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Abstract 

 In this progress report, we first indicate the origins and early development 

of the Marshallian Macroeconomic Model (MMM) and briefly review some of our 

past empirical forecasting experiments with the model. Then we present recently 

developed one sector, two sector and n sector models of an economy that can be 

employed to explain past experience, predict future outcomes and analyze policy 

problems. The results of simulation experiments with various versions of the model 

are provided to illustrate some of its dynamic properties that include “chaotic” 

features. Last, we present comments on planned future work with the model. 

 

 Keywords: Marshallian macroeconomic model; disaggregation and 

prediction, simulation, one, two and n-sector models 
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I. Origins and Early Development of the MMM 

 

 In the early 1970s, the structural econometric modeling, time series analysis 

(SEMTSA) approach that provides methods for checking existing dynamic 

econometric models and for constructing new econometric models was put 

forward; see, Zellner and Palm (1974,1975, 2004), Palm (1976,1977,1983) and 

Zellner (1997, Part IV, 2004).  In Zellner and Palm (2004), many applications of 

the SEMTSA approach are reported including some that began in the mid-1980s 

that involved an effort by Garcia-Ferrer, Highfield, Palm, Hong, Min, Ryu, Zellner 

and others to build a macroeconometric model that works well in explaining the 

past, prediction and policy-making. In line with the SEMTSA approach, we started 

the model-building process by developing dynamic equations for individual 

variables and tested them with past data and in forecasting experiments.  The 

objective is to develop a set of tested components that can be combined to form a 

model and to rationalize the model in terms of old or new economic theory. 

 

 The first variable that we considered was the rate of growth of real gross 

domestic product (GDP).  After some experimentation, we found that various 

variants of an AR(3) model including lagged leading indicator variables, namely 

the rates of growth of real money and of real stock prices, called an autoregressive-

leading indicator (ARLI) model worked reasonably well in point forecasting and 

turning point forecasting experiments using data for first 9 industrialized countries 

and then 18 industrialized nations. Later a world income variable, the median 
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growth rate of the 18 countries’ growth rates was introduced in each country’s 

equation and an additional ARLI equation for the median growth rate was added to 

give us our ARLI/WI model. The variants of the ARLI and ARLI/WI models that 

we employed included fixed parameter and time-varying parameter state space 

models. Further, Bayesian shrinkage and model-combining techniques were 

formulated and applied that produced gains in forecasting precision. See Zellner 

and Palm (2004) and Zellner (1997, Part IV) for empirical results. It was found that 

use of Bayesian shrinkage techniques produced notable improvements in forecast 

precision and in turning point forecasting with about 70 per cent of 211 turning 

point episodes forecasted correctly; see Zellner and Min (1999). 

 

 Given these ARLI and ARLI/WI models that worked reasonably well in 

forecasting experiments using data for 18 industrialized countries, the next step in 

our work was to rationalize these models using economic theory. It was found 

possible to derive our empirical forecasting equations from variants of an aggregate 

demand and supply model in Zellner (2000). Further, Hong (1989) derived our 

ARLI/WI model from a Hicksian IS-LM macroeconomic theoretical model while 

Min (1992) derived it from a generalized real business cycle model that he 

formulated. While these results were satisfying, it was recognized that the root 

mean squared errors of the models’ forecasts of annual growth rates of real GDP, in 

the vicinity of 1.7 to 2.0 percentage points, while similar to those of some OECD 

macro-econometric models were rather large. Thus we thought about ways to 

improve the accuracy of our forecasts. 
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 In considering this problem, it occurred to us that perhaps using 

disaggregated data would be useful. For an example illustrating the effects of 

disaggregation on forecasting precision, see Zellner and Tobias (2000). The 

question was how to disaggregate. After much thought and consideration of ways 

in which others, including Leontief, Stone, Orcutt, the Federal Reserve-MIT-PENN 

model builders, et al had disaggregated, we decided to disaggregate by industrial 

sectors and to use Marshallian competitive models for each sector. In earlier work 

by Veloce and Zellner (1985), a Marshallian model of the Canadian furniture 

industry was formulated to illustrate the importance of including not only demand 

and supply equations in analyzing industries’ behavior but also an entry/exit 

relation. It was pointed out that on aggregating supply functions over producers, the 

industry supply equation includes the variable, the number of firms in operation at 

time t, N(t).  Thus, there are three endogenous variables in the system, price, p(t), 

quantity, q(t) and N(t) and, as Marshall emphasized, the process of entry and exit of 

firms is instrumental in producing a long run, zero profit industry equilibrium.   

Further, given that producers were assumed to be identical, profit-maximizers with 

Cobb-Douglas production functions and selling in competitive markets with “log-

log” demand functions and a partial adjustment entry/exit relation, it was not 

difficult to solve the system for a reduced form equation for industry sales.  As will 

be shown below, this system yielded a reduced form logistic differential equation 

for industry sales including a linear combination of “forcing” variables, namely 
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rates of growth of exogenous variables that affect demand and supply, e.g., real 

income, real factor prices, etc.  

 

 Given this past work on a sector model of the Canadian furniture industry, it 

was thought worthwhile to consider similar models, involving demand, supply and  

entry/exit relations for various sectors of the U.S. economy, namely, agriculture, 

mining, construction, durables, wholesale, retail, etc. and to sum forecasts across 

sectors to get forecasts of aggregate variables. Whether such “disaggregate” 

forecasts of aggregate variables would be better than forecasts of the aggregate 

variables derived from aggregate data was a basic issue. Earlier, these aggregation/ 

disaggregation issues had been considered by many, including Zellner (1962), 

Lütkepohl (1986) and de Alba and Zellner (1991), with the general analytical 

finding that many times, but not always, it pays to disaggregate. In addition, we 

were quite curious about whether inclusion of entry/exit relations in our model that 

do not appear generally in other macroeconomic models would affect its 

performance. 

