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Abstract. Economists and other social scientists often encounter data generating mechanisms (dgm’s)

that produce censored or truncated observations. These dgm’s induce a probability distribution on the

realized observations that differs from the underlying distribution for which inference is to be made.

If this dichotomy between the target and realized populations is not taken into account, statistical

inference can be severely biased. In this paper, we show how to do efficient semiparametric inference

in moment condition models by supplementing the incomplete observations with some additional data

that is not subject to censoring or truncation. These additional observations, or refreshment samples

as they are sometimes called, can often be obtained by creatively matching existing datasets. To

illustrate our results in an empirical setting, we show how to estimate the effect of changes in com-

pulsory schooling laws on age at first marriage, a variable that is censored for younger individuals,

and also demonstrate how refreshment samples in this application can be created by matching cohort

information across census datasets.

1. Introduction

In applied research, economists and other social scientists often encounter data generating
mechanisms (dgm’s) that produce censored or truncated observations. These dgm’s induce a prob-
ability distribution on the resulting data, the realized population, that differs from the underlying
distribution for which inference is to be made, the target population. If this dichotomy between the
target and realized populations is not taken into account, statistical inference can be severely biased.

To formulate this mathematically, let the triple (Z∗, f∗, µ∗) describe the target population,
where Z∗ is a random vector (following usual mathematical convention, “vector” means a column
vector) in Rd that denotes an observation from the target population, and f∗ is the unknown density
of Z∗ with respect to some dominating measure µ∗ = ⊗d

i=1µ
∗
i . Note that since Z∗ is allowed to have

discrete components, the µ∗i ’s need not all be Lebesgue measures. Similarly, let (Z, f, µ) represent the
realized population, where Z denotes an observation from the realized population and f its density
with respect to a dominating measure µ = ⊗d

i=1µi. The basic inferential problem can now be succinctly
stated as: The model comes from f∗ but the data comes from f .
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In this paper, we investigate models where f∗ is different from f because some or all coordinates
of Z∗ are censored, or, truncated. The main objective is to develop new techniques that will allow
economists to do efficient semiparametric inference by supplementing the original incomplete obser-
vations (the master sample) with some additional data (the refreshment sample) that are complete,
i.e., not subject to the mechanism that created the censored or truncated observations. Note that the
existence of refreshment samples should not be regarded as being an overly restrictive requirement.
As illustrated in Section 6, they can often be constructed by creatively matching existing datasets.

The idea of using supplementary or refreshment samples to ensure identification in incomplete,
biased sampling, or measurement error models has of course been recognized earlier; see, e.g., Manski
and Lerman (1977), Titterington (1983), Titterington and Mill (1983), Vardi (1985), Ridder (1992),
Carroll, Ruppert, and Stefanski (1995), Wansbeek and Meijer (2000), Hirano, Imbens, Ridder, and
Rubin (2001), Tripathi (2003), and the references therein. However, the use of matching to facilitate
moment based inference in overidentified models with incomplete data seems to be new to the literature
and the results obtained in this paper cannot be found in any of the references cited here.

Our inferential approach is based on the generalized method of moments (GMM) proposed by
Hansen (1982) and empirical likelihood (EL) proposed by Owen (1988). We focus on GMM because
its unifying approach and wide applicability has made it the method of choice for estimating and
testing nonlinear economic models. Its availability in canned software packages has also added to its
popularity with applied economists. An excellent exposition on GMM can be found in Newey and
McFadden (1994). We also look at EL because it has lately begun to emerge as a serious contender
to GMM; see, e.g., Qin and Lawless (1994), Imbens (1997), Kitamura (1997), Smith (1997), Owen
(2001), and the 2002 special issue of the Journal of Business and Economics Statistics.

This paper illustrates the advantages of using supplementary samples to handle incomplete
data: Many partially observed or missing data models in applied work are identified by assuming that
the selection probabilities (i.e., the probability that an observation is fully observed) — or propen-
sity scores, as they are often called — are completely known or can be parametrically modelled;
see, e.g., Robins, Rotnitzky, and Zhao (1994), Robins, Hsieh, and Newey (1995), Nan, Emond, and
Wellner (2002), and the references therein. However, as noted by Horowitz and Manski (1998), these
assumptions lead to stochastic restrictions that are usually not testable. In contrast, since we rely
upon a refreshment sample to provide identifying power, the selection probabilities in this paper are
fully nonparametric (i.e., completely unrestricted) and, hence, we can avoid the above mentioned
non-testability problems. More generally, in this paper we demonstrate how a supplementary sample
allows standard GMM and EL based inference, including tests of overidentifying restrictions, with
censored or truncated data to go through without imposing parametric, independence, symmetry,
quantile, or special regressor restrictions.

Furthermore, there is no need to worry about issues relating to heteroscedasticity because GMM
and EL automatically produce correct standard errors, and, unlike quantile restriction models, there
is no need to restrict attention to scalar error terms or use any nonparametric smoothing procedures
to estimate asymptotic variances. Extension to the multivariate case is straightforward and the usual
analogy principle that delivers standard errors for GMM or EL works here as well.
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The treatment proposed here is general enough to handle censoring and truncation of some or all
coordinates of both endogenous and exogenous variables and the results obtained here are applicable
to a large class of potentially overidentified models which nest linear regression as a special case; e.g.,
the ability to handle IV models permits semiparametric inference in Box-Cox type transformation
models using censored or truncated data without imposing parametric or quantile restrictions.

The rest of the paper is organized as follows. In Section 2 we set up the moment based
model and describe how to deal with the censoring or truncation of random vectors in a multivariate
framework, several examples of which are given in Section 3. Section 4 shows how censored data can
be combined with a refreshment sample to do efficient moment based inference and Section 5 does the
same with truncated data. Section 6 contains an interesting application where refreshment samples
are obtained by matching census datasets. Section 7 concludes by addressing some topics for future
research. Proofs, tables, and figures are all in the appendices.

2. Setup

The econometric models we consider can be expressed in terms of moment conditions as follows.
Let Θ be a subset of Rp such that

H0 : Ef∗{g(Z∗, θ∗)} = 0 for some θ∗ ∈ Θ, (2.1)

where g is a q×1 vector of known functions with q ≥ p and Ef∗ denotes expectation with respect to the
pdf f∗. Models specified via moment conditions are particularly important for structural estimation:
Since economic theory attributes outcomes at the micro level to optimizing behavior on the part of
firms or individuals, moment based models arise naturally in microeconometrics as solutions to the
first order conditions of the stochastic optimization problems economic agents are assumed to solve.

Well-known statistical examples of (2.1) include linear regression models Y ∗ = X∗′θ∗ + ε,
where the error term is uncorrelated with the regressors; i.e., Ef∗{X∗ε} = 0. Here g(Z∗, θ∗) =
X∗{Y ∗ −X∗′θ∗} and Z∗ = (Y ∗, X∗), where Y ∗ denotes the endogenous variable and X∗ the vector
of explanatory variables. This can be extended to nonlinear regression models of the form Y ∗ =
ψ(X∗, θ∗)+ε, where ψ is known up to θ∗ and Ef∗{∂ψ(X∗,θ∗)

∂θ ε} = 0. Other generalizations include linear
and nonlinear regression models with endogenous regressors and multivariate simultaneous equations
models where the error terms are uncorrelated with some or all of the explanatory variables.

The class of models defined in (2.1) also contains instrumental variables (IV) models. Suppose
we have the conditional mean restriction EY ∗|X∗{g̃(Y ∗, X∗, θ∗)|X∗} = 0 w.p.1, where g̃ is a k × 1
vector of known functions and Y ∗ the vector of endogenous variables. Letting A(X∗) denote a q × k

matrix of instruments, this yields unconditional moment restrictions of the form Ef∗{g(Z∗, θ∗)} = 0,
where g(Z∗, θ∗) = A(X∗)g̃(Y ∗, X∗, θ∗).

If the target variable Z∗ is fully observed, then (2.1) is easily handled; see, e.g., Newey and
McFadden (1994). But in many cases economists cannot fully observe Z∗. For instance, variables often
get censored due to administrative reasons; e.g., government agencies routinely “top-code” income data
before releasing it for public use. Similarly, studies investigating the length of unemployment spells
can terminate prematurely due to financial constraints before all subjects have found employment.
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So suppose that all coordinates of Z∗ are right-censored; i.e., instead of observing Z∗ we observe
the random variable Z = (Z(1), . . . , Z(d))d×1, where

Z(i) =





Z∗(i) if Z∗(i) < c(i)

c(i) otherwise
for i = 1, . . . , d

and c = (c(1), . . . , c(d)) is a d× 1 vector of known constants1.
We allow for the possibility that some components of Z∗ may not be censored: If, say, the

ith coordinate of Z∗ is not subject to the censoring mechanism, simply set c(i) = ∞; if the ith and
jth coordinates of Z∗, denoted by Z∗(i,j), are not subject to censoring, then set c(i,j) = (∞,∞); etc..
Hence, in applications where the target variable Z∗ can be decomposed into endogenous and exogenous
parts as (Y ∗, X∗), we can handle situations where only Y ∗ is censored (pure endogenous censoring),
or only X∗ is censored (pure exogenous censoring)2, or only some coordinates of either variables are
censored. Left censoring of, say, the ith, jth, and kth coordinates can also be accommodated by
replacing Z∗(i,j,k) with −Z∗(i,j,k) and c(i,j,k) with −c(i,j,k).

Let S∗ denote the survival function induced by f∗, i.e., S∗(ξ) = Prf∗(∩d
i=1{Z∗(i) > ξ(i)}), and

δc the Dirac measure at c, i.e., δc(A) = I(c ∈ A), where I is the indicator function. To keep matters
simple, we assume that µ∗ does not have an atom at c. This assumption, which can be relaxed at the
cost of greater mathematical complexity, is weaker than requiring µ∗ to be a Lebesgue measure (the
usual assumption made for censored regression models).

If d = 1, the density of Z with respect to the dominating measure µ = µ∗ + δc is given by

f(z) = f∗(z)I(z < c) + S∗(c)I(z = c). (2.2)

The density of Z when it is vector valued is also straightforward to derive but requires some additional
notation. So let Z∗−(i,j,k) denote coordinates of Z∗ that remain after the ith, jth, and kth ones have
been deleted, f∗−(i,j,k) the joint density of Z∗−(i,j,k), and S∗i,j,k|−(i,j,k) the conditional survival function

induced by f∗i,j,k|−(i,j,k), the conditional density of Z∗(i,j,k)|Z∗−(i,j,k). It is then easy to show that for

d > 1 the density of Z with respect to µ = ⊗d
i=1µi, where µi = µ∗i + δ

(i)
c , is given by

f(z) = f∗(z)I(z
elt
< c) +

d−1∑

r=1

d−r+1∑

i1=1

d−r+2∑

i2=i1+1

. . .

d∑

ir=ir−1+1

S∗i1,...,ir|−(i1,...,ir)(c
(i1,...,ir))f∗−(i1,...,ir)(z

−(i1,...,ir))

× I(z(i1,...,ir) = c(i1,...,ir), z−(i1,...,ir) elt
< c−(i1,...,ir)) + S∗(c)I(z = c), (2.3)

1The results obtained in this paper continue to hold in a more general fixed censoring framework where the censoring

point is modelled as a random variable C with unknown distribution such that C is observed for censored as well as

uncensored observations. See, e.g., the application in Section 6.
2The term “exogenous” is, strictly speaking, an abuse of terminology since (2.1) does not involve any conditioning

although, as mentioned earlier in the introduction, (2.1) does nest IV models based on conditional moment restrictions.

