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Abstract 

 This study proposes a deconvolution method to estimate the entire distribution of 

treatment effect of a program.  This method utilizes high-order moment information 

implied by the standard average treatment effect estimator and approximates the 

underlying treatment distribution using the method of maximum entropy density.  Monte 

Carlo simulations and experiments with real data demonstrate the flexibility and 

effectiveness of this estimator as an alternative deconvolution method in general and a 

useful program evaluation tool in specific.  The proposed estimator is applied to data 

from the U.S. Job Training Partnership Act (JTPA) experimental training program to 

estimate the distribution of its impacts on individual earnings. 
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Introduction 

 According to the counterfactual approach of program evaluation, each individual 

has two potential outcomes: with and without the program/treatment.  For an individual i, 

denote the outcome with treatment as Yi,1 and that without treatment as Yi,0, and the 

difference ,1 ,0i i iY Y∆ = −  as individual treatment effect.  Because an individual cannot be 

in both states, we do not observe both Yi,0  and Yi,1 at the same time.  Therefore, this 

problem is essentially a missing data problem and  i∆  is never directly observable. 

Wooldridge (2001, Chapter 18) reviews the program evaluation literature with a 

focus on the Average Treatment Effect (ATE).  Let the distribution of outcome with and 

without treatment be Y1 and Y0 respectively, and the distribution of treatment effect be ∆ .  

The majority of the program evaluation literature focuses on the mean of ∆ .  Under the 

assumption of Stable Unit Treatment Value Assumption (SUTVA) which rules out cases 

where the treatment of one unit affects another’s outcome, the ATE is estimated as 

 ( ) ( )1 1 0ATE E Y Y E= − = ∆ . 

Let D be the treatment status indicator, with D=1 indicating treatment and D=0 

otherwise.  When the treatment status and outcome depend on covariates X, it is often 

assumed that conditional on X, ( )0 1,Y Y  and D are independent.  Under this Ignorability of 

Treatment (given observed covariates X) assumption, we can estimate the conditional 

ATE as 

 ( ) ( )2 1 0 | |ATE E Y Y X E X= − = ∆ . 

 Another quantity of interest is the average treatment effect on the treated, which is 

defined as 
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 ( ) ( )3 1 0 | , 1 | , 1ATE E Y Y X D E X D= − = = ∆ = . 

The ATE3 is the mean effect for those who actually participated in the program.  Under 

the Ignorability of Treatment assumption or the weaker conditional mean independence 

assumption, 2 3ATE ATE= .  

 Although the ATE is of fundamental importance, it only reflects one aspect of the 

treatment effect.  As pointed out by Heckman et al. (1997), there exists interesting 

questions that cannot be answered by the ATE, such as the proportion of people taking 

the program who benefit from it or the selected quantiles of the impact distribution.  

Without knowing the distribution of treatment effect ∆ , the researchers are not able to 

answer these important policy questions. 

 However, the estimation of the impact distribution is difficult because, for an 

individual i, we cannot observe Yi,0
 and Yi,1 at the same time.  Furthermore, even if we 

have complete knowledge of Y0 and Y1 as in the case of random experiments, these two 

marginal distributions do not give us ∆ directly as we do not know the joint distribution 

(Y0, Y1).  For example, suppose [ ]0 1 1,2Y Y= = , then the treatment effect is [0, 0].  If 

instead [ ]1 2,1Y = , the treatment effect is  [-1, 1].  This discrepancy arises from the fact 

that the outcome vector is numbered: permutation of the entries of Y0 and/or Y1 will 

generally change ∆ .  Therefore even if the marginal distributions for both periods are 

identical, the treatment effect may be non-zero, depending on if the rank of the entries of 

outcome vector in the second period remains the same as that of the first period.  
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Generally, without specific assumption, such as the restrictive rank invariance condition 

on individual outcome between two periods, we are not able to recover ∆ .1 

In this study, we propose a method to estimate ∆ directly by exploiting 

information suggested by the ATE model.2  The source of identification of our proposed 

method is the higher-order moments of the impact distribution implied by the standard 

method.  We use a maximum entropy density approach to estimate the underlying 

distribution based on moment information. 

We make two contributions.  First, we propose an alternative deconvolution 

method, which outperforms the orthogonal series method in Carroll and Hall (2004), 

especially for the non-trivial case when the unknown target distribution is not normal.  

Second, we apply this new method to the program evaluation problem to estimate the 

entire distribution of treatment effect.  The distribution function has a simple functional 

form yet is flexible enough to accommodate various shapes of the distribution. 

