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Data Issues of Using Matching Methods to Estimate Treatment Effects:  

An Illustration with NSW Data Set 

Abstract 

 In this paper, we study data issues of using matching estimators to 

estimate treatment effect. We first demonstrate that with proper data set, 

the matching assumptions can be justified for voluntary programs. Next 

we compare covariate matching and propensity score matching methods, 

and show that they do not dominate each other in term of data 

requirement. Finally we use the National Supported Work Demonstration 

data set to illustrate the issues discussed above. 
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I. Introduction 

How to use observational data (or non-experimental data) to estimate treatment 

effects is a perpetual research theme in economics, e.g. Heckman (1976, 1979, 1990, 

2000, 2001), Barnow et al (1980), Bjorklund and Moffitt (1987) among others.  Recently, 

matching methods attract a lot of attention from economists under the assumption of 

selection on observables, also known as exogeneity assumption or unconfoundedness 

assumption (we will formalize this assumption in Section II). Papers in this field by 

economists include Abadie and Imbens (2002), Angrist (1998), Angrist and Hahn (1999), 

Dehejia and Wahba (1999, 2003), Hahn (1998), Heckman et al (1997, 1998), Heckman et 

al (1998), Imbens (2001, 2002), Lechner (2002), Smith and Todd (2001, 2003), and etc. 

When the selection bias is only due to observables, matching is a useful tool to 

estimate treatment effect. The most attractive feature of matching, compared with the 

regression type estimators, such as that of Barnow et al (1980), is its non-parametric 

nature. Matching neither imposes functional form restrictions such as linearity nor 

assumes a homogeneous treatment effect in the population. Both assumptions are usually 

not justified either by economic theory or by the data. The first issue in this paper is to 

explore the plausibility of the assumptions for matching estimators. We argue that if 

proper variables, such as the information on the application indicator and the decision 

variables used by the program administration, are collected, the assumptions for matching 

estimators can be justified for voluntary programs. 

Using covariate matching to correct the bias due to observables is intuitive, since 

the source of the bias is the difference of observables in the treated group and comparison 

group. Matching on covariates by definition will remove this difference and hence the 
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bias. When there are many covariates, it is impractical to match directly on covariates 

because of the curse of dimensionality. Taking the study of the Comprehensive 

Employment and Training Act by Westat (1981) as an example, for controlling only 12 

covariates, the covariate matching scheme of Westat led to more than 6 million cells. 

Since the number of observations is far less than 6 million, most of cells are empty and it 

is very hard to find a good match on all 12 covariates. It is usually necessary to map the 

high dimension of covariates into a scalar through some metric, which measures the 

closeness of two observations. The most often used metric is Mahalanobis metric, e.g. 

Rubin (1980). 

Another way to reduce the dimensionality is through propensity score matching. 

Rosenbaum and Rubin (1983) show that while covariate is the finest balancing score, 

propensity score is the coarsest balancing score. A balance score, b(x), is a function of the 

observed covariates such that the conditional distribution of x given b(x) is the same for 

treated and comparison groups, as defined in Rosenbaum and Rubin (1983). So matching 

on covariates and matching on the propensity score will both make the distribution of the 

covariates in the treated group the same as the distribution of the covariates in the 

comparison group.  

Covariate matching faces the curse of dimensionality, and often encounters empty 

or small matching cells, while propensity score matching reduces the high dimension of 

covariates to a scalar, and can also balance the observables between treated group and 

comparison group. It is natural to ask whether propensity score matching needs less data 

(requires few observations) than covariate matching? This is the second issues considered 

in this paper. 
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The last issue in this paper is using the National Supported Work Demonstration 

(NSW) data set to illustrate the data issues of matching as well as to show that propensity 

score matching and covariate matching do not dominate each other. Their performance, 

like any other econometric evaluation method, crucially depends on the data set. 

The remaining paper is organized as follows. Section 2 sets up the model using 

the potential outcome framework, Section 3 explores the plausibility of the assumptions 

for matching estimators, Section 4 studies data issues of covariate and propensity score 

matching methods, Section 5 is an illustration using the NSW data set, and Section 6 

concludes the paper. 

II. Model Setup 

A fruitful framework for estimating treatment effects is the potential outcome 

framework dated back to Neyman (1923) and is widely used both in economics and 

statistics, such as, Roy (1951), Quandt (1972), Rubin (1974) and Holland (1986).  