Therefore, the careful reader may want to substitute “censoring (resp. truncation) based on explanatory variables” for

“exogenous censoring (resp. truncation)” whenever the latter is encountered.
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where
elt
< denotes element-by-element strict inequality; i.e., I(z

elt
< c) =

∏d
i=1 I(z(i) < c(i)). Of course,

z = c still denotes element-by-element equality; i.e., I(z = c) =
∏d

i=1 I(z(i) = c(i)). Note that f has
support (−∞, c(1)]× . . .× (−∞, c(d)] with an atom at c.

Sometimes censoring is so severe that the target variable is completely unobserved outside a
certain region. This phenomenon is called truncation; e.g., in many job training programs subjects are
allowed entry only if their household income falls below a certain level. If Z∗ is a truncated random
variable, then instead of observing Z∗ we observe

Z =





Z∗ if Z∗ ∈ T

unobserved otherwise,

where T denotes a known region in Rd such that Z∗ lies in T with positive probability. In this case,
the density of Z with respect to µ∗ is given by

f(z) =
f∗(z)I(z ∈ T )∫

T f∗(z) dµ∗
. (2.4)

Note that f has support T . As before, we allow for the possibility that some coordinates of Z∗ may
not be truncated: In typical applications, T will be a rectangle of the form I1 × . . . × Id, where the
Ij ’s are known fixed intervals. If, say, Z∗(i,j,k) are not truncated, then simply let Ii = Ij = Ik = R.

Since in this paper we assume that f∗ and, hence, f are completely unknown, censoring or
truncation of Z∗ creates a fundamental identification problem. To see this, first note that since Z is
the observed version of Z∗, the realized density f is identified by definition. However, as is evident
from (2.2)–(2.3) and (2.4), the target density f∗(z) cannot be expressed in terms of f(z) for all z ∈ Rd.
In other words, f∗ cannot be fully recovered from f ; i.e., f∗ is not identified. But if there is no way
of going from the realized density (loosely speaking, the “reduced form”) to the target density (the

“structural form”), then statistical inference about f∗ and, hence, the target cdf F ∗(ξ) = Prf∗(Z∗
elt≤ ξ)

is impossible3. So the first task is to overcome this lack of identification. Basically, this is done by
requiring additional information about f∗.

The information needed to ensure identification of f∗ can come in different guises. For instance,
the classical solution is to simply assume that f∗ is known up to a finite dimensional parameter.
Hence, identification of the finite dimensional parameter ensures that f∗ is also identified. There is
a huge literature on showing how to do maximum likelihood estimation with incomplete observations
if a parametric model for f∗ is acceptable. See, e.g., Hausman and Wise (1976, 1977), Dempster,

3Since distribution functions characterize random variables, estimating F ∗(ξ) at each ξ ∈ Rd determines the proba-

bilistic behavior of Z∗. Efficient estimation of the target cdf is important for bootstrapping from the target population.

Brown and Newey (2002) note that when prior information about the target population is available, merely using a

consistent estimator of F ∗ can lead to poor inference from the bootstrap. They recommend that resampling be done

using F̂ ∗, an efficient estimator of F ∗ that incorporates restrictions imposed by the model (2.1). Estimating the realized

cdf under (2.1) is also useful because comparing it with F̂ ∗ can help reveal the extent of bias induced by censoring or

truncation. Of course, F̂ ∗ can always be compared with the empirical cdf of the observed data. But since the latter

does not take the model into account, it will be less precise (though more robust) than an estimator of the realized cdf

under (2.1).
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Laird, and Rubin (1977), Maddala (1983), Amemiya (1985), and the many references therein. A
related methodology was suggested by Heckman (1976, 1979), who used the Gaussian framework to
motivate his famous “two step” bias corrected estimator now widely used in applied work. However,
as noted in Vella (1998), the maximum likelihood and two step approaches are very sensitive and non-
robust to parametric distributional assumptions. Therefore, if it is not feasible to make such strong
distributional assumptions, then other approaches that do not require a parametric specification for
f∗ have to be used instead.

The real challenge in working with censored or truncated data arises when f∗ is completely
unknown. Most of the literature in this area, see Powell (1994) for a useful survey, seems to have
focused on the tobit model with different authors using different assumptions to identify the finite di-
mensional parameters4. For example, Bhattacharya, Chernoff, and Yang (1983), Chamberlain (1986),
Duncan (1986), Fernandez (1986), Horowitz (1986, 1988), Cosslett (1987, 1991), Tsui, Jewell, and
Wu (1988), Moon (1989), and Honoré and Powell (1994) assume that ε and X∗ are independent;
Powell (1983, 1984, 1986a), Nawata (1990), Newey and Powell (1990), Buchinsky and Hahn (1998),
Chen and Khan (2001), Khan and Powell (2001), and Hong and Tamer (2003) assume knowledge of
some quantile of the conditional distribution of ε given X∗; Powell (1986b), Newey (1988), and Lee
(1993a, 1993b) assume that the distribution of ε|X∗ is symmetric. More recently, a different set of
assumptions involving the existence of a “special regressor” that is continuously distributed, has large
support, and satisfies a certain exclusion restriction, have been used by Khan and Lewbel (2003) to
identify slope coefficients in a truncated regression model.

Although independence, symmetry, quantile, or special regressor restrictions suffice to identify
finite dimensional parameters, they are not strong enough to permit consistent estimation of the target
cdf F ∗(ξ) at each ξ ∈ Rd because they cannot ensure identification of the target density itself. In
contrast, we ensure identification of f∗ (and, hence, F ∗) by assuming that in addition to the original
incomplete data (i.e., the master sample) we also have a set of supplementary observations that are
unaffected by censoring or truncation (i.e, the refreshment sample).

To be precise, we assume henceforth that the realized random variable Z has density5

fe(z) =





K0f
∗(z)I(z

elt
6= c) + (1−K0)f(z) if Z∗ is censored

K0f
∗(z) + (1−K0)f(z) if Z∗ is truncated,

(2.5)

where K0 ∈ (0, 1] is a known constant, I(z
elt
6= c) =

∏d
i=1 I(z(i) 6= c(i)), and, depending on whether Z∗

is censored or truncated, f is given by (2.2)–(2.3) or (2.4). Note that if Z∗ is censored then fe is a
density with respect to µ and has an atom at c, whereas if Z∗ is truncated then fe is a density with
respect to µ∗.

4Newey (2001) has some general results regarding the kind of restrictions on the distribution of ε|X∗ that lead to

n1/2-consistent estimation of the regression coefficients.
5Since f∗ is a density with respect to µ∗, it is only identified up to sets of µ∗-measure zero. Therefore, if Z∗ is censored

then f∗(z)I(z
elt

6= c) is a µ∗-version of f∗ and, hence, Ef∗{g(Z∗, θ∗)} = 0 if and only if Ef∗ [g(Z∗, θ∗)I(Z∗
elt

6= c)] = 0.
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Loosely speaking, K0 denotes the probability of sampling from the whole target population
without subjecting the observations to censoring or truncation. As a practical example, consider a
dataset of 100 observations, 90 of which belong to the original sample of censored observations and
the remaining 10 constitute the uncensored supplementary sample. Hence, K0 = 0.10 and this dataset
can be regarded as a random sample from fe. The no censoring or truncation case corresponds to
setting K0 = 1. In Sections 4.1 and 5.1 we show how this enriched density can be used to identify f∗.
Once questions regarding identification are settled, we can proceed with estimating and testing (2.1).

3. Examples

In this section we look at some examples of censoring and truncation in a multivariate frame-
work. The primary aim is to illustrate what happens in linear models when more than one variable
is partially observed. Examples 3.2 and 3.4 are particularly instructive.

Example 3.1 (Censored mean). Suppose we want to estimate θ∗ = Ef∗{Z∗}, the mean of the
target population. Since Z∗ is censored from above, instead of a random sample Z∗1 , . . . , Z∗n from
the target density f∗ we have a random sample Z1, . . . , Zn from the realized density f defined in
(2.2) or (2.3). Therefore, the naive estimator

∑n
j=1 Zj/n will not consistently estimate θ∗ because∑n

j=1 Zj/n
p−→ Ef{Z} by the weak law of large numbers (WLLN)6 but

Ef∗{Z∗} 6= Ef{Z} =




Ef∗{Z∗I(Z∗ < c)}+ cS∗(c) if d = 1

Ef∗{Z∗I(Z∗
elt
< c)}+

∑d−1
r=1 Ef∗{Z∗r }+ cS∗(c) if d > 1,

where, for any function h(·), the symbol

hr(Z∗) =
d−r+1∑

i1=1

d−r+2∑

i2=i1+1

. . .

d∑

ir=ir−1+1

h(Z∗[i1, . . . , ir])I(Z∗(i1,...,ir) elt
> c(i1,...,ir), Z∗−(i1,...,ir) elt

< c−(i1,...,ir))

denotes h evaluated at exactly r censored coordinates and Z∗[i1, . . . , ir] stands for Z∗ with its i1, . . . ,
irth coordinates replaced by c(i1), . . . , c(ir), respectively, and the remaining coordinates unchanged;
i.e., Z∗[i1, . . . , ir] = Z∗

∣∣
Z∗(i1,...,ir)=c(i1,...,ir) . ¤

Example 3.2 (Censored linear regression). Let Y ∗ = X∗′θ∗ + ε, where Ef∗{X∗ε} = 0. Suppose that
both Y ∗ and X∗ are censored. Hence, instead of observing Z∗ = (Y ∗, X∗)(p+1)×1 from the target
density f∗, we observe Z = (Y, X) from the realized density f defined in (2.3). If we ignore censoring
and simply regress Y on X, then θ∗ cannot be consistently estimated by the least squares estimator
θ̃ = (

∑n
j=1 XjX

′
j)
−1

∑n
j=1 XjYj . To see this, observe that the probability limit of θ̃ is given by

(EfXX ′)−1(EfXY ) = (Ef∗{X∗X∗′I(Y ∗ < c(1), X∗ elt
< c−(1)) +

d−1∑

r=1

(X∗X∗′)r + c−(1)c−(1)′S∗(c)})−1

× Ef∗{X∗Y ∗I(Y ∗ < c(1), X∗ elt
< c−(1)) +

d−1∑

r=1

(X∗Y ∗)r + c−(1)c(1)S∗(c)}, (3.1)

6Throughout the paper, all limits are taken as the sample size n ↑ ∞.
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where d = p + 1 and, in the notation introduced in Example 3.1,

(X∗Y ∗)r =
d−r+1∑

i1=1

d−r+2∑

i2=i1+1

. . .
d∑

ir=ir−1+1

(X∗Y ∗)
∣∣
(Y ∗,X∗)(i1,...,ir)=c(i1,...,ir)