 

 To summarize some of the positive aspects of disaggregation by sectors of 

an economy, note that these sectors, e.g. agriculture, mining, durables, 

construction, services, etc., exhibit very different seasonal, cyclical and trend 

behavior and that there is great interest in predicting the behavior of these 

important sectors. Further, sectors have relations involving both sector specific and 

aggregate variables, with the sector specific variables, e.g. prices, weather, etc., 
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giving rise to sector specific effects. Since sector relations have error terms with 

differing variances and that are correlated across sectors, it is possible not only to 

use joint estimation and prediction techniques in order to obtain improved 

estimation and predictive precision but also to combine such techniques with the 

use of Stein-like shrinkage techniques to produce improved estimates of parameters 

and predictions of both sector and aggregate variables. In the literature, such 

approaches have been successfully implemented using time varying parameter, 

state space models to allow for possible “structural breaks” and other effects 

leading to parameters’ values changing through time. See, e.g. Zellner, Hong and 

Min (1991) and Quintana, Putnam and Wilford (1997) for examples of such applied 

analyses, the former in connection with predicting output growth rates and turning 

points in them for 18 industrialized countries and the latter in connection with 

formation of stock portfolios utilizing multivariate state space models for 

individual stock returns, predictive densities for future returns and Bayesian 

portfolio formation techniques. 
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To illustrate some of the points made in the previous paragraph, in Figure 1, 

taken from Zellner and Chen (2001), the annual output growth rates of 11 sectors of 

the U.S. economy, 1949-1997 are plotted. It is evident that sectors’ growth rates 

behave quite differently. For example, note the extreme volatility of the growth 

rates of agriculture, mining, durables and construction; see the box plots presented 

in Figure 1C of the Zellner-Chen (2001) paper for further evidence of differences in 

dispersion of growth rates across sectors. Also, it is clearly the case that sector 

output growth rates are not exactly synchronized. With such disparate behavior of 
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growth rates of different sectors, much information is lost in using aggregate data 

and models for forecasting and policy analysis. 

<Insert Table 1> 

In Table 1, mean absolute errors (MAEs) and root mean squared errors 

(RMSEs) of forecast are presented for AR(3) and Marshallian macroeconomic 

models (MMMs) implemented with aggregate data. The AR(3) model has 

previously been employed as a benchmark model in many studies. In this case, in 

forecasting annual U.S. rates of growth of real GDP, 1980-1997 with estimates 

updated year by year, the MAE = 1.71 percentage points and the RMSE = 2.32 

percentage points, both considerably larger than similar measures for the reduced 

form equation of an aggregate MMM model, namely MAE = 1.48 and RMSE = 

1.72. This improved performance associated with the MMM aggregate model flows 

from the theoretical aspects of the MMM model that led to incorporation of level 

variables and leading indicator variables, e.g. money and stock prices, in the 

reduced form equation for the annual growth rate of real GDP. 

<Insert Table 2> 

Table 2 displays the effects of disaggregation on forecasting precision. 

When AR(3) models are employed for each of 11 sectors of the U.S. economy and 

SUR techniques are employed for estimation and forecasting, the MAE = 1.52 

percentage points and RMSE = 2.21, both slightly below those obtained using an 

AR(3) model implemented with aggregate data shown in Table 1. However, on 

using reduced form sector output growth rate equations associated with demand, 

supply and entry/exit relations for each sector and SUR estimation and forecasting 
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techniques, one year ahead forecasts of the outputs of each sector were obtained 

and totaled to provide forecasts of next year’s total real GDP and its growth rate. It 

was found that the MAE = 1.17 percentage points and the RMSE = 1.40, are both 

considerably smaller than those for the MMM aggregate forecasts, MAE = 1.48 

and RMSE = 1.72 and for the AR(3) model. Thus in this case, use of the MMM’s 

theory along with disaggregation has resulted in improved forecasting performance. 

For more results based on other methods and variants of the MMM, see Zellner and 

Chen (2001). 

 

These positive empirical results encouraged us to proceed to analyze the 

properties of our models further and to add factor markets and a government sector 

to close the model. Further, we discovered that discrete versions of our MMM are 

in the form of chaotic models that, as is well known, have solutions with a wide 

range of possible forms depending on values of parameters and initial conditions. 

 

II.   Development of a Complete One Sector MMM 

 

 In this section we shall indicate how to formulate a complete one sector 

MMM. Extending the work in Veloce and Zellner (1985) and Zellner (2001), we 

introduce demand, supply and entry/exit equations. The supply equation is derived 

by aggregating the supply functions of individual, identical, competitive, profit-

maximizing firms operating with Cobb-Douglas production functions. Further, 

firms’ factor demand functions for labor and capital services are aggregated over 

firms to obtain market factor demand functions. Given a demand function for 
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output and factor supply functions for labor and capital services, we have a 

complete one sector, seven equation MMM. Further, with the introduction of 

government and money sectors, an expanded one sector MMM model with 

government and money is obtained that will be described below. Results of some 

simulation experiments with these models are presented and discussed.   

 

2.1 Product Market Supply, Demand and Entry/Exit Equations 

 

 We assume a competitive Marshallian industry with N = N(t) firms in 

operation at time t, each with a Cobb-Douglas production function, 

*q A L K ,α β= where  the product of a neutral 

technological change factor and labor and capital augmentation factors that reflect 

changes in the qualities of labor and capital inputs. Later, we introduce money 

services as another factor input. Additional inputs, e.g. raw materials and inventory 

service inputs can be added without much difficulty. The production function 

exhibits decreasing returns to scale with respect to labor and capital. This could be 

interpreted as the result of missing factors, e.g. entrepreneurial skills that are not 

included in the model. Note that our Cobb-Douglas production function with 

decreasing returns to scale, combined with fixed entry costs introduced below, 

yields a U-shaped long run average cost function. Given w = w (t), the nominal 

wage rate, r = r (t), the nominal price for capital services, and p = p (t), the product 

price, and assuming profit maximization, the sector’s nominal sales supply function 

is:  