The next section describes our maximum entropy deconvolution method based on 

moments.  The third section provides results on both Monte Carlo simulations and 

numerical experiments using real data.  The fourth section applies the proposed method 

to an experimental training program.  Conclusions are presented in the final section. 

 

                                                 
1 Instead of estimating the entire distribution, Heckman et al. (1997) discusses how to 
obtain bounds of var(∆ ) under certain statistical and behavioral assumptions. 
2  Concerning the popular Difference-in-Difference estimator (DID), Athey and Imbens 
(2002) notes that “…, one could state the assumption directly in terms of the estimator, 
which involves only the four conditional means rather than other moments of the 
distribution, thus allowing for unrestricted heteroskedasticity.  However, such an 
assumption might be harder to justify, since, for example, it treats differences between 
groups in moments other than the mean as uninformative about the underlying structural 
model.’’   
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The Model 

 Under the assumptions of SUTVA and Ignorability of Treatment, let 

( ), ,i j j i i jY f X e= + , where ( )j if X  estimates ,i jY  consistently for j=0,1.  Suppose ,0ie  and 

,1ie   follow the same distribution ie , we then have  

 

( )
( ) ( ) ( ) ( )
( )

,0 ,1 ,0

0 1 0 ,0 ,1 ,0

0 ( | ) ,

i i i i i

i i i i i i i i

i i i i i

Y Y D Y Y

f X D f X f X e D e e

f X D E X e

= + −

= + − + + −  
= + ∆ +

 

where ei is an i.i.d. error term with mean zero and |i i ie X⊥ ∆ .   

We can use the standard ATE estimator to estimate ( )|E X∆ .  To obtain 

information beyond the first moment of ∆ , one possible way to proceed is to model ∆ i 

explicitly as a flexible function of Xi.  However, this estimator will suffer from omitting 

variable bias if ∆ i depends on some unobserved covariates Zi.  On the other hand, if ∆ i 

is a random variable independent of Xi, the covariates in Xi  have zero explanatory power.   

Instead we take another approach.  Let i i i ir D e= ∆ + .  Because ri is a sum of two 

independent random variables, we can use a deconvolution method to estimate the 

distribution of ∆ i if we either know or have data on the distributions of ie  and ri.  This 

approach is employed by Heckman and Smith (1997) and Heckman et al. (1997) in the 

program evaluation problem and by Horowitz and Markatou (1996) in the error 

component model.   

The conventional numerical deconvolution method uses the ratio of 

nonparametrically-estimated characteristic functions of r and e to derive that of the target 

distribution ∆ , and then invokes the inversion theorem to recover ∆ .  One practical 

drawback of this method is that it can be sensitive to the choice of bandwidth and 
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sometimes leads to negative estimated densities.  Moreover, Carroll and Hall (2004) note 

that consistently estimating of the target density is practically impossible because of 

rather slow convergence rate.  They propose two methods, involving kernel and 

orthogonal series respectively, that are based on low-order approximation of the target 

density rather than its consistent estimates.  Each of these methods requires only the 

existence and knowledge/estimates of low-order moments of e  and r. 

We propose an alternative but conceptually similar error component estimator, in 

which we model the individual effect ∆ i as a random coefficient for the treatment 

indicator Di.  Existing methods often assume that the random coefficient is distributed 

according to a known parametric family (typically the normal distribution).  We relax this 

assumption and show that one can use higher-order moment information to obtain a 

flexible estimate of the target density. 

Because l ( )0 if X  estimates Y0(Xi) consistently, we can obtain a consistent 

estimate of ri as  

 l ( )0
ˆ ˆi i i i i ir Y f X D e= − = ∆ +� . 

Denote kµ  and kν  as the kth moment of ∆ i and ei respectively, we have  

 ( )( ) ( )1 | 0k k
i i i i kE D r E e D ν− = = = .  (1) 

Therefore, we can estimate the moments of the error distribution from the error terms of 

the control group. 

Since ∆  and e are independent, using Binomial expansion, we obtain 
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Assuming both ∆ i and ei have finite moments up to order k, we are able to estimate kµ  

from �( ),i ir D  using Equation (1) and (2).  For example, let �
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The terms involving �1ν  disappear because ( )1 0iE eν = = .   