I(Z∗(i1,...,ir) elt
> c(i1,...,ir), Z∗−(i1,...,ir) elt

< c−(i1,...,ir)), (3.2)

and (X∗X∗′)r is obtained by replacing Y ∗ in (3.2) with X∗′. Hence, plim(θ̃) 6= (Ef∗X
∗X∗′)−1(Ef∗X

∗Y ∗).
The special case of pure endogenous censoring, frequently called the tobit or limited dependent

variable model in the econometrics literature, is obtained by letting c−(1) = (∞, . . . ,∞) and using the
convention that 0 · ∞ = 0. Doing so, (3.1) implies that

plim(θ̃) = θ∗ − {Ef∗X
∗X∗′}−1Ef∗{X∗(Y ∗ − c(1))I(Y ∗ > c(1))} 6= θ∗,

as is well known from tobit theory.
However, a fact that does not seem to be as widely known is that the least squares estimator

remains inconsistent even if censoring is purely exogenous. In particular, by letting c(1) = ∞ in (3.1),

plim(θ̃) = {Ef∗ [X∗X∗′I(X∗ elt
< c−(1))+

d−1∑

r=1

(X∗X∗′)r]}−1Ef∗{X∗Y ∗I(X∗ elt
< c−(1))+

d−1∑

r=1

(X∗Y ∗)r} 6= θ∗,

where (X∗Y ∗)r is now equal to

d−r+1∑

i1=2

d−r+2∑

i2=i1+1

. . .
d∑

ir=ir−1+1

(X∗Y ∗)
∣∣
(Y ∗,X∗)(i1,...,ir)=c(i1,...,ir)

× I(X∗(i1−1,...,ir−1) elt
> c(i1,...,ir), X∗−(i1−1,...,ir−1) elt

< c−(1,i1,...,ir)) (3.3)

and (X∗X∗′)r follows by replacing Y ∗ in (3.3) with X∗′. Hence, pure exogenous censoring cannot be
ignored here. In fact, pure exogenous censoring is not ignorable even if Ef∗{X∗ε} = 0 is replaced by
the stronger condition EY ∗|X∗{ε|X∗} = 0 w.p.17. However, as shown in Example 3.4, the situation
changes if X∗ is truncated instead of censored. ¤

Example 3.3 (Truncated mean). Again, suppose that we want to estimate the mean of the target pop-
ulation but now Z∗ is truncated outside the region T . Since Ef{Z} = Ef∗ [Z∗I(Z∗ ∈ T )]/

∫
T f∗(z) dµ∗,

as in Example 3.1 the naive estimator is not consistent for Ef∗{Z∗}. ¤

7To get some intuition behind this result, consider the case when d = 2; i.e., when Y ∗ = X∗θ∗ + ε, X∗ is scalar, and

c = (∞, c(2))2×1. Then, plim(θ̃) is equal to

Ef{XY }
Ef{X2}

(3.1)
=

Ef∗{X∗Y ∗I(X∗ < c(2)) + Y ∗c(2)I(X∗ > c(2))}
Ef∗{X∗2I(X∗ < c(2)) + [c(2)]2I(X∗ > c(2))} =

Ef∗{X∗2I(X∗ < c(2)) + X∗c(2)I(X∗ > c(2))}
Ef∗{X∗2I(X∗ < c(2)) + [c(2)]2I(X∗ > c(2))} θ∗,

where the last equality follows because EY ∗|X∗{Y ∗|X∗} = X∗θ∗ w.p.1. Therefore, plim(θ̃) 6= θ∗ and θ̃ remains inconsis-

tent under pure exogenous censoring even when ε is mean independent of X∗.
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Example 3.4 (Truncated linear regression). Consider the linear model of Example 3.2, but now
suppose that instead of being censored, Z∗ is truncated outside T = T1 × T2. Since the probability
limit of the least squares estimator is now given by

plim(θ̃) = {Ef∗X
∗X∗′I(Y ∗ ∈ T1, X

∗ ∈ T2)}−1Ef∗{X∗Y ∗I(Y ∗ ∈ T1, X
∗ ∈ T2)},

it is immediate that θ̃ is not consistent for θ∗. For pure endogenous truncation, T2 = Rp. In this case,

plim(θ̃) = {Ef∗X
∗X∗′I(Y ∗ ∈ T1)}−1Ef∗{X∗Y ∗I(Y ∗ ∈ T1)} 6= θ∗.

Similarly, for pure exogenous truncation, T1 = R. Hence,

plim(θ̃) = {Ef∗X
∗X∗′I(X∗ ∈ T2)}−1Ef∗{X∗Y ∗I(X∗ ∈ T2)} 6= θ∗. (3.4)

Therefore, even pure exogenous truncation is not ignorable. But unlike Example 3.2, if the identifying
assumption Ef∗{X∗ε} = 0 is replaced by EY ∗|X∗{ε|X∗} = 0 w.p.1, then from (3.4) it is easy to see
that ignoring pure exogenous truncation does not make the least squares estimator inconsistent. ¤

4. Inference with censored data

In this section we show how to do efficient semiparametric inference for moment based models
using enriched data (i.e., censored data supplemented with additional observations that are not subject
to censoring). We begin by showing that f∗ is identified if the realized observations are drawn from
the mixture density defined in (2.5).

4.1. Identification and efficient estimation. By (2.2)–(2.3) and (2.5),

f∗(z)I(z
elt
6= c) =

I(z
elt
6= c)

K0 + (1−K0)I(z
elt
< c)

fe(z). (4.1)

Hence, a µ∗-version of f∗ is identified since it can be expressed in terms of fe alone.

Next, since Ef∗{g(Z∗, θ∗)} = 0 if and only if Ef∗ [g(Z∗, θ∗)I(Z∗
elt
6= c)] = 0, we can use (4.1) to

rewrite (2.1) in terms of the enriched density as8

Efe{
g(Z, θ∗)I(Z

elt
6= c)

K0 + (1−K0)I(Z
elt
< c)

} = 0. (4.2)

However, (4.1) also implies that

Efe{
I(Z

elt
6= c)

K0 + (1−K0)I(Z
elt
< c)

} = 1, (4.3)

8It is then easy to show that a sufficient condition for θ∗ to be locally identified is that the q × p Jacobian matrix

Efe{ ∂g(Z,θ∗)
∂θ

I(z
elt
6= c)

K0+(1−K0)I(z
elt
< c)

} exists and is of full column rank. In some models, especially those linear in θ∗, this may

be simpler to check than employing Chamberlain (1986) type “identification at infinity” arguments or imposing Powell

(1984, 1986a) type “sign” restrictions on the regression function to identify θ∗.
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which represents an additional restriction imposed by the censoring process upon the enriched density.
Therefore, an efficient estimator of θ∗ based on (4.2) must account for this extra information as well.
But since (4.3) can be explicitly solved for K0 to yield

K0 =
Efe{I(Z

elt
6= c)I(Z

elt
< c)∼}

Efe{I(Z
elt
< c)∼}

, (4.4)

where (Z
elt
< c)∼ denotes the set-complement of the event (Z

elt
< c) so that I(Z

elt
< c)∼ = 1− I(Z elt

< c),
it also reveals that K0 is an ancillary parameter for estimating θ∗. Therefore, inference regarding
θ∗ should be done conditional on the estimated value of K0 (even though K0 is known!). To do so,
we treat K0 as an unknown parameter and estimate it jointly with θ∗. We explain later how this
approach allows us to do conditional inference9.

So let a(Z,K) = K + (1−K)I(Z
elt
< c) and

ρ(Z, θ, K) =




g(Z,θ)I(Z
elt
6=c)

a(Z,K)

I(Z
elt
6=c)

a(Z,K) − 1


 def

=

[
ρ1(Z, θ, K)
ρ2(Z, θ, K)

]

(q+1)×1

, (4.5)

where ρ1(Z, θ, K) = g(Z, θ)I(Z
elt
6= c)/a(Z, K) and ρ2(Z, θ, K) = I(Z

elt
6= c)/a(Z, K) − 1. Since K0 is

just identified by (4.4) and θ∗ is globally identified in (2.1) by Assumption 4.1(iii),

Ef∗{g(Z∗, θ∗)} = 0 ⇐⇒ Efe{ρ(Z, θ∗,K0)} = 0. (4.6)

Hence, efficient inference can be based on the latter moment condition without any loss of information.
Now let Z1, . . . , Zn denote iid random vectors with µ-density fe. Using (4.6), θ∗ and K0 can

be estimated by the usual two-step GMM as follows: First, use a preliminary consistent estimator
(θ̃, K̃)(p+1)×1 = argmin(θ,K)∈Θ×[0,1] ρ̂

′(θ,K)ρ̂(θ, K), where ρ̂(θ, K) =
∑n

j=1 ρ(Zj , θ, K)/n, to construct
the optimal weight matrix Υ̃ =

∑n
j=1 ρ(Zj , θ̃, K̃)ρ′(Zj , θ̃, K̃)/n. Next, obtain the GMM estimator

(θ̂gmm, K̂gmm) = argmin
(θ,K)∈Θ×[0,1]

GMM(θ,K), where GMM(θ,K) = ρ̂′(θ, K)Υ̃−1ρ̂(θ,K). (4.7)

The following assumption, which is maintained throughout the paper, ensures that the GMM
and EL estimators (described subsequently) are consistent and asymptotically normal. Let ‖·‖ denote
the Euclidean norm and B(θ, δ) an open ball with center θ and radius δ.

Assumption 4.1. (i) K0 ∈ (0, 1); (ii) Θ is compact; (iii) θ∗ ∈ int(Θ) is the unique root of (2.1);
(iv) g(z, θ) is continuous on Θ w.p.1; There exist η > 0 and δ > 0 such that the following conditions

9If inference is not done conditional on the estimated value of K0 (even though it is known), i.e., (4.3) is not taken into

account and only (4.2) is used to estimate θ∗, then Theorem 4.1 shows that the resulting estimator of θ∗ will be consistent

but not asymptotically efficient. This apparent paradox where estimating a known parameter leads to a more efficient

estimator of the parameter of interest arises quite frequently in the biased sampling or incomplete data literature; see,

e.g., Cosslett (1981), Robins, Hsieh, and Newey (1995), and the references therein. As explained in Lancaster (1992),

this happens when the conditionality principle is not followed in practice; i.e., the paradox disappears when inference is

done conditional on the ancillary statistic.
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hold: (v) Ef∗{supθ∈Θ ‖g(z, θ)‖2(1+η)} < ∞; (vi) g(z, θ) is twice continuously differentiable on B(θ∗, δ)

w.p.1; (vii) Ef∗{supθ∈B(θ∗,δ) ‖∂g(z,θ)
∂θ ‖} < ∞; (viii) Ef∗{supθ∈B(θ∗,δ) |∂

2g(i)(z,θ)

∂θ(i)θ(k) |} < ∞ for i = 1, . . . , q

and j, k = 1, . . . , p.

(i) rules out uninteresting cases (if K0 = 0 then f∗ is unidentified and if K0 = 1 the censoring
or truncation problem vanishes). (iii) ensures that θ∗ in (2.1) is globally identified. (i)–(viii) are used
to prove the consistency and asymptotic normality of EL estimators as in Kitamura (1997) and Qin
and Lawless (1994), although GMM estimators can be shown to be consistent and asymptotically
normal under slightly weaker conditions; see, e.g., Newey and McFadden (1994).