In the potential outcome framework, each individual has two potential outcomes 

0 1( , )i iY Y  for a treatment, such as job training, education, or a welfare program. 1iY  is the 

outcome if individual i  is treated and 0iY  is the outcome if individual i  is not treated. Let 

1iT =  indicate that individual i  is treated and 0iT =  indicate otherwise. With 0 1( , )i iY Y  we 

can define different treatment effects, such as those in Heckman and Vytlacil (1999), as 

follows: 

1 0i i iY Y∆ = −   Treatment Effect for Individual i   

[ ]ATE iE∆ = ∆   Average Treatment Effect for the Population (ATE) 

[ | ]S iE i S∆ = ∆ ∈  Average Treatment Effect for the Sub-Population S  
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When { : 1}iS i T= = , S∆  is the treatment effect on the treated (TT), denoted as 

TT∆ . 

The average treatment effect at population (or sub-population) level can be 

estimated without bias either by experimental data or by observational data if the 

selection bias is only due to observables.  

That the selection bias is only due to observables is formally characterized by the 

following two assumptions: 

0 11:  ( ,  )  |M Y Y T X− �   Conditional Independence Assumption 

2 : 0 ( 1| ) 1M prob T X− < = <  Common Support Assumption 

where   � is the notation for statistical independence as in Dawid (1979). 1M −  is also 

commonly referred as unconfoundedness assumption or exogeneity assumption. 

Under 1M −  and 2M −  

| 1 1 0{ [ | 1, ] [ | 1, ]}TT x TE E Y T X x E Y T X x=∆ = = = − = =  

| 1 1 0     { [ | 1, ] [ | 0, ]}x TE E Y T X x E Y T X x== = = − = =   (1) 

Unbiased estimates of 1[ | 1, ]E Y T X x= =  and 0[ | 0, ]E Y T X x= =  can be obtained from 

the data and hence so can TT∆ . This is also true for ATE∆  and for other S∆ . 

Using the so called balancing property:  

)|())(,0|())(,1|( pXprobpXpTXprobpXpTXprob iiiiiii ======  

Rosenbaum and Rubin (1983) prove that 1M −  and 2M −  imply 

0 11:  ( ,  )  | ( )P Y Y T p X− � , and 

2 : 0 ( 1| ( )) 1P prob T p X− < = <  

Following from 1−P  and 2−P : 
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| 1 1 0{ [ | 1, ( ) ] [ | 1, ( ) ]}TT p TE E Y T p X p E Y T p X p=∆ = = = − = =   

| 1 1 0     { [ | 1, ( ) ] [ | 0, ( ) ]}p TE E Y T p X p E Y T p X p== = = − = =  (2) 

Unbiased estimates of 1[ | 1, ( ) ]E Y T p X p= =  and 0[ | 0, ( ) ]E Y T p X p= =  can also 

be obtained if )(Xp  is known. The advantage of formula (2) over formula (1) is that 

instead of controlling for a high-dimensional vector of X , formula (2) only needs to 

control for a scalar p .  

III. The Plausibility of Matching Assumptions 

Before going any further, an obvious question is whether the assumptions of 

1M −  and 2M −  are plausible. Unfortunately in general there is no unambiguous 

answer to this question. Whether 1M −  and 2M −  are plausible or not needs to be 

argued case by case, and their plausibility depends on many factors, such as the richness 

of the data set, the nature of the treatment, the treatment effect under estimation, etc. The 

empirical evidence also suggests that there is no clear-cut answer for this question. 

Dehejia and Wahba (1999) successfully replicate the experimental benchmark by 

propensity score matching methods using the NSW data set. But Heckman et al (1998) 

reject the assumptions of matching estimators and assumptions of their extension, 

difference-in-difference matching, using the JTPA data set. They also find that selection 

bias due to observables is much larger than the one due to unobservables. Their work 

suggests that controlling for the bias due to observables is more important than 

controlling for the bias due to unobservables. Even if 1M −  and 2M −  are not 

justifiable and there is no prior knowledge on the magnitude of the bias due to 

unobservable and the bias due to observable, it is still useful to apply matching methods 
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to eliminate the bias due to observables first and then use different procedures to address 

the bias due to unobservables. 

