications.  From a theoretical perspective, monotonicity and 

concavity of the cost function are basic tenets, and little debate exists on those properties.  

From an empirical perspective, there may be both costs and benefits to imposing these 

properties. This paper evaluates the benefits of imposing concavity locally based on 

measures of precision of elasticities and forecasts and measuring the bias of out of sample 

forecasts. 

 The debate on whether to impose restrictions revolves around misspecification. 

Imposing true restrictions on a correctly specified cost frontier unambiguously improves 

efficiency of estimation with no adverse consequences.  When the empirical model is 

viewed as an approximation of the true technology, and thus potentially misspecified, the 

question may be more difficult.  Wales (1977) argues that parameterizations of the 

translog violating concavity may approximate more complex technologies better than a 

restricted version of the translog.  Stated differently, monotonicity and concavity 

restrictions may increase the bias of estimators.  In the case of a misspecified cost 

frontier, the decision on imposing restrictions may require weighing gains in terms of 

efficiency versus costs due to potentially larger misspecification bias.   

 Some earlier attempts to impose concavity support Wales’ conjecture.  Many of 

these efforts to impose concavity relied on using parameter restrictions to force the cost 

frontier to satisfy monotonicity and/or concavity restrictions  globally (at all positive 

prices).  For example, Jorgensen and Fraumeni (1981) provide the restrictions needed to 
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impose concavity globally on the translog.  However, global restrictions also proved to 

limit the flexibility of the functional form.  For the translog, Diewert and Wales (1987) 

showed that this restriction also causes the translog to overestimate the size of  own-price 

elasticities and, for inputs with small own-price elasticities, results in estimates of cross 

price elasticities near sha res.  Global restrictions also proved restrictive for other 

functional forms.  For example, Wales (1977), Terrell (1994), and Gagne and Ouellette 

(1998) find that global monotonicity and concavity restrictions greatly restrict the ability 

of many common functional forms to approximate an unknown cost frontier. 

 Terrell (1996) noted that much of the loss in flexibility stems from imposing 

restrictions at extreme prices where no inferences will be drawn from the study.  As a 

consequence, he suggests imposing monotonicity locally, over the range of prices where 

inferences will be drawn.  Terrell’s (1996) results using Bernt-Wood data suggest that 

imposing local restrictions can ensure a theoretically consistent function without 

sacrificing much in the way of flexibility.  Dorfman and McIntosh (2001) use a Monte 

Carlo experiment that imposes curvature conditions and find that mean square errors of 

estimated elasticities are greatly improved in both small and somewhat large samples.   

Likewise, O’Donnell and Coelli (2004) find significant changes in elasticities and 

improvements in precision when constraints are imposed on distance functions. 

Overall, the literature provides evidence that imposing monotonicity and 

concavity locally leads to substantial gains in precision for real data and evidence that 

precision gains offset any increases in bias in simulated data.  However, the literature 

currently contains no efforts to measure bias in a real application.  This paper fills that 

void.  We measure efficiency directly through the size of posterior standard deviations 
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and highest density regions for elasticities and firm efficiency estimates.  We address bias 

by using the frontier estimated using 1996 data to forecast cost for firms in 1999.  If the 

constraints lead to substantial bias, the forecasts of the constrained model should suffer. 

 Section 2 of this paper provides the translog functional form with monotonicity 

and concavity restrictions.  Section 3 details the data used for the analysis.  Section 4 

provides the statistical model and Section 5 contains the empirical findings of the 

forecasting results.  Concluding remarks are provided in Section 6.       

2.  The Cost Frontier 

 This application consists of estimating the cost frontier for electric power 

generation.  In particular, we will estimate elasticities of substitution using 1996 data for 

electric power generation facilities to summarize the technology and forecast costs of 

firms in 1999.  Though the cost frontier is unknown, theory does tell us a great deal about 

the frontier we seek to approximate.  Let ),( pqc denote the cost frontier, expressed as a 

frontier of output vector )(q  and input price vector )( p .  Microeconomic theory requires 

that cost must satisfy monotonicity in both prices and output, or 0>
∂
∂
p
c

 and 0>
∂
∂
q
c

.   

 The second fundamental property of the cost frontier is concavity in input prices.  