* *( ) ( ) ( ) ( ),N L KA A t A t A t A t= =

1/ / / ,S NAp w rθ α θ β θ− −=  where 1/* ,A A θ=  and 0 1 1.θ α β< = − − <  On logging 
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both sides of the equation for S, nominal sales, and differentiating with respect to 

time, we obtain the industry nominal sales equation: 

 

 

/ / / (1/ ) / ( / ) / ( / ) /S S N N A A p p w w r rθ α θ β θ= + + − −& && & & &      Product Supply (1) 

 

where / (1/ ) /x x x dx dt≡& . Note that with no entry or exit ( ) / 0N N =&

and no technical change ( / 0)A A =& , an equal proportionate change in the prices for 

product and for factors will not affect real sales.  That is, from (1),   / / 0.S S p p− =& &

 

 On multiplying both sides of the industry output demand function by p, we obtain 

an expression for nominal sales,  where Y is nominal 

disposable income, H is the number of households, and the x variables are demand shift 

variables such as money balances, demand trends, etc. On logging and differentiating this 

last equation with respect to time, the result is: 

1 21
1 2 ... ,s h d

dS pQ Bp Y H x x xη η ηη ηη−= =

 

 

1

/ (1 ) / / / /
d

s h i
i

S S p p S S H H x xη η η η
=

= − + + +∑& & && i i&                 Product Demand (2) 

 In a one sector economy without taxes, we can replace nominal disposable 

income, Y, with nominal sales, S. Ceteris paribus, an equal change in prices and nominal 

income will not affect real demand. That is, from (2), / / 0,S S p p− =& &  provided that 

sη η=  implying no money illusion. Note that money illusion might arise from 
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psychological reasons and/or systematic lack of information regarding relative prices and 

systematic errors in anticipations. Also, equation (2) can be expanded to include costs of 

adjustment, habit persistence and expectation effects. 

 

 The following entry/exit equation completes the product market model: 

 

/ '( ) (eN N F S Fγ γ= Π − = −& ),                Entry/Exit       (3) 

 

with nominal profits given by SθΠ =  used in going from the first equality to the second 

in (3). Also in going from the first equality to the second, ( ) ( ) / ,eF F t F t θ= =   with 

 the equilibrium level of profits at time t taking account of discounted entry costs 

and 

( )eF t

,γ γ θ′=  with ( )tγ γ=  and ( ).tγ γ′ ′= Such fixed costs make the long run average 

cost function U-shaped for a firm operating with decreasing returns to scale, as assumed 

above. Equation (3), with ( ) ,tγ γ=  where  is time, represents firm entry/exit behavior 

as a time varying function of industry profits relative to the equilibrium level of profits. 

Further, equation (3) can be elaborated to take account of possible asymmetries, 

expectations and lags in entry and exit behavior. For example, exit may not occur 

immediately if fixed costs incorporated in  are sunk. 

t

eF

 

2.2  Factor Market Demand and Supply Equations 
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 Now we extend the model to include demand and supply equations for labor and 

capital. From assumed profit maximization, with N  competitive firms operating with 

Cobb-Douglas production functions, as described above, the aggregate demand for labor 

input is  / / .L Npq w S wα α= =   Similarly, the aggregate demand for capital services is  

/ / .K Npq r S rβ β= =   Logging and differentiating these last two equations with respect 

to time, we obtain: 

 

/ / /L L S S w w= −&& &       Labor Demand        (4) 

 

/ / /K K S S r r= −&& &       Capital Demand       (5) 

 

 As regards labor supply, we assume 1 2
1 2( / ) ( / ) ...s h l

lL D w p Y p H z z zδ δ δδ δδ= . Also, 

with respect to capital service supply, we assume 1 2
1 2( / ) ( / ) ...s h k

kK E r p Y p H v v vφ φ φφ φφ=  

where the z and v variables are “supply shifters.”  As before, we replace nominal income 

by nominal sales, and logging and differentiating with respect to time, we obtain: 

 

1
/ ( / / ) ( / / ) / /

l

s h i
i

i iL L w w p p S S p p H H zδ δ δ
=

= − + − + +∑&& && & & & zδ  Labor Supply    (6) 

 

1

/ ( / / ) ( / / ) / /
k

s h i i
i

K K r r p p S S p p H H v vφ φ φ φ
=

= − + − + +∑&& && & & & i    Capital Supply  (7) 

 

Above, /H H& is the rate of change of the number of households. 
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 The above seven equation model is complete for the seven endogenous 

variables N, L, K, p, w, r and S with the variables H, A*, 'γ , , x, z and v assumed 

exogenously determined. The model can be solved analytically (see Appendix I for 

details) for the “reduced form” equation for  that is given by: 

eF

/S S&

 

/ ( )S S a S F bg= − +&                 (8) 

 

where a and b are parameters and g is a linear function of the rates of change of the 

exogenous variables given above. If a, b, F and g have constant values, (8) is the 

differential equation for the well known and widely used logistic function.  Further, 

if g = g(t), a given function of time, as noted in Veloce and Zellner (1985, p. 463) 

the equation is a variant of Bernoulli’s differential equation.  Note that g may 

change through time because of changes in the rates of growth of technological 

factors, households, etc.; for an explicit expression for g(t), see equation (I.5) in 

Appendix I. Further, the logistic equation in (8) can be expressed as: 

 

1 2 1/ [1 ( /dS dt k S k k S= − ) ]

)

               (9) 

where  and ( ) (1 / 1k g F fγ= − − ( )2 / 1 .k fγ= − −  

 The solution to (9) is given by:   where  1
1 2( ) ( / ) /[1 ]k tS t k k ce−= −

1 2(1 / )oc k k S= +  with  the initial value.  Also, from (9), it is seen that there are 

two equilibrium values, namely, S = 0 and 

oS

1 2/S k k=  with the former unstable for 
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positive values of the k parameters. Note that for constant values of the parameters, 

(9) cannot generate cyclical movements. However, if the parameters are allowed to 

vary, the output of (9) can be quite variable.  Further, in some cases, there may be a 

discrete lag in (9) and then the equation becomes a mixed differential-difference 

equation that can have cyclical solutions; see, e.g., Cunningham (1958). Whether 

the economy is best modeled using continuous time, discrete time or mixed models 

is an open issue that deserves further theoretical and empirical attention. 