Nevertheless 1M −  and 2M −  can be justified for a wide variety of applications 

if a proper data set is available. In the United States as well as in many other countries, 

like countries in the European Union, participation of the social programs is often 

voluntary. For these programs, the treatment status is the result of two decisions: the 

application decision made by each individual and the admission decision made by the 

program administration. Let iA  and iB  be the indicators of these two decisions, so 

iii BAT = . Under this scenario different treatment effects can be defined for the people 

who apply for the program (i.e. for i  with 1=iA ):  

[ | 1]ATT A i iA−∆ = ∆ =       Average Treatment Effect for the Applicants 

[ | 1, 1]TT A i i iE A T−∆ = ∆ = =  Treatment Effect on the Treated for Applicants 

[ | 1, 0]UTT A i i iE A T−∆ = ∆ = =   Treatment Effect on the Untreated for Applicants 

Essentially these are the treatment effects we are interested in,1 except in some 

special cases such as if we try to evaluate what will happen if a program is expanded to 

cover the whole population and is changed from a voluntary program into a mandatory 

program. In that case we also need to know the treatment effect for the non-applicants. 

These treatment effects for the applicants can be used to answer many interesting 

questions, for instance, can the benefit of a program cover its cost? What will happen if 

the coverage of a program is expanded? 

                                                 
1 For the non-applicants, since they never participate in the program, their responses to the program have 
little policy interest. 
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1M −  and 2M −  for these treatment effects for the applicants can be justified if 

iA  and iB  can be observed separately. Taking TT A−∆ , treatment effect on the treated for 

applicants, as an example, it can be written as:2 

[ | 1, 1] TT A i i iE A T−∆ = ∆ = =  

1 0        [ | 1, 1]i i i iE Y Y A B= − = =  

1 0        { [ | 1, 1] [ | 1, 0]} i i i i i iE Y A B E Y A B= = = − = =  

           ]}1,1|[]0,1|[{ 00 ==−==+ iiiiii BAYEBAYE  

First, TT A TT−∆ = ∆ , i.e. the treatment effect on the treated for the applicants is the 

same as the treatment effect on the treated for the whole population, since both of them 

are the average treatment effect for the same group of people. 3 Second, the first term 

1 0{ [ | 1, 1] [ | 1, 0]}i i i i i iE Y A B E Y A B= = − = =  is directly estimable from the data. The second 

term 0 0{ [ | 1, 0] [ | 1, 1]}i i i i i iE Y A B E Y A B= = − = =  is the bias term and is due to observables if 

the program administration decision variables are collected, i.e. the program decision 

indicator, iB , is independent of 0iY  conditioning on the decision variables of iB . 

When applying propensity score matching methods, we need to decide which X 

should be included in the propensity score so P-1 will be satisfied and what functional 

form the propensity score should have. The balancing test in Dehejia and Wahba (1999) 

is useful to find the functional form of the propensity score but cannot tell which X 

should be used, see Smith and Todd (2003). If we have sufficient knowledge of the 

                                                 
2 UTT A−∆  can be justified in the same manner and ATT A−∆  can be written as a weighted average of TT A−∆  

and UTT A−∆ . 
3 Generally ATT A ATE−∆ ≠ ∆  and UTT A UTT−∆ ≠ ∆ , where { : 0}iUTT i T= = . 
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program and restrict our attention on the applicants, we need only include the X used by 

the program administrator to select the applicants into the treatment. 

The above argument relies on the assumption that we have the information on iA  

and iB . Instead of focusing on devising different kinds of estimators based on ultimately 

untestable assumption(s), a feasible and more reliable alternative is to collect good data.4 

The application status indicator iA  should be (but unfortunately has not been) included in 

many data sets, such as the Survey of Income and Program Participation (SIPP). 

IV. Data Issues of Covariate Matching and Propensity Matching Estimators 

The common approaches to control for the bias due to observable variables in the 

matching literature include matching on covariates or on the propensity score, sub-

classification by covariates or by the propensity score, and weighting by the propensity 

score. Imbens (2003) provides an excellent survey. We will focus on one-to-one matching 

estimators since one-to-one matching estimators are widely used in the empirical studies 

and it is important to understand their properties. One-to-one matching involves selecting 

a single observation from the comparison sample to match each observation in the treated 

sample by some metric. Though matching on covariates or on the propensity score can 

both remove the bias due to observables, if there are many covariates, especially 

continuous ones, matching on covariates runs into the curse of dimensionality. Since the 

work of Rosenbaum and Rubin (1983), propensity score matching has dominated the 

literature on matching. In most cases, it is easier to find observations with similar values 

of propensity score than with similar values of covariates, as argued in Rosenbaum 

(1995). Does this mean that propensity score matching requires fewer observations than 
                                                 
4  See Moffitt (1991) and Heckman et al (1998) on the importance of good (rich) data from other 
perspectives. 
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covariate matching? In order to answer this question, we need to examine more closely 

how covariate matching and propensity score matching work. 