It is well known from standard GMM theory that θ̂gmm and K̂gmm are jointly normal in
large samples. In fact, letting Dq×p = Efe{∂ρ1(Z,θ∗,K0)

∂θ }, Vq×q = Efe{ρ1(Z, θ∗, K0)ρ′1(Z, θ∗,K0)},
γq×1 = Efe{ρ1(Z, θ∗,K0)ρ2(Z, θ∗,K0)}, δ = Efe{ρ2

2(Z, θ∗,K0)}, and Ω = V −γγ′/δ, we can show that

Theorem 4.1.
[

n1/2(θ̂gmm−θ∗)
n1/2(K̂gmm−K0)

]
d−→ N(0(p+1)×1,

[
(D′Ω−1D)−1 0p×1

0′p×1 (1−K0)2/δ

]
).

Since the limiting distribution is Gaussian with a diagonal variance-covariance matrix, θ̂gmm

and K̂gmm are asymptotically independent. It follows that inference based on the marginal asymptotic
distribution of θ̂ in Theorem 4.1 is equivalent to inference based on the asymptotic distribution of
θ̂|K̂. Furthermore, since it is well known that optimally weighted GMM estimators are efficient as the
sample size goes to infinity (Chamberlain 1987), we also have that θ̂gmm is asymptotically efficient10.

Before proceeding further, we now provide some intuition behind how transforming the moment
condition allows us to impute the censored values. So, using (4.4), note that we can decompose

Efe{ρ1(Z, θ∗,K0)} = Efe{g(Z, θ∗)|Z elt
< c}Prfe(Z

elt
< c)

+ Efe{g(Z, θ∗)|(Z
elt
6= c) ∩ (Z

elt
< c)∼}Prfe({Z

elt
< c}∼). (4.8)

Therefore, the moment condition in (4.2) can be expressed as a weighted sum of the best predictors
of g(Z∗, θ∗)|(Z∗ is uncensored) and g(Z∗, θ∗)|(Z∗ is censored), with the weights being equal to the
probability that Z∗ is uncensored or censored, respectively. The estimators proposed in this paper use
the enriched sample to automatically replace g(Z∗, θ∗) with its best predictor when observations are
censored and then consistently and efficiently estimate these best predictors and selection probabilities;
see Example 4.1 for a nice illustration.

Next, we show how to estimate θ∗ by EL. So let pj denote the probability mass placed at Zj by a
discrete distribution that has support on the realized observations Z1, . . . , Zn. For a fixed θ and K con-
centrate out the pj ’s by solving the nonparametric maximum likelihood problem maxp1,...,pn

∑n
j=1 log pj

subject to the constraints that the pj ’s are nonnegative,
∑n

j=1 pj = 1, and
∑n

j=1 ρ(Zj , θ, K)pj = 0.
If the convex hull of ρ(Z1, θ, K), . . . , ρ(Zn, θ,K) contains the origin, then it is easy to verify that

10Readers interested in seeing this from first principles should examine the approach described in Tripathi (2003).

In particular, the proof of Theorem 4.8 in Tripathi (2003) can be easily extended to show that the efficiency bound for

estimating θ∗ coincides with the asymptotic variance of θ̂ given in Theorem 4.1. For the sake of conciseness, we omit all

efficiency bound calculations from this paper.
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the solution to this problem is given by p̂j(θ, K) = n−1{1 + λ′(θ,K)ρ(Zj , θ, K)}−1 for j = 1, . . . , n,
where the Lagrange multiplier λ(θ, K) satisfies

∑n
j=1 ρ(Zj , θ,K){1 + λ′(θ, K)ρ(Zj , θ, K)}−1 = 0. Let-

ting EL(θ, K) =
∑n

j=1 log p̂j(θ, K) = −∑n
j=1 log{1 + λ′(θ, K)ρ(Zj , θ, K)} − n log n, we can define the

empirical likelihood estimators of θ∗ and K0 as (θ̂el, K̂el) = argmax(θ,K)∈Θ×[0,1] EL(θ,K), where

EL(θ, K) =
n∑

j=1

log p̂j(θ, K) = −
n∑

j=1

log{1 + λ′(θ, K)ρ(Zj , θ,K)} − n log n. (4.9)

Consistency of θ̂el and K̂el follows from Kitamura (1997, Theorem 1). By standard EL theory
as in Qin and Lawless (1994), EL and GMM estimators have the same asymptotic distribution. Hence,
the EL estimator of θ∗ is also asymptotically efficient. In finite samples the GMM and EL estimators
will be different, though the two coincide if θ∗ is just identified (i.e., q = p) because then the EL
weights p̂j(θ,K) = 1/n for each j, θ, K.

Although GMM and EL based statistical inference is asymptotically first order equivalent,
recent research by Newey and Smith (2003) has shown that under certain regularity conditions EL
has better second order properties than GMM. For instance, they show that, unlike GMM, the second
order bias of EL does not depend upon the number of moment conditions. This makes EL very
attractive for estimating models with large q (e.g., panel data models with long time dimension) where
GMM is known to perform poorly in small samples. As far as testing is concerned, Kitamura (2001)
has demonstrated that an EL based specification test for (2.1) is asymptotically optimal in terms
of a Hoeffding type large deviation criterion. Brown and Newey (2002) show that EL is intimately
connected with the theory of efficient bootstrapping.

Another advantage of EL is that efficient estimators of the realized cdf Fe(ξ) = Prfe(Z
elt≤

ξ) and the target cdf F ∗(ξ) are easily obtained. So let F̂ (ξ) =
∑n

j=1 p̂j(θ̂el, K̂el)I(Zj

elt≤ ξ), and

F̂ ∗(ξ) =
∑n

j=1 p̂j(θ̂el, K̂el)I(Zj

elt≤ ξ)/a(Zj , K̂el), where the p̂j(θ̂el, K̂el)’s are the EL probability weights
evaluated at (θ̂el, K̂el). Then,

Theorem 4.2. n1/2{F̂ (ξ)− Fe(ξ)} is asymptotically normal with mean zero and variance

Fe(ξ){1− Fe(ξ)} − Efe{g̃′(Z)I(Z
elt≤ ξ)}(Ω−1 − Ω−1D(D′Ω−1D)−1D′Ω−1)Efe{g̃(Z)I(Z

elt≤ ξ)},
where g̃(Z) = ρ1(Z, θ∗,K0)− (γ/δ)ρ2(Z, θ∗,K0).

Next, letting bξ(Z) = I(Z
elt≤ ξ)I(Z

elt
6= c)/a(Z, K0), we can show that

Theorem 4.3. n1/2{F̂ ∗(ξ)− F ∗(ξ)} is asymptotically normal with mean zero and variance

varfe{bξ(Z)} − Efe{g̃′(Z)bξ(Z)}(Ω−1 − Ω−1D(D′Ω−1D)−1D′Ω−1)Efe{g̃(Z)bξ(Z)}.
Theorems 4.2 and 4.3 show that imposing the overidentified model leads to an efficiency gain in

estimating Fe and F ∗. Asymptotic optimality of EL implies that F̂ (ξ) and F̂ ∗(ξ) are also asymptoti-
cally efficient. Alternatively, this can be proved directly by using the approach of Tripathi (2003) to
first calculate the efficiency bounds for estimating Fe(ξ) and F ∗(ξ) and then comparing these bounds
with the asymptotic variances in Theorems 4.2 and 4.3.
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For the remainder of Section 4, let (θ̂, K̂) denote the GMM or EL estimator of (θ∗,K0). The
asymptotic variances of θ̂, F̂ (ξ), and F̂ ∗(ξ) can be estimated in the obvious manner by replacing D

and Ω with consistent estimators D̂ =
∑n

j=1
∂ρ1(Zj ,θ̂,K̂)

∂θ /n and Ω̂ = V̂ − γ̂γ̂′/δ̂, respectively, where V̂ =∑n
j=1 ρ1(Zj , θ̂, K̂)ρ′1(Zj , θ̂, K̂)/n, γ̂ =

∑n
j=1 ρ1(Zj , θ̂, K̂)ρ2(Zj , θ̂, K̂)/n, and δ̂ =

∑n
j=1 ρ2

2(Zj , θ̂, K̂)/n.

Example 4.1 (Example 3.1 contd.). Here ρ1(Z, θ,K) = (Z − θ)I(Z
elt
6= c)/a(Z, K) and, since there

are no overidentifying restrictions, θ̂ and K̂ solve
∑n

j=1 ρ(Zj , θ̂, K̂) = 0; i.e.,

θ̂ = n−1
n∑

j=1

ZjI(Zj

elt
6= c)

a(Zj , K̂)
and K̂ =

∑n
j=1 I(Zj

elt
6= c)I(Zj

elt
< c)∼

∑n
j=1 I(Zj

elt
< c)∼

. (4.10)

To gain further insight into θ̂, notice that for d = 1 we can write

θ̂ = n−1
n∑

j=1

I(Zj < c)×
∑n

j=1 ZjI(Zj < c)∑n
j=1 I(Zj < c)

+ n−1
n∑

j=1

I(Zj ≥ c)×
∑n

j=1 ZjI(Zj > c)∑n
j=1 I(Zj > c)

.

In light of (4.8), it comes as no surprise that θ̂ is a linear combination of the sample means of
uncensored and censored observations in the enriched dataset with the weights being the fraction of
uncensored and censored observations in the enriched sample.

By Theorem 4.1, n1/2(θ̂ − θ∗) converges in distribution to a normal random variable with
mean zero and variance Ω. Since there are no overidentifying restrictions in this example (and the

next one), F̂ (ξ) = n−1
∑n

j=1 I(Zj

elt≤ ξ) is just the empirical cdf of the realized observations and

F̂ ∗(ξ) = n−1
∑n

j=1 I(Zj

elt≤ ξ)/a(Zj , K̂). By Theorem 4.2, or by a direct application of the central
limit theorem, the asymptotic variance of n1/2{F̂ (ξ) − Fe(ξ)} is simply Fe(ξ){1 − Fe(ξ)}. Similarly,
by Theorem 4.3, n1/2{F̂ ∗(ξ)− F ∗(ξ)} has asymptotic variance varfe{bξ(Z)}. ¤

Example 4.2 (Example 3.2 contd.). Here, ρ1(Z, θ,K) = X(Y − X ′θ)I(Z
elt
6= c)/a(Z, K). Hence,

θ̂ = (
∑n

j=1 X̂jX
′
j)
−1(

∑n
j=1 X̂jYj), where X̂ = XI(Z

elt
6= c)/a(Z, K̂) and K̂ is given in (4.10). Notice

that this tantamounts to replacing the original regressors in Example 3.2 with new instruments X̂.
If censoring is purely endogenous or purely exogenous, then a(Z,K) = K + (1 − K)I(Yj < c(1)) or

a(Z,K) = K + (1−K)I(Xj
elt
< c−(1)), respectively, and the expression for θ̂ simplifies. ¤

Example 4.3 (Censored linear regression with endogenous regressors). Let Y ∗ = X∗′θ∗ + ε such
that some or all of the regressors are correlated with ε. We have a q × 1 vector of instrumental
variables W ∗ that are uncorrelated with ε; i.e., W ∗ satisfies the moment condition Ef∗{W ∗ε} = 0.
Let W ∗ = (X∗

1 , W̃ ∗), where X∗
1 denotes the p1 × 1 vector of exogenous coordinates of X∗ and W̃ ∗

the (q − p1)× 1 vector of instruments for the endogenous coordinates of X∗. Hence, in this example,
Z∗ = (Y ∗, X∗, W̃ ∗) and g(Z∗, θ∗) = W ∗(Y ∗ −X∗′θ∗).