 

 The following are discrete approximations to equation (9) that are well 

known to be chaotic processes; see, e.g., Day (1982,1994), Brock and Malliaris 

(1989),  Kahn (1989) and Koop et al. (1996). That is, the solutions to these 

deterministic processes, even with the parameters constant in value, can resemble 

the erratic output of stochastic processes.  We have considered two discrete 

approximations to (9): 

     

1 1 2 1[1 ( / ) ]t t tS S k S k k S+ − = − t

tS

             (10) 

 

1 1 2 1ln ln [1 ( / ) ]t tS S k k k+ − = −             (11) 

 

 While the differential equation in (9) with constant parameters exhibits a 

smooth convergence to its limiting value, the processes in (10) and (11) can exhibit 

oscillatory behavior. Further, in computed examples, the paths associated with (10) 

and (11) differed considerably in many cases. For example, it was found that the 
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equations in (10) and (11) gave rise to a smooth approach to an equilibrium value 

when  and  and oscillatory approaches to equilibrium when . 

See plots of solutions to (9), (10) and (11) in Figures 1 and 2 for different values of 

the parameter . Note that (10) and (11) can yield quite different solutions for the 

same value of the parameter. Also, if the measured values of S have additive or 

multiplicative biases, the properties of (10) and (11) will be further affected.  Last, 

note that since the coefficients of (9), (10) and (11) are functions of the rates of 

change of the exogenous variables, it is probable that they are not constant in value 

but vary with time.  It is thus fortunate that data can be brought to bear on, for 

example, discrete versions of equation (8) that allow for variation in the exogenous 

variables; see, e.g., Veloce and Zellner (1985) and Zellner and Chen (2001) for 

examples of such fitted functions. Also, discrete versions of the structural equation 

system presented above can be estimated using data. 

10 1k< < 2 0k > 1 1k >

1k

   <Insert Figures 1 – 6> 

 Various simulation experiments have been done with the seven equation 

model described above that indicate that it can produce a rich range of possible 

solutions depending on the values of parameters and properties of input variables. 

For example, in Figures 3-6 are shown the outputs of the seven equation model 

under various conditions. In Figures 3 and 4, the paths of the nominal and real 

variables are shown when the model is started up at non-equilibrium initial values. 

Figures 5 and 6 show how shocks to demand and to factor supplies affect the 

system.  In these continuous time, differential equation versions of the model, the 

paths are relatively smooth and non-oscillatory given that exogenous variables’ 
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paths are smooth.  As was seen above and will be shown further below, discrete 

versions of the model can exhibit various types of oscillatory behavior. 

 

2.3   One Sector Model with Government and Monetary Sectors 

 

 Now we shall add government and money sectors to the above model.  We 

assume that government collects taxes and buys goods and services in both the final 

product market and in the market for factors of production.  For simplicity, we 

assume that there are taxes on sales and corporate profits, an exogenously 

determined budget deficit or surplus and a fixed composition of government 

expenditure. To model the money market, we consider the services of money as a 

factor of production, demanded by firms and government. In addition, we assume 

that households demand money services, include money balances in the demand for 

final product and assume that the money supply is exogenously determined.  

   <Insert Figure 7> 

 A discrete time version of this expanded one sector model that includes a 

money market and a government sector has been formulated; see Appendix II for 

its equations. It can readily be solved and has been employed in simulation 

experiments designed to study the impacts of changes in monetary policy, the 

corporate income tax, the sales tax and the government deficit on other variables. 

See, e.g., Fig. 7 in which the effects of a decrease in the corporate profit tax rate 

from 40% to 20% are shown. It is seen that there are substantial increases in 

employment and output and reductions in government expenditures and receipts. In 
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addition there is a large impact on the interest rate and smaller changes in factor 

prices and the price level. 

 

III.  Two and n Sector Models 

 

 In addition to the one sector MMM with a money market and a government 

sector, similar two and n sector models have been formulated and studied; see 

Appendix III for details.   For such an n sector model, there are 7n +12 equations. 

Thus for n = 1, there are 19 equations and for n = 2, 26 equations, etc.  

 

 For the two sector MMM, n = 2, the 26 equations have been solved to yield 

the following equations for the sales and number of firms in operation for sectors 1 

and 2: 

 

1 1 1 1 1 1 1 2 1 1 1 2 1( ) /t t t t t t tS S S AS BS DN EN C− − − − − −− = + + + +

+

)

         (12) 

 

2 2 1 2 1 1 1 2 1 1 1 2 1( ) /t t t t t t tS S S FS GS IN JN H− − − − − −− = + + +          (13) 

 

1 1 1 1 1 1 1 1 1 1 1( ) / (t t t t tN N N S F Nγ− − − −− = −            (14) 

 

2 2 1 2 1 2 2 1 2 2 1( ) / (t t t t tN N N S F N )γ− − − −− = −            (15) 
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where the coefficients, A, B,…,J are functions of lagged endogenous 

variables and rates of change of exogenous variables, and the gammas have 

constant values. 

     <Insert Figures 8 – 12> 

 Simulation experiments using the nonlinear difference equations in 

(12)-(15) with constant parameters indicate that solutions can have a rich 

range of properties.  For some examples, see Figs. 8-12.  In Fig. 8, the 

variables, namely, numbers of firms in operation in the two sectors and 

sales of the two sectors follow rather smooth paths to their equilibrium 

values. However, with the parameter values used for the experiments 

described in Fig. 9, the paths of the variables in the two sectors show 

systematic, recurrent, cyclical properties. In contrast to  the  relatively 

smooth and systematic features shown in Figs. 8-9,  with  the parameter 

values employed in experiments reported in Figs. 10-12,  it is seen that 

various types of “bubbles and busts” behavior are exhibited by the two 

sector MMM. It is thus apparent that this relatively simple model has a 

broad range of possible solutions, even when the rates of change of the 

exogenous variables are assumed to have constant values.  Allowing for 

changes in the exogenous variables’ growth rates of course enlarges the 

range of possible solutions to this two sector model and MMMs containing 

more than two sectors. 