Define the two potential outcome equations and the selection equation as: 

iii XfY 111 )( ε+= , i1ε  is iid with 0]|[ 1 =ii XE ε ; 

iii XfY 000 )( ε+= , i0ε  is iid with 0]|[ 0 =ii XE ε ; 

)0*( >= ii TIT , )(⋅I is the indicator function; and 

iiXhT µ+= )(* , iµ  is iid with 0]|[ =ii XE µ and CDF )(⋅G . 

The basic ideas of covariate matching are: 

(1) ( ) ( ),  i j t i t jX X f X f X t= ⇒ = =0, 1; and  

(2) δε <⇒< ))(),(('),( jtitji XfXfdXXd , t = 0, 1, where d  and 'd  are some 

metrics in mathematical sense. 

Assumption (1) justifies exact matching. Assumption (2) means that tf  is continuous at 

X  and it justifies neighborhood matching.  

For simplicity, we assume that exact matching is possible.5 Through covariate 

matching, the observation i  in the treated sample is matched with the observation j  in 

the comparison sample if xXX ji == . Define: 

�
1 0

C
i i jY Y∆ = −  

1 1 0 0     ( ) ( )i i j jf X f Xε ε= + − −  

1 1 0 0 0 0     { ( ) [ ( ) ]} { }i i i jf x f xε ε ε ε= + − + + −  

0 0     { }i i jε ε= ∆ + −  

                                                 
5  When exact matching is impossible, the discussions are still approximately true if we can match on some 
sufficiently small neighborhood of X . 
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where i∆  is the true treatment effect for individual i. Denote )(xm  as the number of 

matching pairs in an cellx −  which have the same covariate x ; then the average 

treatment effect at x can be estimated by: 

� �
( )

1

1( )
( )

m xC C
i

i
x

m x =

∆ = ∆∑  

( ) ( ) ( )

0 0
1 1 1

1 1 1         
( ) ( ) ( )

m x m x m x

i i j
i i jm x m x m x

ε ε
= = =

= ∆ + −∑ ∑ ∑  

( ) ( )

0 0
1 1

1 1         ( )
( ) ( )

m x m x

i j
i j

x
m x m x

ε ε
= =

= ∆ + −∑ ∑  

where ( )x∆  is the average treatment effect at x . It is clear that � ( )
C

x∆  is an unbiased and 

consistent estimator of the average treatment effect at x . Let Cr  be the number of 

covariate matching cells, and let ∑= Cr
C xmn )(  be the total number of matched pairs in 

the whole sample ( Cn  also equals the number of observations in the treated sample). The 

treatment effect on the treated can be estimated by the following estimator:  

� �

1

1 CnC C
TT iC

in =

∆ = ∆∑  

0 0
1 1 1

1 1 1      ( )
C C Cn n n

i jC C C
i i j

x
n n n

ε ε
= = =

= ∆ + −∑ ∑ ∑  

0 0
1 1

1 1      
C Cn n

TT i jC C
i jn n

ε ε
= =

= ∆ + −∑ ∑  

The closeness of the covariates of each matching pair plays a crucial role in the 

covariate matching and itself is enough to guarantee the reliability of the estimator under 

the assumptions of 1M −  and 2M −  and the continuity of tf . 
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The theory behind propensity score matching is quite different from covariate 

matching. 

The basic ideas of propensity score matching are: 

(1) )|())(,0|())(,1|( pXprobpXpTXprobpXpTXprob iiiiiii ====== ,  

the balancing property; and 

(2) ε<),( lk ppd δ<⇒ ))|(),|((' ljki pXprobpXprobd  

These two ideas are parallel to the two ideas of covariate matching. Assumption 

(1) says that when the matching is exact at the propensity score p , then the distribution 

of X  will be the same for the treated sample and the comparison sample at p . 