If the dependent variable, regressors, and instruments are all censored, then ρ1(Z, θ,K) =

W (Y − X ′θ)I(Z
elt
6= c)/a(Z,K). On the other hand, the endogenous tobit model where only Y ∗

is censored and X∗ is endogenous is very important for applications and follows by letting c−(1) =
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(∞, . . . ,∞) so that ρ1(Z, θ,K) = W (Y −X ′θ)I(Y 6= c(1))/a(Y, K), where a(Y, K) = K+(1−K)I(Y <

c(1)). In either case, θ∗ can be estimated by GMM or EL as described earlier and the asymptotic
distribution of θ̂ follows readily from Theorem 4.1. ¤

Example 4.4 (Censoring and IV). Suppose Y ∗
1 = X∗

1
′θ∗1 + ε1 and Y ∗

2 = X∗
2
′θ∗2 + ε2, where ε =

(ε1, ε2)2×1 satisfies the conditional moment restriction E(Y ∗1 ,Y ∗2 )|X∗(ε|X∗) = 0 w.p.1 and X∗ denotes
a vector containing the exogenous coordinates of (X∗

1 , X∗
2 )(p1+p2)×1 and other instruments. Hence,

Ef∗{A(X∗)
[

Y ∗1 −X∗
1
′θ∗1

Y ∗2 −X∗
2
′θ∗2

]
} = 0, where A(X∗) is a q × 2 matrix of instrumental variables such that

q ≥ p1 + p2. If Z∗ = (Y ∗
1 , Y ∗

2 , X∗) is censored, then (4.6) can be used to estimate θ∗ = (θ∗1, θ
∗
2) by

GMM or EL as proposed earlier.
Although this simultaneous equations model has been studied before, see, e.g., Smith and

Blundell (1986) and Blundell and Smith (1993), the treatment here is more general because we do
not assume that ε is Gaussian and allow for the possibility that besides Y ∗

1 and Y ∗
2 the instruments

may also be censored. Censoring of Y ∗ = (Y ∗
1 , Y ∗

2 ) alone means that c−(1,2) = (∞, . . . ,∞). Hence,
ρ1(Z, θ,K) = A(X)

[
Y1−X1

′θ1

Y2−X2
′θ2

]
I(Y ∗

1 6= c(1), Y ∗
2 6= c(2))/a(Y, K), where a(Y, K) = K + (1 −K)I(Y1 <

c(1), Y2 < c(2)), and θ∗ can be estimated by GMM or EL as before. ¤

Example 4.5. Sometimes we may possess auxiliary information about a feature of the target density;
e.g., we may know beforehand that the mean of the target population is zero. In general, suppose
it is known a priori that Ef∗{m(Z∗)} = 0, where m is a vector of known functions. Moment based
auxiliary information about f∗ can be easily incorporated in our framework by first stacking g(Z∗, θ∗)
and m(Z∗) to produce an augmented vector of moment conditions and then proceeding as before.

These types of models, which are a special case of the general unconditional moment restrictions
model examined in this paper, have been investigated by Imbens and Lancaster (1994), Hellerstein and
Imbens (1999), and Nevo (2003). However, Imbens and Lancaster (1994) and Hellerstein and Imbens
(1999) assume that Z∗ is fully observed. Nevo (2003) allows Z∗ to be entirely missing (due to attrition)
but not censored. He also restricts attention to the case where the parameter of interest is just
identified. In addition, he assumes that the selection probability is known up to a finite dimensional
parameter and imposes an identification condition that rules out truncated Z∗’s as well. In contrast,
we allow (2.1) to be overidentified and the selection probabilities for censoring or truncation of Z∗ to
be fully unknown. Although Nevo also uses a supplementary sample to estimate finite dimensional
parameters, unlike us he does not consider identification and estimation of the target or realized cdf’s.
None of these papers discuss efficient estimation of the target and realized cdf’s. ¤

4.2. Hypothesis tests and confidence regions. Suppose we want to test the parametric restriction
H̃0 : R(θ∗) = 0 against the alternative that it is false, where R is a r̄ × 1 vector of twice continuously
differentiable functions such that ∂R(θ∗)

∂θ has rank r̄ ≤ p. Since n1/2(θ̂− θ̂∗) d−→ N(0, (D′Ω−1D)−1), the

Wald statistic W = nR′(θ̂){∂R(θ̂)
∂θ (D̂′Ω̂−1D̂)−1 ∂R′(θ̂)

∂θ }−1R(θ̂) d−→ χ2
r̄. Hence, a test for H̃0 can be based

upon W.
Another alternative is to use a distance metric test. So let θ̄ and K̄ denote the GMM and EL

estimators under H̃0; i.e., (θ̄gmm, K̄gmm) = argmin{(θ,K)∈Θ×[0,1]:R(θ)=0}GMM(θ,K) and (θ̄el, K̄el) =
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argmax{(θ,K)∈Θ×[0,1]:R(θ)=0} EL(θ,K). Next, let DM = n{GMM(θ̄gmm, K̄gmm)−GMM(θ̂gmm, K̂gmm)}
and LR = 2{EL(θ̂el, K̂el)−EL(θ̄el, K̄el)} , where DM denotes the GMM based distance metric statistic
and LR the EL based likelihood ratio test statistic. A test for H̃0 can also be based upon DM or EL.
To obtain the critical values for these tests we can use Newey and McFadden (1994, Theorem 9.2)
and Qin and Lawless (1994, Theorem 2) to see that DM d−→ χ2

r̄ and LR d−→ χ2
r̄ under H̃0.

Since W, DM, and LR are asymptotically equivalent, the decision to use a particular test
statistic in practice usually depends upon computational and other considerations; e.g., although all
three statistics can be inverted to obtain asymptotically valid confidence regions, the DM and LR based
regions are invariant to the formulation of H̃0 and automatically satisfy natural range restrictions.
Furthermore, unlike W and DM, the likelihood ratio statistic LR is internally studentized; i.e., it does
not require preliminary estimation of any variance terms. This guarantees that confidence regions
based on LR are also invariant to nonsingular transformations of the moment conditions.

4.3. Specification tests. For the remainder of this section, assume that q > p. Since inference based
on the estimated θ∗ is sensible only if (2.1) is true, it is important to test H0 against the alternative
that it is false. In this section, we describe two ways of testing H0. The first approach is easy: GMM
theory tells us that nGMM(θ̂gmm, K̂gmm) d−→ χ2

q−p under H0. Therefore, a test for overidentifying
restrictions (usually called the J-test) in (2.1) can be based on this result.

An EL based specification test for H0 can also be developed. Besides being internally stu-
dentized and invariant to nonsingular and algebraic transformations of the moment conditions, this
test has been shown by Kitamura (2001) to be optimal in terms of a large deviations criterion.
So let θ̂ and K̂ denote n1/2-consistent preliminary estimators of θ∗ and K0; e.g., θ̂ and K̂ can be
the GMM or EL estimators defined previously. The restricted (i.e., under H0) EL can be writ-
ten as ELr =

∑n
j=1 log p̂j(θ̂, K̂). Next, consider the unrestricted problem where the model is not

imposed. It is well known that the nonparametric maximum likelihood estimator of fe in the ab-
sence of any auxiliary information puts mass 1/n at each realized observation and is zero else-
where. Therefore, the unrestricted nonparametric likelihood is given by ELur = −n log n. Now
let ELR = 2(ELur − ELr) = 2

∑n
j=1 log{1 + λ′(θ̂, K̂)ρ(Zj , θ̂, K̂)}. Then ELR can be regarded as an

analog of the usual parametric likelihood ratio test statistic; i.e., H0 is rejected if ELR is large enough.
By Qin and Lawless (1994, Corollary 4), ELR d−→ χ2

q−p under H0. Hence, critical values for ELR are
easily obtained.

5. Inference with truncated data

We now show how to do efficient inference using truncated data. As before, we begin by
demonstrating that f∗ is identified if the realized observations are drawn from the enriched mixture
density defined in (2.5).

5.1. Identification and efficient estimation. Let b∗ =
∫
T f∗(z) dµ∗ denote the probability that

Z∗ is observed. Throughout the paper we assume that b∗ ∈ (0, 1) is unknown. Since K0 is known and
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b∗ can be explicitly written in terms of the realized enriched density alone as

b∗ =
Efe [I(Z ∈ T )]− (1−K0)

K0
, (5.1)

it follows that b∗ is identified. Next, by (2.4) and (2.5),

f∗(z) =
fe(z)

K0 + (1−K0)I(z ∈ T )/b∗
(5.2)

for all z ∈ Rd, where b∗ is given by (5.1). Hence, f∗ is also identified.
Estimation is also straightforward, although now there is an additional parameter b∗ to esti-

mate. So let a(Z, b) = K0 + (1−K0)I(Z ∈ T )/b and define11

ρ(Z, θ, b) =

[
g(Z,θ)
a(Z,b)

I(Z∈T )−(1−K0)
K0

− b

]
def
=

[
ρ1(Z, θ, b)
ρ2(Z, θ, b)

]

(q+1)×1

, (5.3)

where ρ1(Z, θ, b) = g(Z, θ)/a(Z, b) and ρ2(Z, θ, b) = {I(Z ∈ T )− (1−K0)}/K0 − b Since, by (5.2),

Ef∗{g(Z∗, θ∗)} = 0 ⇐⇒ Efe{ρ(Z, θ∗, b∗)} = 0, (5.4)

θ∗ and b∗ can be jointly and efficiently estimated by using the latter moment condition. In particular,
the GMM and EL estimators of θ∗ and b∗ are given by (θ̂gmm, b̂gmm) = argmin(θ,b)∈Θ×[0,1] GMM(θ, b)
and (θ̂el, b̂el) = argmax(θ,b)∈Θ×[0,1] EL(θ, b), respectively, where the objective functions are obtained
from (4.7) and (4.9) by replacing K with b.

The logic behind the imputation mechanism becomes clear upon observing that

Efe{ρ1(Z, θ∗, b∗)} = b∗Efe{g(Z, θ∗)|Z ∈ T}+ (1− b∗)Efe{g(Z, θ∗)|Z 6∈ T}; (5.5)

i.e., the transformed moment condition in (5.4) is just a combination of the best predictors of
g(Z∗, θ∗)|(Z∗ is not truncated) and g(Z∗, θ∗)|(Z∗ is truncated) weighted by probabilities of the corre-
sponding events. The GMM or EL estimators we propose automatically carry out this imputation in
the enriched sample to efficiently estimate θ̂ and b̂.