 

IV. Summary and Conclusions 
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 In this report, we have briefly reported our progress in producing one, 

two and n sector versions of the MMM that are rooted in traditional 

economic theory and yet provide a rich range of possible forms that can be 

implemented with sector data.  For example,  Zellner and Chen (2001)  

implemented the MMM’s reduced form equations in forecasting 11 U.S. 

industrial  sectors’ annual outputs and their total using various estimation 

and forecasting techniques with encouraging results, as mentioned in 

Section I. These results indicated that it pays to disaggregate to obtain 

improved forecasts of aggregate, real GDP growth rates as well as sector 

forecasts.  Of course such results may be improved by using the structural 

equations for sectors rather than just one reduced form equation per sector. 

 Further, there are many ways to improve the “bare bones” MMMs 

that we presented above by drawing on the vast economic literature dealing 

with entry and exit behavior, anticipations, various industrial structures, 

alternative forms of production and demand relations, dynamic optimization 

procedures, introduction of stochastic elements, etc. In addition, there is a 

need to consider inventory investment, intermediate goods, vintage effects 

on capital formation, imports and exports, etc.  While the list of extensions 

is long, just as in the case of the Model T Ford, we believe that our MMM is 

a fruitful initial model that will be developed further to yield improved, 

future models in the spirit of Deming’s emphasis on continuous 

improvement.  Most satisfying to us is the fact that we have an operational, 
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rich, dynamic “core” model that is rationalized by basic economic theory.  

This case of “theory with measurement” is, in our opinion, much to be 

preferred to “measurement without theory” or “theory without 

measurement.” 
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Appendix I 

 

Solution of One Sector Model for Reduced Form Equation 

 

 In this Appendix, we indicate how the seven equation MMM in the text has 

been solved to yield the differential equation for sales, S(t), shown in equation  

(8) in the text.   First solve equations (4) and (6) for the rate of change of w, : /w w&

 

1

/ [(1 ) / ) / / / ] /(1 )(
l

s S h i iw w S S p p H H z zδ δ δδ δ= − − − ++ + ∑& && & &          (I.1) 

Then solve equations (5) and (7) for the rate of change of r,  : /r r&

 

1

/ [(1 ) / ( ) / / / ] /(1
k

s s h i i ir r S S p p H H v v )φ φ φ φ φ φ= − + + − − +∑& && & &

)

         (I.2) 

 

Further from the product demand equation (2) in the text, we obtain: 

 

1
/ [(1 ) / / / ] /(1

d

s h i i ip p S S H H x xη η η= − − − −∑& && η&             (I.3) 

 

On substituting from (I.3) in (I.1) and (I.2) and then substituting from (3), (I.1), 

(I.2) and (I.3) in (1) and solving  for , the result is: /S S&

/ / ( )S S fS S S F gγ= + − +& &               (I.4) 
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where g represents a linear combination of the rates of growth of the exogenous 

variables, given by:  

                 (I.5) 

1 1

1

/ { [ (1 ) ] /(1 ) [ (1 ) ] /(1 ) }/ (1 )

/ / (1 ) / / (1 )

[ / (1 )]( / )[ ( ) /(1 ) ( ) /(1 ) 1]

h s h s h
l k

i i i i i i

d

i i i s s

g A A

z z v v

x x

α δ η δ δ δ β φ η φ φ φ η θ η

α δ θ δ β φ θ φ

η θ η α δ δ δ β φ φ φ

= + − + + + + − + + + − − +

+ + + +

− + + + + + −

∑ ∑

∑

&

&&

&

 

and 

                 (I.6) 

 
{

}
1 [(1 )(1 ) (1 )( )] /(1 )

[(1 )(1 ) (1 )( )] /(1 ) / (1 )
s s s s

s s s

f η α η δ η δ δ δ

β η φ η φ φ φ θ η

= − − − − + − + +

− − − + − + + −  

Note that with sη η= , that is no money illusion, 1f =  and (I.4) reduces 

to: / .S F g γ= −  
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Appendix II 

 

A Discrete Time One Sector MMM with Monetary and Government Sectors 

 

 

 In this MMM with monetary and government sectors, we assume that the 

government collects taxes, produces government output and buys goods in the 

product market and factor services in the factor markets. For simplicity, we assume 

that the only taxes are taxes on sales and profits, an exogenously determined 

deficit/surplus and a fixed composition of government expenditures. 

Herein, we find it convenient to express the model in terms of discrete time and 

denote the rate of change of a variable, say X, from period t-1 to t 

as 1 1( ) /rt t t tX X X X− −≡ − . 

 Given profit maximization under competitive conditions, using a Cobb-

Douglas production function, as above, but with the addition of a money service 

factor input, the nominal sales supply function, expressed in terms of rates of 

change, with the nominal interest rate representing the price for monetary services, 

is given by: 

 

(rt rt rt rt rt rt rtS N A p w r ) /α β λτ= + + − − − θ                            SUPPLY      (II.1) 

 

where rtτ  is the rate of change of the nominal interest rate, λ  is the exponent of 

money services in the production function, and 0 1 1.α β λ< − − − <  
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The demand function for the final product includes the rate of change of 

government expenditure on final product,  as well as a tax on nominal income. 