Mathematically, concavity requires that 
'

2

pp
c

∂∂
∂

 be negative semidefinite and rules out an 

upward sloping input demand. Concavity is the property that is most often violated in the 

empirical literature.1 Theory also requires that the cost frontier satisfy homogeneity of 

degree one in the input prices, which requires that )()( ptctpc = , where 0>t .  

                                                 
1 See Diewert and Wales (1987) or Terrell (1996) for further discussion of these violations. 
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  We choose the translog cost frontier to approximate the technology in this 

application.  With three inputs and two outputs as in this application, the translog cost 

frontier is: 
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The translog cost frontier imposes homogeneity of degree one with respect to input prices 

under these conditions.  As a second order approximation to an arbitrary cost frontier, the 

translog also fulfills Diewert’s minimum flexibility requirement for flexible forms.  By 

Shepphard’s lemma, the first derivative of the log cost frontier with respect to the log 

input price produces the share equations associated with a respective input: 

(2) ∑
=

+=
3

1

ln),(
j

jijii pqps αα . 

 For any given price, the regularity conditions can be verified from restrictions 

derived from the translog cost frontier.  Monotonicity in the input prices is ensured by 

nonnegative values of (2).  Let s  represent the vector of n shares, 
∧
s  denote an n x n  

diagonal matrix with the shares making up the main diagonal, and A  denotes the n x n  

symmetric matrix of the parameters ijα .  Diewert and Wales (1987) show that the 

translog cost frontier satisfies concavity if and only if TsssA +−
∧

 is a negative 

semidefinite matrix. 



 

6  

Given the translog frontier, monotonicity in output implies:  

(3)  0ln >+ iii qb γ . 

3.  Data: 

 This study uses 1996 data on electric power generation first used by Kleit and 

Terrell (2001) for estimation.  An updated 1999 version of that data is created to assess 

out of sample forecasts.  Both data sets use data from the Utility Data Institute (UDI) that 

includes plant level information concerning total costs, fuel prices, and two measures of 

output for electricity generating plants for the years 1996 and 1999.  Two measures of 

output are required to take into account the fact that some power plants exist primarily to 

provide output during periods of peak demand.  This data set also provides information 

on plant location and the average price of natural gas burned at each plant.   

 The second data source is the Bureau of Labor Statistics (BLS), which provides 

county level data on manufacturing wages for 1999.  The wage rate in this data set is the 

average annual manufacturing wage for workers in the county where the power 

generating plant is located.     

 For the third data source, Hilt (1996) supplies plant level measures of the capital 

stock, taxes, overhead, depreciation, and operating and management expenses.  

Allocating firm level data to each plant derives all these variables.  Hall and Jorgenson’s 

(1971) method is used to calculate the price of capital using this data set. 



 

7  

 
   

    Table 1 
Summary Statistics for the 1996 Data 

 

Variable Mean S.D. 

Cost (C) 50,653,645.79 51,246,491.93 

Annual Output (q1) 1,537,843.24 1,741,523.54 

Peak Output (q2) 649.32 548.47 

Wage (PL) 45,342.54 7,196.22 

Price of Fuel (PF) 2.71 0.46 

Price of Capital (PK) 1.02 0.39 

Log Relative Wage  3.85 0.16 

Log Relative Fuel Price  1.03 0.40 

 

    Table 2 
Summary Statistics for 1999 Data 

 

Variable Mean S.D. 

Cost (C) 58,475,601.66  88,083,689.22 

Annual Output (q1)   1,666,551.19  2,003,655.62 

Peak Output (q2) 588.10 554.17 

Wage (PL) 53,553.19 15,869.57 

Price of Fuel (PF) 2.70 0.34 

Price of Capital (PK) 0.91 0.28 

Log Relative Wage  4.10 0.46 

Log Relative Fuel Price  0.99 0.11 
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 Tables 1 and 2 contain summary statistics of the Kleit-Terrell (2001) data set 

using 1996 data and for the 1999 data set constructed for this paper.  Note that annual 

output, cost, and wages rose over the three-year period.  The methodology used in this 

paper requires defining a region Ψ, of relative price combinations where monotonicity 

and concavity will be imposed.2  Figure 1 contains a graph of the relative prices in 

Ψ versus the 1999 data and shows that most price combinations lie inside ψ.  