Let D = Efe{∂ga(Z,θ∗)
∂θ } and Ω = varfe{g̃a(Z, θ∗)}, where ga(Z, θ∗) = g(Z, θ)/a(Z, b∗), g̃a(Z, θ∗) =

g̃(Z, θ∗)/a(Z, b∗), and g̃(Z, θ∗) = g(Z, θ∗)+K−1
0 (1−K0)b∗−2I(Z ∈ T )Efe{ga(Z, θ∗)I(Z ∈ T )}. Also, let

(θ̂, b̂) denote the GMM or EL estimator of (θ∗, b∗) for the remainder of the paper. Then, letting Σ11 =
(D′Ω−1D)−1, G = Efe{ga(Z, θ∗)I(Z ∈ T )}, Σ12 = −(K0b

∗)−1(K0b
∗ + 1 − K0)(D′Ω−1D)−1D′Ω−1G,

and Σ22 = K−2
0 varfe{I(Z ∈ T )} − (K0b

∗)−2(K0b
∗ + 1−K0)2G′(Ω−1 − Ω−1D(D′Ω−1D)−1D′Ω−1)G,

Theorem 5.1.
[

n1/2(θ̂−θ∗)
n1/2(b̂−b∗)

]
d−→ N(0,

[
Σ11 Σ12

Σ′12 Σ22

]
).

It is intuitively clear from (5.4) that θ̂ and b̂ are asymptotically efficient12. Their asymptotic
variances can be estimated by replacing Σij ’s with their consistent estimators constructed, say, using

D̂ = n−1
∑n

j=1
∂gâ(Zj ,θ̂)

∂θ and Ω̂ = n−1
∑n

j=1
ˆ̃gâ(Zj , θ̂)ˆ̃g′â(Zj , θ̂)− n−1

∑n
j=1

ˆ̃gâ(Zj , θ̂)n−1
∑n

j=1
ˆ̃g′â(Zj , θ̂),

11By (5.1), the second moment condition in ρ(Z, θ, b) is just the identification condition for b∗.
12More rigorously, as in the case of censoring, the proof of Theorem 4.8 in Tripathi (2003) can be easily extended to

show that the efficiency bounds for estimating θ∗ and b∗ coincide with the asymptotic variances of θ̂ and b̂ in Theorem 5.1.
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where â
def
= a(Z, b̂), ˆ̃g(Z, θ) = g(Z, θ) + K−1

0 (1−K0)b̂−2I(Z ∈ T )Ĝ and Ĝ = n−1
∑n

j=1 gâ(Zj , θ̂)I(Zj ∈
T ). Of course, varfe{I(Z ∈ T )} is estimated by (nT /n)(1 − nT /n), where nT =

∑n
j=1 I{Zj ∈ T} is

the number of observations falling in T .

Next, we efficiently estimate Fe(ξ) and F ∗(ξ). So let F̂ (ξ) =
∑n

j=1 p̂j(θ̂el, b̂el)I(Zj

elt≤ ξ) and

F̂ ∗(ξ) =
∑n

j=1 p̂j(θ̂el, b̂el)I(Zj

elt≤ ξ)/a(Zj , b̂el), where p̂j(θ̂el, b̂el) are the EL probability weights evalu-
ated at the EL estimators (θ̂el, b̂el). Then,

Theorem 5.2. n1/2{F̂ (ξ)− Fe(ξ)} is asymptotically normal with mean zero and variance

Fe(ξ){1−Fe(ξ)}−covfe{g̃′a(Z, θ∗), I(Z
elt≤ ξ)}(Ω−1−Ω−1D(D′Ω−1D)−1D′Ω−1)covfe{g̃a(Z, θ∗), I(Z

elt≤ ξ)}.

Defining m(Z, ξ) = I(Z
elt≤ ξ) + [(1 − K0)/(K0b

∗2)]I(Z ∈ T )Efe{I(Z
elt≤ ξ)I(Z ∈ T )/a(Z, b∗)}

and ma(Z, ξ) = m(Z, ξ)/a(Z, b∗), we can also show that

Theorem 5.3. n1/2{F̂ ∗(ξ)− F ∗(ξ)} is asymptotically normal with mean zero and variance

varfe{ma(Z, ξ)}−covfe{g̃′a(Z, θ∗),ma(Z, ξ)}(Ω−1−Ω−1D(D′Ω−1D)−1D′Ω−1)covfe{g̃a(Z, θ∗),ma(Z, ξ)}.

As before, Theorems 5.2 and 5.3 show that if the model is overidentified, then imposing it leads
to an efficiency gain in estimating Fe and F ∗. Asymptotic optimality of EL implies that F̂ (ξ) and
F̂ ∗(ξ) are also asymptotically efficient.

Example 5.1 (Example 3.3 contd.). Since here ρ1(Z, θ, b) = (Z − θ)/a(Z, b) and there are no overi-
dentifying restrictions, θ̂ and b̂ are obtained by solving

∑n
j=1 ρ(Zj , θ̂, b̂) = 0; hence, b̂ = [nT /n− (1−

K0)]/K0 and θ̂ = n−1
∑n

j=1 Zj/a(Zj , b̂) since
∑n

j=1 1/a(Zj , b̂) = n. A little algebra shows that

θ̂ = b̂×
∑n

j=1 ZjI(Zj ∈ T )∑n
j=1 I(Zj ∈ T )

+ (1− b̂)×
∑n

j=1 ZjI(Zj 6∈ T )∑n
j=1 I(Zj 6∈ T )

,

which is what we would expect from (5.5).
By Theorem 5.1, n1/2(b̂ − b∗) has asymptotic variance varfe{I(Z ∈ T )}/K2

0 . The asymptotic
variance of n1/2(θ̂− θ∗) can be similarly obtained. The absence of overidentifying restrictions also im-

plies that F̂ (ξ) = n−1
∑n

j=1 I(Zj

elt≤ ξ) and F̂ ∗(ξ) = n−1
∑n

j=1 I(Zj

elt≤ ξ)/a(Zj , b̂el) in this example and
the next one. Therefore, by Theorem 5.2 or directly by the central limit theorem, n1/2{F̂ (ξ)−Fe(ξ)}
is asymptotically normal with mean zero and variance Fe(ξ){1 − Fe(ξ)}. Similarly, by Theorem 5.3,
n1/2{F̂ ∗(ξ)−F ∗(ξ)} is asymptotically normal with mean zero and variance varfe{mξ(Z)/a(Z, b∗)}. ¤

Example 5.2 (Example 3.4 contd.). Since ρ1(Z, θ, b) = X(Y − X ′θ)/a(Y, X, b) and ρ2(Z, θ, b) =
{I(Y ∈ T1, X ∈ T2)− (1−K0)/K0}−b, where a(Y, X, b) = K0 +(1−K0)I(Y ∈ T1, X ∈ T2)/b, we have
θ̂ = {∑n

j=1 XjX
′
j/a(Yj , Xj , b̂)}−1{∑n

j=1 XjYj/a(Yj , Xj , b̂)} and b̂ as given in the previous example.

Hence, n1/2(θ̂ − θ∗) d−→ N(0, D−1ΩD−1) by Theorem 5.1, where D = −Efe{XX ′/a(Y, X, b∗)} and

Ω = varfe{
X(Y −X ′θ∗)
a(Y, X, b∗)

+
(1−K0)
K0b∗2

I(Y ∈ T1, X ∈ T2)
a(Y,X, b∗)

Efe [
X(Y −X ′θ∗)I(Y ∈ T1, X ∈ T2)

a(Y, X, b∗)
]}.
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If truncation is purely endogenous, then

θ̂ = {
n∑

j=1

XjX
′
j

K0 + (1−K0)I(Yj ∈ T1)/b̂
}−1{

n∑

j=1

XjYj

K0 + (1−K0)I(Yj ∈ T1)/b̂
}.

Similarly, under pure exogenous truncation,

θ̂ = {
n∑

j=1

XjX
′
j

K0 + (1−K0)I(Xj ∈ T2)/b̂
}−1{

n∑

j=1

XjYj

K0 + (1−K0)I(Xj ∈ T2)/b̂
}.

The asymptotic variances of θ̂ under pure endogenous or exogenous truncation can be obtained by
setting T2 = Rp or T1 = R, respectively, in the expressions for D and Ω given above. ¤

Example 5.3 (Truncated linear regression with endogenous regressors). Consider the setup of Ex-
ample 4.3, but now suppose that instead of being censored the target variable Z∗ is truncated out-
side T1 × T2 × T3 . If the dependent variable, regressors, and instruments are all subject to trun-
cation, then ρ1(Z, θ, b) = W (Y − X ′θ)/a(Y,X, W̃ , b) and ρ2(Z, θ, b) = {I(Y ∈ T1, X ∈ T2, W̃ ∈
T3)− (1−K0)}/K0− b, where a(Y,X, W̃ , b) = K0 + (1−K0)I(Y ∈ T1, X ∈ T2, W̃ ∈ T3)/b. Hence, θ∗

and b∗ can be estimated by GMM or EL as described earlier. Under pure endogenous truncation (i.e.,
T2 = Rp and T3 = Rq−p1), it follows from Theorem 5.1 that n1/2(θ̂ − θ∗) is asymptotically normal
with mean zero and variance (D′Ω−1D)−1, where D = −Efe{WX ′/a(Y, b∗)},

Ω = varfe{
W (Y −X ′θ∗)

a(Y, b∗)
+

(1−K0)
K0b∗2

I(Y ∈ T1)
a(Y, b∗)

Efe [
W (Y −X ′θ∗)I(Y ∈ T1)

a(Y, b∗)
]},

and a(Y, b∗) = K0 + (1−K0)I(Y ∈ T1)/b∗. A similar result holds for pure exogenous truncation. ¤

Example 5.4 (Truncation and IV). Again, consider the simultaneous equations model of Example 4.4,
but now assume that Z∗ is truncated instead of being censored. To further simplify the exposition,
suppose that only Y ∗

1 and Y ∗
2 are truncated outside T1 and T2, respectively. θ∗ and b∗ can then be

estimated by GMM or EL upon noting that ρ1(Z, θ, b) = A(X)
[

Y1−X1
′θ1

Y2−X′
2θ2

]
/a(Y, b) and ρ2(Z, θ, b) =

{I(Y1 ∈ T1, Y2 ∈ T2)− (1−K0)}/K0 − b, where a(Y, b) = K0 + (1−K0)I(Y1 ∈ T1, Y2 ∈ T2)/b. ¤

5.2. Hypothesis and specification tests. Hypotheses of the form R(θ∗) = 0 can be tested using
the Wald, DM, or LR statistics as described in Section 4.2 by basing the test on ρ(Z, θ∗, b∗). In each
case the test statistic is asymptotically distributed as a χ2

r̄ random variable under the null hypothesis.
Similarly, if q > p then a test for overidentifying moment restrictions can be done using the GMM
based J-statistic or the ELR statistic on the moment vector ρ(Z, θ∗, b∗). The details are analogous to
those in Section 4.3. In either case, the test statistic has an asymptotic χ2

q−p distribution under H0.