To obtain the rate of change in total sales,  rates of change of governmental and 

private expenditures are weighted by their share in total expenditure at time t-1 as 

follows: 

rgtG

rtS

 

'
1 1 1 1

1

[ / ] [1 / ][(1 ) (

]

s
rt gt t rgt gt t rt s rt rt

d

m rht h rt i rit

S G S G G S p S T

M H x

η η

η η η

− − − −= + − − +

+ + +∑

)−
DEMAND      (II.2) 

 

where ' (1 )s s
rt rtT T= +  with s

rtT  the rate of change of the sales tax. The rate of 

change of nominal government expenditures is given by rgt rtG G= , the rate of 

change in total government expenditures, defined below.  Also, rhtM  represents the 

rate of change of households’ demand for real money balances, as discussed below.  

 The entry/exit equation in this discrete time version of the model is an 

elaboration of that used in the continuous time version, namely: 

1 1 1 1 1[ (1 ) / /c
rt t t t t t t tN S T N p F pγ θ − − − − −= − − 1]I

−                  ENTRY/EXIT      (II.3) 

 

In (II.3) there is an allowance for corporate taxation on profits,  time-varying 

entry costs,  nominal sales deflated by the price level,

1
c

tT −

1tF − 1tp −  and entry costs 

deflated by a price index for the cost of factors, 1
l
tp − .  Also, here firm entry is 
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proportional to profits at the firm level and thus we divide the total sector’s profits 

by the number of firms, 1tN − . 

 Further, in this model we assume that government expenditure affects 

firms’ productivity as shown in the expression for the technological change factor: 

 

1
( )

B

rt g rt rt i ritA G p bω= − +∑ω             (II.4) 

where  is the rate of change of real government expenditure and the  

variables are technology shift variables such as those described above in 

formulation of our initial model. The parameter 

rt rtG p− ritb

gω  reflects the impact of the rate 

of change of real government expenditure on the rate of change of the technological 

factor,  perhaps the result of government financed research since government 

expenditure does not include only expenditures on consumption goods but also 

expenditures that may affect firms’ productivity by providing public services, 

infrastructure and R&D. 

rtA ′

 

 For each factor market, the model includes firms’ and government demand 

equations, a supply equation and an equilibrium equation.  The money market 

includes also a household demand equation.  In terms of rates of change, firms’ 

demands for labor and capital services are denoted by rftL and rftK , respectively. 

Since we fix the composition of government expenditure, the government’s 

demands, rgtL  and rgtK , equal the rate of change of government total expenditure 

minus the rates of change of the prices of factors as shown below: 
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rft rt rtL S w= −      and      rgt rt rtL G w= −   LABOR DEMANDS      (II.5) 

 

rft rt rtK S r= −     and       rgt rt rtK G r= −   CAPITAL DEMANDS    (II.6) 

 

Firms and the government demand real money balances as a factor of 

production while households’ demand for the services of real balance depends on 

the real interest rate, rt rtpτ −  real income, the number of households and other 

variables, denoted by , that shift households’ demand for real money balances.   rity

The equations for money demand are: 

       MONEY DEMANDS 

rft rt rtM S τ= −         rgt rt rtM G τ= −    FIRMS & GOVT       (II.7) 

 

1

( ) ( )
m

rht rt rt s rt rt h rt i ritM p S p Hµ τ µ µ µ= − + − + +∑ y  HOUSEHOLDS       (II.8) 

 

 Discrete versions of labor and capital supply functions are: 

 

1
( ) ( )

l

rt rt rt s rt rt h rt i ritL w p S p H zδ δ δ= − + − + +∑δ      LABOR SUPPLY       (II.9) 

and 
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1
( ) ( )

k

rt rt rt s rt rt h rt i ritK r p S p Hφ φ φ= − + − + +∑φν     CAPITAL SUPPLY     (II.10) 

 

 In terms of rates of change, the supply of real money balances equals the 

supply of nominal balances, assumed exogenously determined, corrected for the 

change in the price level, that is: 

 

rt rot rtM M p= −          MONEY SUPPLY     (II.11) 

 

 Equilibrium conditions for factor markets involve equating factor supplies 

to weighted firm, government and household demands for factors as follows: 

 

1 1 1 1[ / ] [ / ]rt ft t rft gt t rgtL L L L L L L− − − −= +   LABOR MKT.  EQUILIB.     (II.12) 

 

1 1 1 1[ / ] [ / ]rt ft t rft gt t rgtK K K K K K K− − − −= +  CAPITAL MKT. EQUILIB.     (II.13) 

 

1 1 1 1

1 1

[ / ] [ / ]

[ / ]
rt ft t rft ht t rht

gt t rgt

M M M M M M M

M M M
− − − −

− −

= + +

)

 MONEY MKT. EQUILIB.     (II.14) 

 

 Government nominal revenues are given by ( s c
t t t tR S T T θ= + .  By defining 

* ( s c
t t tT T T ),θ= +  the rate of change of government revenue is given by: 

 

*
rt rt rtR S T= + .      TAX REVENUES     (II.15) 
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 The rate of change in nominal government expenditure is assumed to be 

tied to tax revenues plus an exogenously determined deficit/surplus, denoted by 

 (as a percent of total revenues) as follows: tDef

 

rt rt tG R Def= +    TOTAL GOVT. EXPENDITURE     (II.16) 

 

 Finally, the price index for production costs is a weighted average of the 

prices of the three inputs, given by: 

 

1 1 1 1 1 1

1 1 1 1 1 1

( ) ( ) ( )I t t rt t t rt t t rt
rt

t t t t t t

w L w r K r Mp
w L r K M

τ τ
τ

− − − − − −

− − − − − −

+ +
=

+ +
     INPUT PRICE INDEX     (II.17) 

 

 The above equations constitute the MMM incorporating money and 

government sectors.  Several simulation experiments have been performed using 

the above model to study its responses to changes in tax rates, money supply, etc., 

that indicate it is operational. See Figure 6 for the effects of a temporary labor 

supply shock. Also, since monetary balances enter the model as an additional input 

factor, the effects of a monetary expansion/contraction are analogous in certain 

respects to the effects of a shock to labor or capital supply, except for the fact that 

there are also demand effects resulting from an increase or decrease in money 

balances. 
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Appendix III 

 