 

 

 

 

                                                 
2 See Terrell (1996) or Kleit and Terrell (2001) for additional discusion on choosing ψ . 
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4.  Methodology: 

 This application uses the Bayesian cost frontier model initially introduced by Van 

den Broeck, Gary Koop, J. Osiewalski, and M. F. Steel (1994).3  We impose 

monotonicity and concavity through the prior.  The cost of an efficient firm is represented 

by the cost frontier ( ),( ii qpf ), which yields the cost that an efficient plant faces given a 

vector of prices )( ip  for inputs used to produce a given level of outputs )( iq .  If a plant’s 

observed cost exceeds that which would be provided by the frontier, then that deviation is 

partly attributable to inefficiency.  Therefore, any deviations from the frontier can be 

used to measure plant inefficiency.   

 As in earlier work, express the log total cost for the plant as: 

(4) .),()ln( iiiii vuqpfc ++=  

The deviation of plant si'  cost from the frontier is comprised of two stochastic error 

terms, inefficiency )( iv  and measurement error )( iu .  The inefficiency error term follows 

an exponential distribution with a scale parameter λ  and ),0(~ 2σIIDNu i .

 Combining the cost frontier above with the translog cost frontier, this yields a 

linear model which can be expressed as: 

(5) 
).(~
),0(~ 2

λ
σ

β

EXPv
Nu

vuXy

i

i

iiii ++=

 

where iy  is the log cost for plant i , iX  is a row vector of independent variables used in 

order to create the translog frontier, β  is a column vector representing the coefficients of 

                                                 
3 The Bayesian frontier model has been widely used in the literature.  For example, see Koop, G., J. 
Osiewalski, and M. F. Steel (1994), Lewis and Anderson (1999),  or Lewis, Springer and Anderson (2003). 
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the translog, iu  is a two-sided error term accounting for measurement error, and iv  is a 

one-sided (non-negative) error term measuring plant inefficiency. 

We choose a flat prior for β, and gamma priors for λ-1 and σ2,  

(6)  
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where ),|( 21 υυ⋅Gf denotes a gamma density with mean υ1/υ2 and variance υ1/υ2
2.  Note 

that with yi defined as log cost, ri=exp(-vi) measures the efficiency of the ith firm and r* is 

simply the prior median for efficiency.  Following van den Broek, Koop, Osiewalski, and 

Steel (1994), and Koop, Osiewalski, and Steel (1994), we set r* to 0.875.4  Fernandez, 

Osiewalski, and Steel (1997) show that an uninformative prior on σ2 may generate an 

improper posterior in a cross-sectional application such as this one.  For the prior on σ2, 

we choose τ to be one and set sp
2 to .03, which implies a weak prior on σ2. 

 As Terrell (1996) notes, the prior can also incorporate monotonicity and concavity 

restrictions. Let h(β) be an indicator function, equal to one if the stochastic frontier 

satisfies monotonicity and concavity for all price combinations in a region of prices and 

output Ψ, and zero otherwise.  The full prior incorporates the restrictions from theory by 

using this indicator function to slice away the portion of the density violating concavity 

and monotonicity: 

 

(7)  ).()()()(),,( 2112 βσπλπβπλσβπ h−−− ∝     

 
                                                 
4 Given the number of observations in this samp le, this implies a weak prior on λ. 
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The prior imposes monotonicity and concavity over all price and output combinations 

where inferences will be drawn or, equivalently sets the probability of parameter values 

which violate microeconomic theory at relevant prices to zero.    Combining the prior and 

the likelihood produces the posterior density, denoted )(θp  , where 

),,,( 2 vλσβθ = .   Εlasticities, efficiency measures, and returns to scale are all functions of 

θ.  Let g(θ) denote a vector containing these functions of interest.  The posterior mean for 

these functions of interest is: 

(8) ∫= θθθθ dpggE )()()]([ . 

   As in most Bayesian applications, these integrals cannot be computed analytically 

and are instead computed using Monte Carlo integration.  Koop, Osiewalski, and Steel 

(1994) first introduced the Gibbs sampler for the stochastic frontier model.  This paper 

uses the variant of the algorithm employed by Kleit and Terrell (2001), which includes a 

proper prior for σ2 and adds an accept-reject element to impose monotonicity and 

concavity restrictions. 