6. Application

Our application studies the effects of changes in compulsory schooling laws on age at first
marriage. While the primary purpose of the application is to demonstrate the methodology developed
in this paper, this is also a topic of some substantive importance. Our data are 1% samples from the
Public Use Files of the U.S. Census of Population for the years 1960, 1970, and 1980.
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Understanding the determinants of age at first marriage is considered to be important for
several reasons. In recent years, age at first marriage has risen. Much literature suggests that a rising
age at first marriage may be socially undesirable because marriage may encourage good behavior and
outcomes. For example, Akerlof (1998) provides evidence that marriage has a beneficial effect on
male behavior, leading to a decrease in socially undesirable activities such as alcoholism, drug abuse,
and violence. Also, Korenman and Neumark (1991) find that in the cross-section, married men earn
about 11% more than observationally equivalent unmarried men. When they utilize panel data and
estimate a fixed effects model, the marriage effect is about 2/3 the size of the cross-sectional estimate.
Thus, it appears that there is a direct effect of being married on male earnings. However, in other
work, they find that marriage reduces female participation and does not positively impact their wage
rates (Korenman and Neumark 1992). Second, there is a great deal of concern about the effects of
out-of-wedlock childbearing on single parents and their children. If rising age at first marriage is not
accompanied by postponed childbearing, this problem becomes more severe. Relatedly, it has long
been known, see, e.g., Coale (1971), that age at first marriage is an important determinant of fertility.
However, rising age at first marriage may also have socially beneficial effects (Goldin and Katz 2002)
because they have been linked to greater opportunities for young people, especially women, to obtain
education and develop a professional career.

Theoretically, the effects of increased education on age of marriage are unclear. Koball (1998)
describes the “economic provider” hypothesis that men are less likely to marry until they are securely
employed. Because more education leads to higher earnings, it may lead to earlier marriage through
this channel. The “adult transition” hypothesis proposes that events that delay the transition to
adulthood will also delay marriage. More education will tend to delay marriage through this channel.
Empirically, there is a positive relationship between education and age of marriage and rising education
may be related to increased age at first marriage in recent decades. However, the correlation between
education and age at first marriage may reflect the fact that young people with low ability and poor
labor market prospects choose both to marry early and to drop out of school early rather than a causal
relationship between education and age at first marriage. One way to examine this issue is to look
at the effects of changes in policy that led to increased education. In particular, we study whether
increased mandatory educational attainment (through compulsory schooling legislation) encourages
people to defer marriage. If so, these factors should be considered when evaluating the benefits of this
type of legislation.

We use variation in compulsory schooling laws across states and over time. Changes in these
laws had a significant impact on education and indeed have been used as instruments for education
in other contexts by Acemoglu and Angrist (2001), Lochner and Moretti (2004), and Lleras-Muney
(2002). Since the history of compulsory schooling laws in the U.S. is by now well documented (see,
in particular, Lleras-Muney (2001) and Goldin and Katz (2003)), we will not describe them in great
detail here. Essentially, there were five possible restrictions on educational attendance: (i) maximum
age by which a child must be enrolled, (ii) minimum age at which a child may drop out, (iii) minimum
years of schooling before dropping out, (iv) minimum age for a work permit, and (v) minimum
schooling required for a work permit. In the years relevant to our sample, 1939 to 1958, states changed
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compulsory attendance laws many times, usually upwards but sometimes downwards. Papers on the
topic have used a variety of combinations of these restrictions as measures of compulsory schooling.
We use required years of schooling, defined as the difference between the minimum dropout age and
the maximum enrollment age following Lleras-Muney and Goldin and Katz. We follow Acemoglu and
Angrist (2001) and Lochner and Moretti (2004) in assigning compulsory attendance laws to people
on the basis of state of birth and the year when the individual was 14 years old (with the exception
that the enrollment age is assigned based on the laws in place when the individual was 7 years old).
Also, we follow them in creating four indicator variables, depending on whether years of compulsory
schooling are 8 or less, 9, 10, and 11 or more.

Our sample is composed of men and women born between 1925 and 1944. We choose this
group of cohorts for two reasons. First, many of the changes in compulsory schooling laws were
enacted between 1939 and 1958 and so had a major impact on this group. Secondly, the question on
age at first marriage is not asked in the Census prior to 1960 or after 1980 so we are limited in terms
of which cohorts we can study.

The empirical model can be written as

log(Y ∗
j ) = X∗

j
′θ∗ + εj , j = 1, . . . , n, (6.1)

where Y ∗
j denotes age at first marriage for the jth individual in the sample and X∗

j is a vector of
explanatory variables including the compulsory schooling law variables, year of birth dummies, state
dummies, and a race dummy. There are 3 included compulsory schooling law variables describing
the level of compulsory schooling: CA9 (9 years), CA10 (10 years), and CA11 (11 or 12 years). The
omitted category is 8 years or less.

There are a few points to note about (6.1): First, it contains fixed cohort effects and state
effects. The cohort effects are necessary to allow for secular changes in age at first marriage that
may be completely unrelated to compulsory schooling laws. The state effects allow for the fact that
variation in the timing of the law changes across states may not have been exogenous to the marriage
market (for example, states with strict compulsory schooling laws may be states where people tend
to marry late in any case).

The major problem in running this regression is that Y ∗ is censored for younger individuals
because we observe age at first marriage only for ever married individuals; i.e., for each person we
only observe

Yj =





Y ∗
j if Mj = 1

Cj if Mj = 0,
(6.2)

where Cj is the chronological age and Mj an indicator for ever being married.
There are two elements of the censoring problem: (i) people who do get married at some point

in their life but who have never been married at the time of interview, and (ii) people who never
get married. Our goal is to address the first problem.13 The usual approach to dealing with (i) is to

13We cannot solve the second problem as, by definition, it is impossible to construct a refreshment sample for the

group that will never marry.
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restrict the sample to older men and women (e.g., Bergstrom and Schoeni (1996) restrict the sample
to persons aged 40–60). This is obviously not a satisfactory solution because it replaces the censoring
problem with a truncation problem. In contrast, our approach is to use both young and old persons,
acknowledging that age at first marriage is significantly censored for younger women and men. As
discussed above we use the 1925–1944 cohorts, and these people are aged 16–35 in 1960, and 26–45 in
1970. Clearly, age at first marriage is censored for many of these persons. To deal with this problem,
we need a refreshment sample that is not censored and is from the same population as our master
sample (aged 16–35 in 1960 and 26–45 in 1970). We obtain this by using individuals from the same
cohort: A 16 year old woman in 1960 is considered to be from the same population as a 26 year old
woman in 1970, and a 36 year old in 1980. Hence, for women who were between 16–35 in 1960 and
26–45 in 1970, the refreshment sample consists of women aged 36–55 in 1980.

For the group of people aged 36–55 in 1980 to be a suitable refreshment sample, it must
possess two characteristics. First, it must be a draw from the same population as the master sample.
We consider this to be a reasonable assumption in this case because: (a) they are from the exact
same birth cohorts as persons in the master sample; (b) we only use individuals born in the U.S. so
immigration is not a problem; (c) we do not include individuals aged more than 55 (and these cohorts
were not involved in World War 2 or Vietnam) so mortality is not a major consideration. We report
descriptive statistics for our sample in tables 1 and 2 for women and men, respectively. Note that the
percentage white, average year-of-birth, and the proportions affected by each compulsory schooling
law regime are very similar across Census samples. This is as we would expect given we are tracking a
population as they age. On the other hand, the average values of age at first marriage and education
differ greatly by Census due to censoring. To further corroborate that we are following samples from
the same population, in figure 1 we also present QQ plots for age at first marriage of men and women
aged at least 26 that were married before they were 26 years old. The linearity of the plots is strong
evidence that the uncensored observations in these samples indeed come from the same population.

The second characteristic of a refreshment sample is that it should not have a censoring problem.
We examine this issue in table 3. In this table, we track each birth cohort over time, and list the
percentage who have never been married. For women, we see that the proportion never married
flattens out as women reach their early 30’s and it appears that very few women marry for the first
time after age 35. Thus, it appears that the refreshment sample for women is approximately free of
censoring bias. Men tend to marry at later ages and so there does appear to be some censoring in the
refreshment sample for men. However, it impacts a very small proportion of cases; it appears that
about 6% of men never marry, and very few cohorts in the refreshment sample have more than 6%
of censored observations in 1980. Despite the evidence that there may be some censoring in the 1980
sample, in estimation we treat it as a refreshment sample that has no censored observations.

As mentioned above, we cannot address the second type of censoring (people who never get
married) using a refreshment sample approach. Instead, we have taken a few different ad hoc ap-
proaches and verify that our results are not very sensitive to the exact method used. The approaches
we have tried are (i) impute age at first marriage as equal to current age for never married individu-
als in the refreshment sample, and (ii) impute age at marriage for all cases where individuals are not



22 DEVEREUX AND TRIPATHI

married by 35 (we have tried imputing the age to 55 and 65). We have found that our GMM estimates
are reasonably robust to the imputation method used and so we report the results using method (i).

We report the following GMM estimates of the coefficients of the compulsory schooling variables
and the white dummy in table 414: GMM60, obtained by matching the 1960 master sample with the
1980 refreshment sample to create the enriched dataset, and GMM70, the GMM estimator when
the 1970 and 1980 samples are matched. Estimates for men and women are reported separately.
Following the procedure described in Section 4.1, see Example 4.2 for an illustration, both estimators
were implemented in the GAUSS programming language. The consistency of our estimators does not
depend upon the extent to which the data are censored. We also expect GMM60 and GMM70 to give
similar estimates in finite samples even though censoring is less of a problem in 1970. This is borne
out by the evidence summarized in table 4.

An enriched dataset has to, by definition, contain some observations that are not subject to the
censoring mechanism. Since age at first marriage is censored from above by chronological age in this
application, an enriched dataset here must contain some observations for which age at first marriage is
greater than chronological age; i.e., loosely speaking, we must have some counterfactual observations
for whom we can “look into the future” at the time of interview and see when they first get married.
To construct such an enriched dataset by matching, say, the 1960 and 1980 samples, we first create
a new variable C̃j = CjI(j ∈ 1960) + (Cj − 20)I(j ∈ 1980); i.e., C̃j is equal to the chronological age
for an observation from the 1960 sample, and chronological age less 20 years, otherwise. The enriched
observations used to construct GMM60 are then obtained by replacing Cj in (6.2) with C̃j . GMM70
is obtained in a similar manner by matching the 1970 and 1980 datasets.

To contrast our GMM estimators with some competing estimators, we also report OLS60,
OLS70, TOBIT60, and TOBIT70, the OLS and tobit estimates for each year. Another estimator we
consider is OLS80, obtained by doing least squares on just the 1980 sample. It is consistent because
the refreshment sample is not censored. Therefore, GMM70 and OLS80 both serve as consistency
checks for GMM60. Incidentally, note that although age at first marriage is a continuously distributed
random variable, in the data it is recorded in discrete units (years). Therefore, we cannot do censored
quantile regression in this application.