Certain restrictions on the estimated moments can be used as specification tests on 

the independence assumption |i i ie X⊥ ∆ , as noted by Heckman et al. (1997).  For 

example, because 

 ( ) [ ]2
2 2 2 2i i i iE e E eω µ ν = ∆ + = + + ∆  , 

if i∆ and ei are negatively correlated and [ ]2 2 0i iE eµ + ∆ < , using the relation under 

independence assumption 2 2 2µ ω ν= −  will lead to a negative 2µ .  Therefore, a negative 

l
2µ clearly indicates the violation of the independence assumption.  Similarly, l 4µ  is 

required to be positive. 
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 Given estimated moments of ∆ , we can use the maximum entropy (maxent) 

density approach to estimate its distribution.  The principle of maximum entropy is a 

general method to assign values to probability distributions on the basis of given 

information, in our case, moments.  This method produces the least informative and most 

conservative distribution in the sense that minimal assumption is made regarding the 

unknown distribuiton.  The resulting maxent densities have simple yet flexible functional 

forms.  The appendix provides a brief description of this approach.  Interested readers can 

find details in Zellner and Highfield (1988) and Wu (2003). 

Theoretically, we can approximate a distribution arbitrarily well by increasing the 

number of moments (Cobb et al., 1983).  However, high-order moments can be sensitive 

to outliers, especially when sample size is small.  In this study, we use only the first four 

moments.    The maxent densities based on the first four moments are rather flexible, 

allowing both uni-modal and multi-modal distributions and straightforward extension to 

accommodate higher-order moments.3  The versatile Pearson family distributions can be 

completely characterized by their first four moments.  Biddel et al. (2003) uses the 

Pearson family to approximate the treatment distribution.  However, the specification 

considered in their study only allows uni-modal distributions, which restrict the 

applicability of their method.  By using a maxent approach, our approximation of the 

target density has a more flexible functional. 

 

 

 

                                                 
3 Cobb et al. (1983) discusses the relationship between number of modes and the moment 
conditions. 
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Numerical Properties 

 To investigate the numerical properties of the proposed estimator, we provide 

both Monte Carlo simulations and experiments using pseudo program evaluation data 

generated from a real survey sample. 

Monte Carlo Simulations 

Following Carroll and Hall (2004), we set ( ) ( ) 0E E e∆ = = , 2 4 / 3σ∆ =  and 

2 1/ 3eσ =  for all the distributions. As possible distributions for ∆ , we consider the 

normal, skew-normal with index 5 and density function 2 ( ) ( )5x xφ Φ ,4 and a normal 

mixture with equal probability of N(1.2, 0.5) and N(-1.2, 0.5).  The distributions of e 

include the Normal and Uniform in [-1,1].  All distributions are rescaled to have the 

prescribed variance.  Sample sizes are n=250 and n=500.  Each experiment is repeated 

500 times.  

For comparison, we also report the results of Carroll and Hall’s orthogonal series 

estimator, which is shown to outperform traditional methods.  This method approximates 

the target distribution using a series expansion.  In all experiments, we use a Gram-

Charlier expansion based on the first four Hermite polynomials, which are constructed 

from the estimated moments obtained as discussed above.  

                                                 
4 Denote the shape parameter as α , the skew-normal distribution with density 

( ) ( )2 x xφ αΦ  has mean 
( )2

2

1

α πµ
α

=
+

 and variance 2 21 .σ µ= −  
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 Denote 0f  and lf  as the theoretical and estimated target density respectively, our 

measure of performance is the integrated squared errors l( )2

0f f dx−∫ .  The results are 

reported in column (a) of Table 1.5 

 For n=250, the maxent estimator outperforms the orthogonal series except when 

the target density is normal.  The better performance of the orthogonal series estimator 

for the normal density is to be expected as the Gram-Charlier expansion works best when 

the baseline distribution is normal.  However for program evaluation problem, we have 

no reason to assume the unknown distribution is normal, in which case we could simply 

use the more efficient maximum likelihood estimator.  As the target density deviates from 

normal, the performance of the orthogonal series estimator deteriorates rapidly.  When 

the target density is skewed, the integrated squared errors of the maxent estimator are 

about 85% of those of orthogonal series estimator.  For the bi-modal mixed-normal 

density, this ratio falls to below 25%.  The performance of both deconvolution estimators 

is slightly better when the noise distribution is uniform rather than normal, reflecting the 

difficulty in filtering out a Gaussian noise.    