5.  Results: 

 Table 3 presents the posterior moments for the model parameters estimated using 

the 1996 data set.  The results produce very similar estimates of mean efficiency, 14.3% 

for the unconstrained model and 13.2% for the constrained model which imposes 

monotonicity and concavity.  The posterior standard deviations also show a slight 

improvement in precision for estimates of efficiency and more dramatic increases in 

efficiency for other parameters.  The parameters themselves are difficult to interpret, and 

the intuition behind efficiency gains is better understood by looking at shares and 

elasticities.
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Table 3: Posterior Moments for Model Parameters  
(A) Unconstrained 

   
Parameter Mean Std. Dev. 5th percentile  95th percentile  

0α  8.269 2.808 3.534 12.740 

1α  1.400 1.433 -0.876 3.813 

2α  0.267 0.945 -1.281 1.769 

11α  -0.403 0.430 -1.115 0.278 

12α  -0.609 0.393 -1.240 0.053 

22α  0.280 0.336 -0.265 0.830 

1b  -0.409 0.184 -0.704 -0.102 

1γ  0.042 0.007 0.030 0.054 

2b  0.887 0.239 0.494 1.278 

2γ  -0.060 0.020 -0.092 -0.027 
2σ  0.006 0.002 0.003 0.011 

λ  0.143 0.025 0.107 0.187 
 

(B) Constrained 
   

Parameter Mean Std. Dev. 5th percentile  95th percentile  

0α  9.947 1.100 8.117 11.769 

1α  0.614 0.349 0.091 1.234 

2α  0.405 0.342 -0.216 0.895 

11α  -0.140 0.110 -0.327 0.026 

12α  -0.147 0.136 -0.386 0.064 

22α  0.114 0.116 -0.060 0.320 

1b  -0.442 0.195 -0.759 -0.112 

1γ  0.044 0.008 0.031 0.056 

2b  0.845 0.260 0.419 1.278 

2γ  -0.057 0.022 -0.092 -0.021 
2σ  0.010 0.003 0.006 0.014 

λ  0.132 0.022 0.099 0.171 
Note: All computations are based on 5000 iterations of the Gibbs sampler with the first 500 
dropped to avoid sensitivity to starting values. 
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 Table 4 supplies the posterior moments for the shares and elasticities, evaluated at 

the means for prices and output in the 1999 data set.  Focus first on the posterior 

moments for the shares.  The point estimate implied by the posterior mean5 for the labor 

share is implausibly close to zero.  The 90% highest density region of [-.28,.28] contains 

both negative shares and more plausible estimates for the share of expenditure devoted to 

labor.  While the point estimate for the fuel share is more plausible, the 90% highest 

density region is large and contains values greater than one.  Panel (B) contains results 

with monotonicity and concavity imposed.  Note that the highest density regions for 

shares shrink substantially and do not include values less than zero or greater than one.  

The point estimates implied by posterior means also now appear more in line with 

expectations. 

For elasticities, the point estimates deviate more and the gains in precision are 

also more dramatic.  The point estimate for the own price elasticity of labor is .371 and 

predicts that plants will increase their demand for labor in response to an increase in 

wages.  However, a closer look at the posterior standard deviations and highest density 

regions suggests that it is very difficult to draw any strong conclusions from the 

unconstrained model.6  The posterior standard deviation shrinks from 190.9 in the 

unconstrained model to 1.1 in the constrained model.  The constrained model produces 

point estimates and highest density regions that adhere to economic theory and also 

appear similar to those produced in previous studies.  Simply stated, imposing 

                                                 
5 The use of the posterier mean as our point estimate assumes a quadratic loss function. 
6 This result is not an artifact of evaluating the elasticities at 1999 means rather 1996 means, though the 
intervals are slightly larger.  For example, the highest density region for εLL at 1996 means is [-
27.38,24.36]. 
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monotonicity and concavity appears to significantly improve our ability to estimate 

shares and elasticities in this application. 

Table 4: Shares and Elasticities 
 

(A) Unconstrained 
     

 Posterior 
Mean 

Posterior 
Std. Dev. 