A Discrete Time n-Sector MMM with Government and Money Sectors 

 

 In this Appendix, the one sector model described in Appendix II is extended 

to n-sectors. Although there are no intermediate products, the n sectors are related 

to each other through interdependent demand and supply relations in factor and 

product markets and are individually and jointly affected by government 

expenditures and taxes. That is, (1) there is competition in the market for final 

products and services with demand functions, shown in (III.2), that are functions of 

a vector of prices allowing for direct and indirect effects of price changes on 

individual sectors’ demands and similarly with respect to industries’ product supply 

and individuals’ labor supply functions; (2) there is competition in factor markets 

for labor, capital and money services with interdependencies shown in demand and 

supply relations in equations (III.5-III.7); and (3) the model allows the government 

to affect individual sectors through purchases of final products (see equations in 

III.2), to provide services that affect sectors’ productivity (equations III.4), 

demands for inputs (equations III.5-III.7) and by taxing (III.15). Thus, the model 

allows for many types of important interactions among individuals, economic 

entities and government. 

 As in Appendix II, we denote the rate of change of the i’th variable from 

period t-1 to t by a subscript “rit”, that is,  1[ ] /rit it it it 1X X X X− −≡ −  where the 

subscript “i” denotes the i’th sector. Nominal supplies for each sector’s products, 
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assuming use of Cobb-Douglas production functions and profit maximization under 

competitive conditions, are given by: 

 

[ ] /rit rit rit rit rt rt rt iS N A p w rα β λτ θ= + + − − − 1, 2,..., .i n     =    SUPPLY     (III.1) 

 The demand functions for final products include the rate of change of 

nominal government expenditure, as follows: 

 

1 1 1

'

1 1

[ / ] [1 / ][(1 )

( )

rit it it rit it it ii rit
n d

s
ij rjt is rt rt im rht ih rt ij rjt

S G S G G S p

p S T M H ]x

η

η

− − −= + − − +

+Ψ − +Ψ +Ψ + Ψ∑ ∑
     DEMAND     (III.2) 

 

where  for i=1, 2,…, n and rit rtG G= ijη  is the cross price elasticity of demand for 

product i relative to product j. 

 Sectors are permitted to have different technologies and entry and exit 

conditions, and thus the following individual entry and technology equations are 

employed: 

 

1 1 1

1 1 1

(1 )[ ]
c

it i t it
rit it I

it t t

S T FN
N p p
θγ − − −

− − −

−
= − 1, 2,...,i n    =   ENTRY     (III.3) 

 

1

( )
B

rit ig rt rt ij rjt
j

A G p bω ω
=

= − +∑      1, 2,...,i n=         TECHNOLOGY     (III.4) 
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 For each factor market, the model includes the demands from n sectors and 

government, a supply equation and an equilibrium condition. The money market 

also includes household demand. 

rit rit rtL S w= −           1, 2,...,i n= rgt rt rtL G w= −   LABOR DEMANDS     (III.5) 

 

rit rit rtK S r= −           1, 2,...,i n= rgt rt rtK G r= −         CAPITAL DEMANDS     (III.6) 

 

rit rit rtM S τ= −          1, 2,...,i n= rgt rt rtM G τ= −          MONEY DEMANDS     (III.7) 

           (FIRMS & GOVT) 

1

( ) (rht rt rt s rt rt

m

h rt i rit
i

M p S

H y

)pµ τ µ

µ µ
=

= − + −

+∑

+
   MONEY DEMANDS     (III.8) 

       (HOUSEHOLDS) 

 

1

( ) ( )
l

rt rt rt s rt rt h rt i rit
i

L w p S p H zδ δ δ
=

= − + − + +∑δ  LABOR SUPPLY     (III.9) 

 

1
( ) ( )

k

rt rt rt s rt rt h rt i rit
i

K r p S p Hφ φ φ
=

= − + − + +∑φν  CAPITAL SUPPLY     (III.10) 

 

rt rot rtM M p= −      MONEY SUPPLY     (III.11) 

 

11

1 1 1

n
gtit

rt rit rgt
i t t

LLL L
L L

−−

= − −

= +∑ L     LABOR EQUILIBRIUM (III.12) 
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11

1 1 1

n
gtit

rt rit rgt
i t t

KKK K
K K

−−

= − −

= +∑ K    CAPITAL EQUILIBRIUM    (III.13) 

11 1

1 1 1 1

n
gtit ht

rt rit rht rgt
i t t t

MM MM M M
M M M

−− −

= − − −

= + +∑ M     MONEY EQUILIBRIUM    (III.14) 

 

*
*1 1

1 1

( )
n

it it
rt rit rit

i t

S TR S T
R
− −

= −

=∑ +     TAX REVENUES    (III.15) 

 

rt rt tG R Def= +     TOTAL EXPENDITURES    (III.16) 

 

1 1 1 1 1 1

1 1 1 1 1 1

( ) ( ) ( )I t t rt t t rt t t rt
rt

t t t t t t

w L w r K r Mp
w L r K M

τ τ
τ

− − − − − −

− − − − − −

+ +
=

+ +
   FACTOR PRICE INDEX    (III.17) 

1

1 1

n
it

rt rit
i t

Sp p
S

−

= −

=∑     PRODUCT PRICE INDEX    (III.18) 

 

1

1 1

n
it

rt rit
i t

SS S
S

−

= −

=∑     TOTAL ECONOMY SALES    (III.19) 
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Table 1 

RMSEs and MAEs for Forecasts of Annual Rates of Growth of 

U.S.Real GDP, 1980-1997 Employing Aggregate Models and Data1  

           

Models 

    AR(3)         MMM(A) 

(percentage points) 

 

   MAE 1.71   1.48 

            RMSE 2.32   1.72 

           

1 Data, 1952-1979 were employed for fitting the models using least squares  

techniques and estimates were updated year by year. The AR(3) model is given by: 

0 1 1 2 2 3 3t t t ty y y y tuα α α α− − −= + + + +  where ( )11 /t ty og Y Yt−=  with  tY

annual, real U.S. GDP in year  and  is an error term. The MMM(A) model is t tu

the reduced form equation from a one sector Marshallian macroeconomic model, 

1 1 2 2 3 3 4 1 5 2 6 7 1 8 1t o t t t t t t ty y y y Y Y t m z tα α α α α α α α α− − − − − − −= + + + + + + + + +ε

2t−

 

where , with ( )1 11 /t tm og C C− −= 1tC − = real currency at end of year  and  1t −

( )1 11 /t tz og SR SR− −= 2t−  with 1tSR − =  real stock prices at end of year  and 1t − tε  

is an error term. 