One advantage of estimating the entire distribution rather than just the ATE is that 

we can calculate any feature of the estimated distribution.  In column (b) and (c) of Table 

1, we compare the MSE of the median and inter-quartile range of the two estimators.  For 

normal density, the orthogonal series estimator performs better for the reasons already 

discussed.  For skew-normal distribution, the MSE of the maxent estimator is about 75% 

of that of the orthogonal series estimator for both the median and inter-quartile range.   

                                                 
5 The integrated square errors are obtained numerically using a simple quadrature method. 
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When the target distribution is the bi-modal mix-normal distribution, the 

orthogonal series estimator estimates the median more precisely.  However, this result is 

largely because the Gram-Charlier series is an asymptotic expansion of the normal, which 

happens to share the same median with the mix-normal distribution used in our 

experiment.  As a consequence, the estimated distribution by the Gram-Charlier series 

maintains the normal-like bell shape.  In terms of the inter-quartile range, the MSE of the 

maxent estimator is about 8% of that of the orthogonal series estimator, which is 

consistent with the results on integrated mean square errors.  This example illustrates the 

importance of flexibility in the functional form, which to some degree prescribes the 

shape of the distributions. 

 For n=500, the results are similar both quantitatively and qualitatively.  One 

notable improvement is that now two estimators perform nearly equally well when the 

target density is Normal. 

Our experiments show that the proposed estimator is able to approximate the 

target density well, especially for the non-trivial cases when the target density is not 

normal. 

Experiments with CPS Wage Data 

 In this section, we apply our proposed method to examine a pseudo treatment 

effect constructed from real data.  The data used in this experiment come from the 

Current Population Survey Outgoing Rotation Group (ORG) file of April, 2004.  Our 

sample is restricted to prime-aged, full-time workers with hourly wages between 5 and 

100 dollars.  We use the logarithm of wages in the experiments. 
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We construct our pseudo-data based on the standard assumptions of the popular 

difference-in-difference estimator.  For each observation, we assigned two independent 

Bernoulli random variables with equal probability of success and failure, one for an 

indicator called “Time” (T) and the other for “Group” (G).  Therefore, we randomly 

divide the observations into four mutually exclusive groups: a control group in the first 

period (T=0, G=0), a control group in the second period (T=1, G=0), a treatment group 

in the first period (T=0, G=1), and a treatment group in the second group (T=1, G=1).  

We have 6,110 observations, and each group has roughly 1,500 observations. The 

treatment indicator is D TG= . 

To introduce time effect and group effect to our data, we add 0.1 to the wage of 

each observation with T=1 and 0.1 to that of those with G=1.  We then regress the wage 

variable on a vector of social-economic controls, including: age, age square, education, 

education square, sex, union status, MSA status, plus the time and group dummies.  The 

baseline wage used in this experiment is then constructed as the OLS fitted value plus a 

normally distributed error term with mean zero and standard deviation 0.1.  This 

constructed wage w0 has a mean of 2.59 and a standard deviation of 0.27.  

We run three experiments on the estimation of the treatment impacts.  First, we 

randomly generate a treatment effect (∆ ) distributed as N(0.1, 0.1) and add ∆ i to w0,i for 

the treated sample (those with T=1 and G=1).  Figure 1 shows the histogram of the 

randomly generated treatment effect used in this experiment and the estimated treatment 

distribution using the proposed method.  One can see that the estimate is very close to the 

data. 
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The second experiment involves a non-normal random treatment effect.  The data 

are generated according to the log-normal distribution, whose exponential has mean -2 

and standard deviation 0.5.  The generated random effect sample for the treatment group 

has a mean 0.15 and standard deviation 0.08.  The results are reported in Figure 2.  The 

approximation is surprisingly good despite the fact the maxent density subject to the first 

four moments does not nest the log-normal distribution.6 

In the third experiment, we generate a non-random heterogeneous treatment effect 

for the treated sample according to the following hypothetical formula 

 20.1 0.1 0.01i i ieduc educ∆ = + × − × , 

where educ is the education level.  The generated treatment effect has mean 0.17 and 

standard deviation 0.17.  Figure 3 plots the estimated treatment effect distribution, which 

is very close to the data used in the experiment.  The two modes correspond to the 

clusters of high school and college graduates.  The result suggests that the proposed 

method is also able to approximate an impact distribution that is a function of explanatory 

variables.  

Our method relies on the higher-order moment information contained in the 

residuals of standard DID model and does not model the heterogeneous treatment effect 

as a function of potential explanatory variables.  Therefore, we are able to approximate 

the distribution of treatment impacts regardless if the treatment effect is a random 

variable or a function of some other variables, and more importantly, for the latter, 

regardless if it is a function of observables or unobservables. 