5th 
percentile 

95th 
percentile  

SL 0.004 0.174 -0.284 0.282 
SF 0.860 0.171 0.583 1.140 
SK 0.135 0.112 -0.042 0.322 

LLε  0.371 190.892 -17.825 0.824 

FFε  -0.792 0.415 -1.273 -0.818 
KKε  -11.774 584.440 -13.550 -3.737 
LFε  3.031 207.908 -15.962 -0.569 

LKε  -3.402 167.845 -12.098 -0.435 
FLε  0.262 0.379 -0.243 0.313 
FKε  0.530 0.232 0.196 0.505 

KLε  -0.557 167.513 -6.970 1.179 
KFε  12.332 745.610 -14.373 2.611 

 
(B) Constrained 

     
 Posterior 

Mean 
Posterior 
Std. Dev. 

5th percentile 95th 
percentile  

SL 0.144 0.061 0.063 0.144 
SF 0.737 0.071 0.607 0.737 
SK 0.119 0.044 0.051 0.119 

LLε  -2.084 1.057 -4.021 -0.646 

FFε  -0.457 0.175 -0.763 -0.198 
KKε  -1.343 0.305 -1.706 -0.727 
LFε  1.743 1.066 0.331 3.749 

LKε  0.341 0.526 -0.395 1.313 
FLε  0.293 0.153 0.069 0.569 
FKε  0.164 0.085 0.039 0.316 

KLε  0.268 0.537 -0.708 0.995 
KFε  1.074 0.537 0.283 2.028 

Note: All computations are based on 5000 iterations of the Gibbs sampler with the first 500 
dropped to avoid sensitivity to starting values. 
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   Figures 2 and 3 contain marginal density plots which explain the intuition behind 

the improvement in precision.  Notice that the some posterior mass is associated with 

negative share for labor and capital in Figure 2.  Figure 3 shows that the prior slices away 

that mass in the constrained model.  This slicing away of mass is also clear in a 

comparison of LLε , where substantial mass associated with positive own price elasticities 

from Figure 2 is eliminated in Figure 3 by imposing concavity.   

 

Figure 2—Marginal Density Plots for Shares and Elasticities-Unconstrained Model 
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Figure 3—Marginal Density Plots for Shares and Elasticities-Constrained Model 

 

The very large posterior standard deviations for elasticities in the unconstrained 

model are also easily explained in Figure 2.  The marginal density plot for the labor share 

in Figure 2 shows a significant mass near zero.  Because the own price elasticity 

computations involve division by the shares, the mass near zero translates into very 

extreme values of elasticities.  To permit graphs of marginal densities for elasticities, 

these extreme values are all grouped into the last single bar.  For both LLε  and KKε , the 

histograms show significant posterior mass associated with extreme values, which 

translates into large posterior standard deviations. 

Frequentist studies using unconstrained models often do not exhibit the problems 

of the unconstrained Bayesian model for two reasons.  First, by evaluating elasticities at 
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the mode of the likelihood function, point estimates are not influenced by extreme values 

of the distribution.  Second, standard errors and confidence intervals are often computed 

using the delta method which fails to capture problems associated with shares near zero.  

Anderson and Thursby (1986) note that the delta method can provide very misleading 

estimates of confidence intervals for elasticities, even in relatively large samples.  A 

closer look at Gallant and Golub’s (1984) large bootstrap standard errors indicate that 

frequentist studies are not immune to the problem when standard errors are estimated 

more accurately. 

The results above show that incorporating monotonicity and concavity restrictions 

generates substantial improvements in precision, particularly for elasticities.  However, 

the gain in precision could be offset by increased misspecification bias.  To assess the 

degree of misspecification bias, we examine the out-of-sample forecasts for both models.  

In particular, we use the posterior density computed for 1996 data to forecast cost in 1999 

and then compare our forecasts to the observed values.  If the constraints generate 

substantial biases, the forecast accuracy should deteriorate in the constrained model. 
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Table 5 
Forecasting Results 

 
  E[vit+1]=λ vit+1=vit  

Plant 
Actual 
L(Cost) 