Source: Zellner and Chen (2001). 
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Table 2 

RMSEs and MAEs for Forecasts of Annual Rates of Growth of 

U.S. Real GDP, 1980-1997 Employing Sector Models and Data  1

           

Models 

    AR(3) 2        MMM(DA) 3  

(percentage points) 

 

   MAE 1.52   1.17 

            RMSE 2.21   1.40 

           

1 Annual data for eleven sectors of the U.S. economy, agriculture, mining, 
construction, durables, etc., 1952-79 and SUR estimation techniques were 
employed to estimate the models and to obtain one year ahead forecasts of  
annual growth rates of U.S. real GDP, 1980-1997 derived from annual 
sector forecasts with estimates updated year by year. 
2 Linear AR(3) models for sectors’ output growth rates with sector specific 
coefficients and error terms were employed using SUR estimation and fore- 
casting techniques to obtain one year ahead annual sector output forecasts.  
These were then utilized to obtain one year ahead forecasts of total U.S. real 
GDP and its growth rate 
3 For each of the 11 sectors’ Marshallian models, the following reduced 
form equations were jointly estimated and utilized to provide annual fore- 
casts of sectors’ outputs, ( , 1, 2,...,11)itS i =  which were added to yield a 

forecast of total U.S. real GDP and its growth rate year by year: ( )11 /it itog S S − =  

1 1 2 2 3 3 4 1 5 1 6 7oi i it i it i it i t i t i t i t itS S S z m w y vβ β β β β β β β− − − − −+ + + + + + + +  
where, as in Table 1, is the rate of change of real stock prices and  is the tz tm
rate of change of real currency and  and  are the rates of change of the tw ty
real wage rate and of total real GDP, respectively. The variables  and were 
treated as stochastic exogenous variables in fitting the 11 equation system using 
SUR techniques. In forecasting, reduced form equations from an aggregate  

tw ty

MMM model for  and  were employed to obtain one year ahead forecasts  tw ty
for these variables. 
Source: Zellner and Chen (2001). 
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Figure 1: Discrete Approximations to the Logistic Equation 

 
Note: k1=1.93, k2=0.193, S0=0.5. 

 
 

Figure 2: Difference Equation (10) 

 
Note: k1=2.8, k2=0.28, S0=0.5. 
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Figure 3: Simulation of the One Sector Model, Nominal Variables 

 
Note: Rates of growth of exogenous variables are assumed equal to zero. 

 
 

Figure 4: Simulation of the One Sector Model, Real Variables 

 
Note: Variables S, w, and r deflated by p (nominal). Zero growth in exogenous variables.  
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Figure 5: One Sector Model (real variables). Demand Shock from t=25 to t=30 

 
Note: Exogenous demand increases by 2% in periods 25 though 30 ( ii =0.02) 
Variables S, w, and r deflated by p (nominal). Zero growth in other exogenous variables.  

xx /&

 
 

Figure 6: One Sector Model (real variables). Labor Supply Shock from t=25 to t=30 

 
Note: Exogenous labor supply increases by 10% in periods 25 though 30 ( ii =0.1) 
Variables S, w, and r deflated by p (nominal). Zero growth in other exogenous variables.  

zz /&
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Figure 7: Simulation of a Corporate Tax Cut in the One Sector Model 

 
Note: At period 25, the corporate tax rate drops from 0.4 to 0.2. Government 
expenditures are adjusted to government revenues. Zero growth in exogenous variables. 

 
Figure 8: Simulation for the Two Sector Model (Smooth Path) 

 
Note: A=G=-.07, B=F=.05, D=J=.01, E=I=.01, C=.2, H=.1, γ1=γ2=.1, F1=F2=-2. Initial 
values: N1

0=N2
0=1, S1

0= S2
0=.1. All coefficients are assumed constant. 
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Figure 9: Simulation for the Two Sector Model (Cyclical Path) 

 
Note: A=G=-.08, B=F=.06, C=H=.2, D=J=.01, E=I=.01, γ1=γ2=.1, F1=F2=-2. Initial 
values: N1

0=N2
0=1, S1

0= S2
0=.1. All coefficients are assumed constant. 

 

Figure 10: Simulation for the Two Sector Model (‘Bubbles and Busts’) 

 
Note: A=G=-.08, B=F=.05, C=.2, H=.1, D=.035, J=.01, E=.03 I=.01, γ1=γ2=.1,  
F1=F2=-2. Initial values: N1

0=N2
0=1, S1

0= S2
0=.1. All coefficients are assumed constant. 
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Figure 11: Simulation for the Two Sector Model (‘Bubbles and Busts’) 

 
Note: A=-.07, G=-.069988, B=.0964, F=.025, C=.1, H=.2, D=E=I=J=.01, γ1=γ2=.1, 
F1=F2=-2. Initial values: N1

0=N2
0=1, S1

0= S2
0=.1. All coefficients are assumed constant. 
 

Figure 12: Simulation for the Two Sector Model (‘Bubbles and Busts’) 

 
Note: A=-.08, G=-.0208, B=F=.09, C=.1, H=.2, D=.035, E=.0324872, I=J=.01, γ1=γ2=.1, 
F1=F2=-2. Initial values: N1

0=N2
0=1, S1

0= S2
0=.1. All coefficients are assumed constant. 
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