 

                                                 
6 The log-normal distribution is a maxent density characterized by generalized moments 
of log(x) and log(x)2. 
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Empirical Application 

 In this section, we use the proposed estimator to estimate the impact distribution 

on earnings by the U.S. Job Training Partnership Act (JTPA).  We use data from the 

National JTPA Study (NJS), a recent experimental evaluation of a large scale U.S. 

training program.  Heckman et al. (1997) gives a detailed account of this data set.  In the 

JTPA evaluation, accepted applicants were randomly assigned to treatment or control 

group, with the control group being prohibited from receiving JTPA services for 18 

months.  The treatment includes classroom training, on-the-job training and job search 

assistance to the disadvantage.  Following Heckman et al. (1997), we focus on the 

earnings of adult women.  The number of observations is 4,317. 

 The outcome variable used in this study is the earnings 18 months after the 

treatment.  We consider three specifications.  First, we calculate the unconditional 

moments of the treatment effect.  Second, we estimate those moments conditional on 

some social-economic controls, including: age, education, race, marital status, number of 

children, total family income, past work and welfare history, and experiment site 

dummies.  In the third experiment, we add interaction between the treatment status and 

age and education.7 

 The estimated moments of the treatment distribution is reported in Table 2.8  The 

conditional variance is slightly smaller than the unconditional one.  The inclusion of the 

interaction terms with the treatment status barely changes the variance.  Statistical tests 

do not reject the hypothesis that three variances are identical.  These results suggest that 

                                                 
7 The regression results are available from the authors upon request. 
8 Heckman et al. (1997) discusses using the estimated moments as a specification test on 
the assumption of independence between ∆ and Y0.  Since all the even moments are 
positive, they can not reject the independence assumption. 
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most of the variation in the treatment effect cannot be explained by the observed 

covariates used in our model.  Therefore in this case, modeling the treatment effect 

distribution as a function of observables will have little explanatory power, a situation 

that calls for a random estimator.  The proposed estimator is suitable for this task as it 

imposes few restrictions on the shape of the distribution and is shown to be able to 

approximate the underlying distribution when it is a random variable not dependent on 

covariates observable to the researchers. 

 Since all three specifications produce similar results, we focus our discussion on 

conditional moment estimates without interactions.  Figure 4 plots the estimated 

treatment distribution.9  Also plotted is a normal distribution with identical mean and 

variance.  The treatment distribution is shown to be more concentrated than the normal 

but skewed to the right.  The Jarque and Bera test of normality rejects the hypothesis of 

normality at 1% level.  Hence, the conventional error component estimator assuming a 

normal treatment effect distribution will fail to capture some important feature of the 

underlying impact distribution.   

We can use this estimated treatment distribution to answer some interesting policy 

questions.  For example, the median impact is $327, less than the average treatment effect 

$844.  The distribution also predicts that among the treated, 51% of the population 

benefit from this program.10  Therefore, about half of the benefit from the treatment, and 

                                                 
9 The shape of the distribution is close to what is reported in Heckman, et al (1997), 
which uses the empirical characteristic function approach for deconvolution on the same 
data. 
10 Heckman, et al. (1997) reports that 56% of the population benefits from this program, 
using unconditional estimates. 
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consistent with the right-extended tail, the median impact is smaller than the average 

impact by $517. 

 

Conclusion 

The commonly used estimators for program evaluation focus on the average 

treatment effect.  However, these estimators may fail to capture important features of the 

distribution of heterogenous treatment effect, knowledge of which is critical in answering 

important policy questions. 

In this study, we propose a deconvolution method to approximate the entire 

distribution of treatment effect.  The method uses high-order moment information 

implied by the standard average treatment effect estimator and employs the method of 

maximum entropy density to estimate a flexible distribution.  Monte Carlo and numerical 

examples demonstrate the effectiveness of the proposed estimator as an alternative 

deconvolution method in general and its superior performance when applied to program 

evaluation problem. 