Unconstrained 
Forecast 

Constrained 
Forecast 

Unconstrained 
Forecast 

Constrained 
Forecast 

Arsenal Hill 16.253 16.238(0.229) 16.340(0.176)   
Atkinson 15.703 15.784(0.192) 15.805(0.170) 15.852(0.154) 15.846(0.138) 
Barney Davis 18.535 18.537(0.236) 18.618(0.176)   
Baxter Wilson 18.298 18.394(0.178) 18.415(0.170) 18.369(0.127) 18.395(0.126) 
Cedar Bayou 19.227 19.208(0.267) 19.324(0.182) 19.131(0.230) 19.271(0.133) 
Collins 18.682 18.332(0.252) 18.441(0.187)   
Cunningham 17.631 17.613(0.208) 17.645(0.175) 17.537(0.163) 17.589(0.127) 
Cutler (FL) 16.675 16.635(0.197) 16.650(0.172) 16.527(0.143) 16.565(0.118) 
Decordova 18.978 18.903(0.232) 18.981(0.181) 18.836(0.192) 18.918(0.131) 
Deepwater(TX) 16.240 16.121(0.258) 16.243(0.176)   
Delta 16.089 16.089(0.183) 16.103(0.171) 16.013(0.125) 16.046(0.120) 
Eagle Mountain 17.872 17.675(0.242) 17.809(0.175) 17.671(0.211) 17.795(0.135) 
East River 17.621 16.482(0.254) 16.659(0.177)   
Eaton 16.321 15.983(0.217) 16.041(0.181) 15.975(0.162) 16.016(0.132) 
Edgewater(OH) 16.225 15.874(0.232) 15.959(0.176) 15.785(0.192) 15.888(0.130) 
Fort Phantom 17.623 17.538(0.213) 17.563(0.178)   
Gadsby 16.737 16.621(0.203) 16.657(0.171) 16.632(0.155) 16.675(0.136) 
Gordon Evans 17.413 17.462(0.234) 17.547(0.173) 17.348(0.191) 17.455(0.117) 
Graham 18.400 18.372(0.217) 18.429(0.176) 18.312(0.175) 18.383(0.130) 
Greens Bayou 17.440 17.335(0.240) 17.437(0.173) 17.250(0.189) 17.359(0.120) 
Greenwood(MI) 18.128 17.984(0.233) 18.113(0.176) 17.965(0.205) 18.049(0.127) 
Handley 18.774 18.559(0.241) 18.686(0.176) 18.545(0.207) 18.666(0.134) 
Harvey Couch 16.118 15.976(0.214) 16.009(0.177)   
Hunters Point 17.107 16.677(0.191) 16.715(0.170)   
Hutchinson 16.351 16.199(0.204) 16.238(0.171) 16.229(0.152) 16.260(0.137) 
Jones 18.162 18.157(0.210) 18.203(0.173) 18.093(0.165) 18.161(0.126) 
Knox Lee 17.849 17.836(0.210) 17.885(0.173) 17.775(0.167) 17.837(0.125) 
La Palma 16.998 16.892(0.187) 16.906(0.173)   
Lake Catherine 17.748 17.838(0.189) 17.845(0.170) 17.805(0.144) 17.808(0.127) 
Lake Creek  17.596 17.454(0.223) 17.549(0.175) 17.361(0.182) 17.484(0.126) 
Lake Hubbard 18.619 18.546(0.258) 18.690(0.176) 18.499(0.232) 18.650(0.131) 
Lake Pauline 14.804 14.751(0.269) 14.946(0.201)   
Laredo 17.109 16.902(0.202) 16.920(0.176)   
Lewis Creek 17.474 17.589(0.174) 17.683(0.170) 17.548(0.125) 17.608(0.115) 
Lieberman 17.016 16.829(0.226) 16.927(0.173)   
Little Gypsy 18.191 18.256(0.236) 18.338(0.174)   
Lon Hill 17.948 17.916(0.231) 17.992(0.173) 17.818(0.188) 17.919(0.122) 
Lone Star 15.201 15.303(0.254) 15.484(0.188)   
Maddox 17.050 16.863(0.221) 16.921(0.181) 16.838(0.176) 16.898(0.137) 
Michoud 18.374 18.465(0.203) 18.498(0.171) 18.427(0.161) 18.484(0.130) 
Morgan Creek 18.352 18.416(0.205) 18.451(0.171) 18.334(0.157) 18.396(0.121) 

Note: All computations are based on 5000 iterations of the Gibbs sampler with the first 500 dropped to avoid sensitivity 
to starting values.  Posterior standard deviations are in parenthesis. 
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Table 5 