First, consider the compulsory schooling estimates for women. The GMM estimates for both
1960 and 1970 are quite similar and suggest that moving from less than 9 years of compulsory schooling
to 9 years increases log age at first marriage by about 0.01, implying age at first marriage increases
by approximately 1%. The effects for 10 years of compulsory schooling is about 1.5%, and the effects
of 11 or more is about 2%. Not surprisingly, these effects are about the same size as one obtains
using just the refreshment sample (the 1980 data) because the refreshment sample does not suffer
from censoring bias. Note, however, that the GMM estimates are more precisely estimated than the
OLS estimates from 1980, as GMM is optimally using additional information from the 1960 and 1970
samples. The gain in efficiency is bigger for GMM70 than for GMM60, presumably because the 1970

14The GMM and EL estimators in this application are identical since, as mentioned earlier, θ∗ is just identified.
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data has less of a censoring problem and hence is more informative15. The OLS estimates from 1960
and 1970 show signs of bias due to censoring. In particular, the 1960 estimates indicate very large
effects of the compulsory schooling laws on age at first marriage. The final two columns in table 4
report tobit estimates. The tobit estimates of the compulsory schooling laws are typically lower than
that of the GMM estimators. Also, there is a substantial difference between the tobit estimates for
1960 and the equivalent estimates for 1970, indicating that tobit is performing poorly in this situation.

The estimate of the white dummy for women is also in table 4. The GMM estimates both
indicate that whites tend to marry at younger ages than non-whites – the point estimates imply the
difference is about 8–9%. Once again, OLS estimates for 1960 and 1970 are very different, suggesting
that censoring bias is serious for these samples. The two tobit estimates are again very different from
the GMM estimates.

The compulsory schooling and white estimates for men are also in table 4. They differ from
the female results in that the GMM estimates only suggest significant effects of 10 years of required
schooling (9 years is marginally significant for GMM70). In contrast, the OLS estimates for 60 and
70 show strong significant effects of all the laws on age of first marriage. As in the female sample, the
GMM estimates of the white coefficient imply a difference of about 8-9%. Once again, OLS and tobit
estimates for 1980 and 1990 are very different, suggesting that censoring bias is serious.

Cohort and state fixed effects were also included in the specification. The estimated cohort
effects show how the conditional mean of log(age at first marriage) varies by birth cohort. The oldest
cohort (persons born in 1925) is the excluded dummy in the regression, so the estimate for this group
is normalized to zero. Rather than report the coefficients of the cohort dummies, we plot them for
women and men in figures 2 and 3, respectively. Not surprisingly, the cohort effects for OLS60 are
radically different from the rest. The cohort effects for the rest of the estimators are quite similar to
each other.

In summary, we find positive effects of the compulsory schooling laws on age at first marriage.
However, the magnitude of the effects are much smaller than would be inferred from ignoring the
censoring problem in the 1960 and 1970 data. In contrast, we find large racial differences that are
largely obscured in the censored data. Taken together, these demonstrate the importance in this
application of using an approach that takes account of censoring. The similarity of the GMM coefficient
estimates from 1960 and 1970 to each other and to the OLS estimates from 1980 also demonstrate
our theoretical result that the proposed GMM estimator is consistent irrespective of the extent of
censoring.

7. Concluding remarks and some topics for future research

This paper develops efficient semiparametric inference for models with unconditional moment
restrictions when the target population is subject to censoring or truncation. Instead of imposing

15The difference in the standard errors between OLS80 and the GMM estimators is not that big in this application.

We have experimented with reducing the size of the refreshment sample by taking random 10% and 20% subsamples

and found a much bigger gain in precision for the GMM estimators over OLS80 (although all estimates are much less

precise than those in table 4).



24 DEVEREUX AND TRIPATHI

parametric, independence, symmetry, quantile, or special regressor restrictions on the distributions
of the underlying random variables, we solve the identification problem created due to the incom-
pleteness of data by using a supplementary sample of observations that are not subject to censoring
or truncation. We show how this refreshment sample can be combined with the original dataset of
censored or truncated observations to efficiently correct for the effects of partial observation so that
all standard GMM and EL based inference goes through. To illustrate our results in an empirical
setting, we show how to estimate the effect of changes in compulsory schooling laws on age at first
marriage, a variable that is censored for younger individuals, and also demonstrate how refreshment
samples in this application can be created by matching cohort information across census datasets.

Of course, the methods developed in this paper are readily applicable in many other applied
contexts where refreshment samples are relatively straightforward to construct16. For example, an
important potential application is to the estimation of unemployment durations and re-employment
wages subsequent to job displacement. U.S. analyses of the consequences of job displacement have
predominantly relied on the Displaced Worker Supplement (DWS) to the Current Population Survey
(CPS). However, serious problems arise because many individuals have not become re-employed by
the time of the CPS survey so that unemployment durations are censored and re-employment wages
are truncated. By using panel data sets such as the Panel Study of Income Dynamics (PSID), one
can augment the CPS with a sample that does not have these censoring problems (as individuals are
followed for years after displacement) and consistently estimate parameters of interest. We intend to
examine this application in future research. The theory developed here can be extended to handle
binary response, ordered response, and models involving interval censored or missing data as well.
Research on all these topics is also in progress and will be presented in subsequent papers.

Appendix A. Proofs

To be written.

16This is typically true in applications where censoring or truncation can in some sense be regarded as nuisance

processes, i.e., where the underlying economic outcomes are not restricted, but their measured or recorded versions are.

In contrast, it seems hard, at least to us, to non-experimentally construct refreshment samples by matching datasets in

applications where censoring or truncation is thought of as being behavioral in origin, i.e., where there are fundamental

constraints that bind economic behavior such as those in models of female labor supply or household demand for durable

goods.
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Appendix B. Tables and Figures

Table 1. Descriptive statistics for women by year

Mean Std. Dev. Min Max

1960 (220730 observations)
Birth Cohort 1934.62 5.98 1925 1944
Age 25.38 5.98 16 35
Age at First Marriage 19.68 3.59 14 35
Never Married 0.29 0.45 0 1
White 0.88 0.32 0 1
Years of Education 11.04 2.53 0 17
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1970 (216036 observations)
Birth Cohort 1934.69 5.94 1925 1944
Age 35.31 5.94 26 45
Age at First Marriage 21.23 5.19 14 45
Never Married 0.07 0.25 0 1
White 0.88 0.32 0 1
Years of Education 11.61 2.67 0 17
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1980 (223903 observations)
Birth Cohort 1934.73 5.95 1925 1944
Age 45.28 5.95 36 55
Age at First Marriage 22.07 7.01 12 55
Never Married 0.05 0.22 0 1
White 0.88 0.33 0 1
Years of Education 11.93 2.67 0 17
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1
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Table 2. Descriptive statistics for men by year

Mean Std. Dev. Min Max

1960 (213184 observations)
Birth Cohort 1934.69 6.00 1925 1944
Age 25.31 6.00 16 35
Age at First Marriage 21.36 3.95 14 35
Never Married 0.42 0.49 0 1
White 0.89 0.31 0 1
Years of Education 10.99 3.02 0 17
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1970 (207129 observations)
Birth Cohort 1934.71 5.94 1925 1944
Age 35.29 5.94 26 45
Age at First Marriage 23.82 5.26 14 45
Never Married 0.10 0.30 0 1
White 0.90 0.30 0 1
Years of Education 11.88 3.23 0 17
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1

1980 (212244 observations)
Birth Cohort 1934.80 5.93 1925 1944
Age 45.20 5.93 36 55
Age at First Marriage 24.95 7.26 12 55
Never Married 0.07 0.25 0 1
White 0.89 0.31 0 1
Years of Education 12.22 3.24 0 17
≤ 8 Years of Schooling Required 0.19 0.39 0 1
9 Years of Schooling Required 0.66 0.47 0 1
10 Years of Schooling Required 0.08 0.27 0 1
≥ 11 Years of Schooling Required 0.07 0.26 0 1
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Table 3. Proportion censored by cohort and year

age in % of women censored % of men censored
1960 1960 1970 1980 1960 1970 1980
16 94 13 7 99 20 9
17 88 11 6 98 17 8
18 75 10 6 95 15 8
19 59 9 6 87 13 8
20 46 8 6 75 12 7
21 34 7 5 62 10 7
22 25 7 5 50 10 6
23 19 7 5 40 9 6
24 15 6 5 32 8 7
25 13 6 5 27 9 6
26 11 5 5 22 8 6
27 9 6 4 19 7 6
28 9 5 5 16 7 5
29 9 5 5 15 7 6
30 8 5 4 13 7 6
31 7 5 4 12 7 6
32 6 5 4 11 7 6
33 6 5 5 11 7 6
34 6 5 4 10 7 6
35 6 5 5 9 6 6
36 6 5 4 8 6 6
37 6 6 5 8 6 6
38 5 5 5 8 6 6
39 6 5 5 8 6 6
40 6 6 5 7 6 6



28 DEVEREUX AND TRIPATHI

Table 4. Effects of compulsory schooling laws and race on log(age at first marriage).
Also included in the specification, but not reported in this table, are year-of-birth
indicators and state dummies.

Men OLS60 OLS70 OLS80 GMM60 GMM70 TOBIT60 TOBIT70
9 Years Schooling Reqd. .0114∗

(.0015)
.0073∗
(.0022)

.0031
(.0026)

.0046
(.0024)

.0061∗
(.0023)

−.0028
(.0019)

.0062∗
(.0022)

10 Years Schooling Reqd. .0205∗
(.0019)

.0120∗
(.0029)

.0130∗
(.0035)

.0131∗
(.0033)

.0137∗
(.0031)

.0052
(.0029)

.0109∗
(.0031)

11+ Years Schooling Reqd. .0359∗
(.0035)

.0152∗
(.0053)

.0049
(.0063)

.0028
(.0060)

.0070
(.0056)

.0055
(.0053)

.0121∗
(.0057)

White −.0156∗
(.0011)

−.0444∗
(.0018)

−.0792∗
(.0021)

−.0826∗
(.0020)

−.0792∗
(.0019)

−.0301∗
(.0016)

−.0515∗
(.0017)

Women OLS60 OLS70 OLS80 GMM60 GMM70 TOBIT60 TOBIT70
9 Years Schooling Reqd. .0157∗

(.0016)
.0080∗
(.0022)

.0096∗
(.0025)

.0102∗
(.0024)

.0094∗
(.0022)

.0029
(.0018)

.0077∗
(.0021)

10 Years Schooling Reqd. .0232∗
(.0021)

.0112∗
(.0003)

.0146∗
(.0035)

.0150∗
(.0034)

.0129∗
(.0031)

.0075∗
(.0026)

.0103∗
(.0031)

11+ Years Schooling Reqd. .0456∗
(.0038)

.0317∗
(.0052)

.0184∗
(.0061)

.0188∗
(.0060)

.0223∗
(.0053)

.0157∗
(.0049)

.0299∗
(.0057)

White −.0261∗
(.0012)

−.0476∗
(.0018)

−.0827∗
(.0021)

−.0927∗
(.0020)

−.0808∗
(.0019)

−.0393∗
(.0014)

−.0534∗
(.0016)

Standard errors are in parenthesis. A “∗” superscript denotes effect is significant at 5% level.
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Figure 1. QQ plots of age at first marriage for individuals aged at least 26 that are
uncensored; i.e., those who were married before age 26.
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Figure 2. Cohort effects for women.
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Figure 3. Cohort effects for men.
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