We apply the proposed method to the JTPA experimental training program to 

estimate the distribution of the treatment effects on individual earnings.  Our results 

suggest that little variation in the individual treatment can be explained by observables, 

highlighting the importance of modeling the treatment effect distribution as a flexible 

random process.  Consistent with previous studies using the same data, the impact 

distribution is shown to right-skewed, with the average treatment effect larger than the 

median treatment effect.  Slightly more than 50% of the treated population is projected to 

benefit from this training program. 
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Appendix 

 The principle of maximum entropy, introduced by Jaynes in 1957, states that one 

should choose the probability distribution, consistent with given constraints, that 

maximizes Shannon’s entropy.  According to Jaynes (1957), the maximum entropy 

distribution is “uniquely determined as the one which is maximally noncommittal with 

regard to missing information, and that it agrees with what is known, but expresses 

maximum uncertainty with respect to all other matters.” 

The maxent density p(x) can be obtained by maximizing Shannon’s information 

entropy 

 ( ) log ( ) ,W p x p x dx= −∫  

subject to K known moment conditions for the entire range of the distribution 

 ( ) 1,p x dx =∫  

 ( ) ( ) ,i ig x p x dx µ=∫  

where i = 1, 2,…, K indexes the characterizing moments, µi, and their functional forms, 

gi(x). Here gi(x) is continuous and at least twice differentiable.    

We can solve this optimization problem using Lagrange’s method, which leads to 

a unique global maximum entropy.  The solution takes the form 

 0
1

( , ) exp ( ) ,
K

i i
i

p x g xλ λ λ
=

 
= − − 

 
∑  

where iλ  is the Lagrange multiplier for the ith moment constraint and [ ]0 1, , , Kλ λ λ λ= … . 

 Zellner and Highfield (1988), Ornermite and White (1999), and Wu (2003) 

discuss the estimation of maxent density subject to moment constraints.  Generally the 
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maxent density estimation method has no analytical solution.  To solve for the Lagrange 

multipliers, we use Newton’s method to iteratively update 

 ( ) ( )1 0 1 ,λ λ −= + G b  

where G is the (K+1) by (K+1) Hessian matrix of the form 

 ( ) ( ) ( ), , 0 , ,ij i jG g x g x p x dx i j Kλ= ≤ ≤∫  

and 

 ( )( )0
0 , 0 .i i ib G i Kµ λ= − ≤ ≤  

This maximum entropy method is equivalent to a maximum likelihood approach 

where the likelihood function is defined over the exponential distribution and therefore 

consistent and efficient (see Golan, et al., 1996 for a discussion of the duality between 

these two approaches).  In mathematical statistics, most of the known distributions may 

be described as maximum entropy (maxent) densities subject to moment constraints.  

These characterizing moments are sufficient statistics for exponential families; the entire 

distribution can be summarized by the characterizing moments. 
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Table 1. Simulation results 

n ∆  E Maxent Orthog 
   (a) (b) (c) (a) (b) (c) 
250 Normal Normal 0.002 0.008 0.011 0.001 0.005 0.006 
250 Normal Uniform 0.002 0.007 0.011 0.001 0.005 0.006 
250 Skew-Normal Normal 0.042 0.030 0.643 0.051 0.040 0.855 
250 Skew-Normal Uniform 0.042 0.030 0.644 0.050 0.040 0.837 
250 Mix-Normal Normal 0.029 0.026 0.058 0.117 0.002 0.688 
250 Mix-Normal Uniform 0.023 0.017 0.058 0.118 0.002 0.704 
500 Normal Normal 0.001 0.004 0.005 0.001 0.003 0.003 
500 Normal Uniform 0.001 0.004 0.006 0.001 0.003 0.003 
500 Skew-Normal Normal 0.041 0.025 0.601 0.051 0.034 0.861 
500 Skew-Normal Uniform 0.041 0.023 0.615 0.051 0.036 0.859 
500 Mix-Normal Normal 0.023 0.014 0.048 0.117 0.001 0.695 
500 Mix-Normal Uniform 0.019 0.011 0.048 0.118 0.001 0.698 
(a): Integrated mean square errors 
(b): Mean square errors of median 
(c): Mean square errors of inter-quartile range 
 

Table 2.  Estimated moments of the treatment distribution (unit: $1,000) 
 

 1st moment 2nd moment3rd moment 4th moment variance 

Unconditional 0.77 8.75 185.86 6280.52 2.86 

Conditional 0.84 8.61 173.20 7609.69 2.81 

Conditional+Interaction 0.75 8.51 176.39 7712.65 2.82 
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Figure 1: Estimation of normal treatment effect distribution 
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Figure 2. Estimation of log-normal treatment effect distribution 
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Figure 3. Estimation of heterogenous treatment effect distribution 
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Figure 4: Estimated treatment effect distribution (solid) and normal distribution with 
identical mean and variance (dotted); unit: $1,000 