Forecasting Results (continued) 
 
  E[vit+1]=λ vit+1=vit  

Plant 
Actual 
L(Cost) Unconstrained Constrained Unconstrained Constrained 

Murray Gill 17.101 17.038(0.252) 17.184(0.175) 16.986(0.214) 17.141(0.130) 
Mustang 17.600 17.656(0.215) 17.725(0.173) 17.557(0.160) 17.642(0.117) 
Nichols 17.790 17.776(0.213) 17.835(0.173) 17.702(0.170) 17.774(0.123) 
Ninemile Point 19.324 19.263(0.208) 19.297(0.175) 19.228(0.161) 19.279(0.131) 
North Lake 17.921 17.902(0.219) 17.963(0.171) 17.817(0.174) 17.902(0.122) 
Northeastern  18.016 18.084(0.212) 18.134(0.171)   
Nueces Bay 18.257 18.295(0.237) 18.377(0.175) 18.200(0.195) 18.306(0.124) 
Oak Creek (TX) 16.420 16.203(0.240) 16.253(0.191)   
Ocotillo 17.457 16.890(0.231) 16.989(0.173) 16.828(0.196) 16.930(0.124) 
Paint Creek 16.976 16.656(0.315) 16.759(0.210) 16.574(0.289) 16.700(0.172) 
Permian Basin 18.591 18.544(0.214) 18.578(0.177) 18.496(0.172) 18.551(0.133) 
PH Robinson 19.484 19.433(0.267) 19.550(0.182) 19.378(0.233) 19.517(0.139) 
RE Ritchie  17.263 16.818(0.172) 16.905(0.168) 16.788(0.105) 16.849(0.116) 
Reeves 15.816 15.830(0.198) 15.852(0.171) 15.798(0.151) 15.829(0.129) 
Rex Brown 16.615 16.384(0.178) 16.422(0.169) 16.325(0.125) 16.380(0.121) 
Riverside (GA) 15.644 15.158(0.226) 15.244(0.180) 15.196(0.174) 15.259(0.142) 
Riverside (MD) 15.982 15.354(0.251) 15.521(0.182) 15.495(0.215) 15.572(0.147) 
Riverside (OK) 15.947 15.336(0.248) 15.492(0.182) 15.462(0.211) 15.537(0.147) 
Sabine 19.296 19.374(0.232) 19.446(0.179) 19.303(0.188) 19.397(0.130) 
Saguaro 17.007 16.673(0.223) 16.762(0.178) 16.600(0.185) 16.691(0.129) 
Sam Bertron 17.917 17.820(0.231) 17.903(0.172) 17.760(0.176) 17.846(0.123) 
Seminole (OK) 18.974 18.855(0.220) 18.923(0.175)   
Sewaren 16.931 16.487(0.230) 16.577(0.174)   
Southwestern 17.352 17.369(0.196) 17.385(0.170) 17.392(0.146) 17.325(0.120) 
Starlington 17.356 17.460(0.224) 17.527(0.172)   
Stryker Creek 18.376 18.423(0.212) 18.473(0.173) 18.377(0.166) 18.443(0.129) 
Sweatt 16.166 16.003(0.208) 16.039(0.177) 15.948(0.150) 15.996(0.127) 
TH Wharton 17.051 16.670(0.227) 16.732(0.179) 16.739(0.196) 16.791(0.151) 
Tradinghouse 19.293 19.245(0.223) 19.319(0.177) 19.216(0.180) 19.302(0.133) 
Tulsa 17.280 17.147(0.224) 17.248(0.174) 17.079(0.184) 17.181(0.124) 
Turkey Point  18.588 18.641(0.215) 18.680(0.177) 18.558(0.170) 18.617(0.128) 
Valley (CA) 16.636 15.354(0.226) 15.415(0.186) 16.938(0.172) 16.987(0.150) 
Victoria (TX) 17.414 17.515(0.210) 17.562(0.171)   
Waterford 1 &2 18.126 18.129(0.249) 18.225(0.175)   
Waterside (NY) 17.374 16.849(0.214) 16.912(0.173) 17.334(0.180) 17.388(0.148) 
West 
Springfield 16.458 15.358(0.180) 15.395(0.170) 15.390(0.134) 15.382(0.129) 
Wilkes 18.097 18.153(0.202) 18.168(0.173)   
Willow Glen 18.780 18.646(0.259) 18.752(0.179) 18.614(0.228) 18.743(0.139) 
Zuni 14.601 14.585(0.206) 14.624(0.181) 14.586(0.138) 14.617(0.129) 

Note: All computations are based on 5000 iterations of the Gibbs sampler with the first 500 dropped to avoid sensitivity 
to starting values.  Posterior standard deviations are in parenthesis. 
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An additional forecasting assumption is required because 58 of the 80 firms in our 

sample also appeared in the 1996 sample.  Adding time subscripts to equation (5) helps 

explain this issue: 

(9) 1999,1999,1999,1999, iiii vuxy ++= β  

For firms not included in the 1996 sample, no information exists and based on our initial 

model 1999,iv  is distributed exponential with shape parameter λ.7  The same distribution is 

appropriate for firms in both samples if we assume efficiency is time specific, or 1999,iv  

and 1996,iv  are independent.  The first two forecast columns of Table 5 provide forecasts 

under this assumption.  The last two columns present forecasts for the 58 firms in both 

samples assuming 1996,1999, ii vv =  or that inefficiency is firm, not time, specific.  Notice 

that the forecasts are missing from these columns for firms that do not appear in both 

samples. 

Table 6 contains common forecast evaluation statistics and the average of the 

posterior standard deviations across all forecasts for three sets of forecasts.  The first two 

rows contain statistics for the unconstrained and constrained models assuming errors are 

independent over time.  The third and fourth rows contain forecast evaluation statistics 

across 58 firms under the assumption that inefficiency errors are firm specific.  Finally, 

the last two rows contain results assuming independence of errors across time, but using 

only forecasts for the 58 firms in both samples.   

                                                 
7 Note that the actual cost is as unknown in the forecast.  Koop, Osiewalski, and Steel (1994) provide the 
conditional distribution for the case where cost is known. 
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Within each group, constrained models appear slightly better than unconstrained 

models by all measures.8    At the very least, the forecast results provide no evidence that 

monotonicity and concavity restrictions increase bias.  The forecasts for firms in the 

sample for both 1996 and 1999 appear no better than those for firms first appearing in 

1999 if efficiency is assumed independent over time.  However, forecasting generally 

improves for the model assuming firm specific inefficiency.  With the exception of the 

mean error criteria, the constrained model with firm specific inefficiency errors 

outperforms the other models. 

 

Table 6 
Measures of Forecasting Accuracy 

 
Model R2 Mean 

Error 
MSE MAE Mean(SD) 

E[vit+1]=λ,n=80:      
Unconstrained .917 .153 .097 .188 .222 
Constrained .935 .080 .075 .168 .176 
vit+1=vit:      
Unconstrained .948 .159 .069 .185 .176 
Constrained .962 .088 .051 .138 .130 
E[vit+1]=λ,n=58:      
Unconstrained .916 .157 .098 .188 .220 
Constrained .934 .087 .077 .162 .177 
 

 6.  Conclusion 

 The results in this paper find that imposing monotonicity and concavity improves 

precision and leads to more accurate forecasts in an application to electricity generating 

plants.  Overall the gain in precision is quite large for elasticities, still substantial for 

shares, and more modest for forecasts of firm level log cost.  The intuition behind this 

                                                 
8 Matched pair t-tests indicate that the mean error, mean square error and mean absolute error of the 
constrained and unconstrained models are statistically significant for all three pairs. 
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result lies with an assessment of the information present in the data about each of these 

variables.  One would expect the data provides more information about the cost frontier 

itself than about its first derivative (shares) or second derivative (elasticities).  Thus, our 

results suggest that monotonicity and concavity restrictions offer the most potential for 

gains where the information from the data is weakest. 

These results clearly suggest that similar empirical studies could benefit from 

imposing conditions implied by economic theory, particularly if the goal is to estimate 

elasticities.  The next step in this research agenda lies in measuring the impact of 

constraints in applications using other data sets with varying sample sizes.  It would also 

be useful to measure precision gains and bias for alternative models (SUR models of 

input demands, distance functions, etc.) and in applications focusing on profit functions 

and indirect utility functions.  In the application the conclusion is clear -- economic 

theory matters.   
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