Assumption (2) says if exact matching is impossible and instead matching is on some 

neighborhood of p , the distribution of X  is still approximately the same for the treated 

sample and the comparison sample within the neighborhood of p . 

In the propensity score matching methods, the observation i  in the treated sample 

is matched with the observation j  in the comparison sample if pXpXp ji == )()( . 

Define: 

�
1 0

P
i i jY Y∆ = −  

1 1 0 0     ( ) { ( ) }i i j jf X f Xε ε= + − +  

1 1 0 0 0 0 0 0     { ( ) [ ( ) ]} { ( ) ( ) }i i i i i j i jf X f X f X f Xε ε ε ε= + − + + − + −  

0 0 0 0     { ( ) ( ) }i i j i jf X f X ε ε= ∆ + − + −  
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Using �
P
i∆  as the building block, and denoting )( pm  as the number of matching 

pairs in a cellp −  which has the same propensity score p , we can estimate the average 

treatment effect at p by: 

� �
( )

1

1( )
( )

m pp p
i

i
p

m p =

∆ = ∆∑  

( ) ( ) ( ) ( ) ( )

0 0 0 0
1 1 1 1 1

1 1 1 1 1          ( ) ( )
( ) ( ) ( ) ( ) ( )

m p m p m p m p m p

i i j i j
i i j i j

f x f x
m p m p m p m p m p

ε ε
= = = = =

= ∆ + − + −∑ ∑ ∑ ∑ ∑

 

( ) ( ) ( ) ( )

0 0 0 0
1 1 1 1

1 1 1 1          ( ) ( ) ( )
( ) ( ) ( ) ( )

m p m p m p m p

i j i j
i j i j

p f x f x
m p m p m p m p

ε ε
= = = =

= ∆ + − + −∑ ∑ ∑ ∑  

where ( )p∆  is the average treatment effect at p . � ( )
p

p∆  is an unbiased and consistent 

estimator of the average treatment effect at p . 

Let pr  be the number of propensity score matching cells, and ∑= pr
p pmn )(  be 

the number of matched pairs in the whole sample ( Pn  also equals the number of 

observations in the treated sample). We can estimate the treatment effect on the treated 

by the following estimator, which is widely used in the matching literature:  

� �

1

1 pnP P
TT ip

in =

∆ = ∆∑  

0 0 0 0
1 1 1 1 1

1 1 1 1 1     ( ) ( )
p p p p pn n n n n

i i j i jp p p p p
i i j i j

f x f x
n n n n n

ε ε
= = = = =

= ∆ + − + −∑ ∑ ∑ ∑ ∑  

0 0 0 0
1 1 1 1

1 1 1 1     { } { ( ) ( )}
p p p pn n n n

TT i j i jp p p p
i j i j

f x f x
n n n n

ε ε
= = = =

= ∆ + − + −∑ ∑ ∑ ∑  
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It is clear that �
P
TT∆  is also an unbiased estimator for TT∆ .  The second term, 

0 01 1
{1 1 }

p pn np p
i ji j

n nε ε
= =

−∑ ∑ , will go to zero as sample size goes to infinity. The third 

term, 0 01 1
{1 ( ) 1 ( )}

p pn np p
i ji j

n f x n f x
= =

−∑ ∑ , needs to be balanced out. 

It is very possible that individuals with the same propensity score will have very 

different treatment outcomes, i.e. p approximately the same does not imply X  hence 

doesn't imply treatment outcome, )(Xf , approximately the same. Because of the 

balancing property this will not be a problem if the number of observations at each 

propensity score is large. This can be easily seen if we compare propensity score 

matching methods to a randomized experiment. The foundation of a randomized 

experiment is ( , | ) ( , | )prob X treated prob X controlν ν=  where X  is observable and ν  

is unobservable. The balancing property plays a similar role in propensity score 

matching, but propensity score matching methods differ from randomization in two 

important ways. First, a randomized experiment balances the distributions of both 

observables and unobservables between treated and comparison samples, but propensity 

score matching only balances the observables. This is why the independence assumption 

1M −  is needed. Second, a randomized experiment balances the distributions for the 

whole sample, but propensity score matching balances the distributions at each individual 

propensity score value. In other words, under 1M −  and 2M − , the matched sample at 

each propensity score value p is equivalent to a randomized sample. The estimate of 

propensity score matching can be thought as a weighted average of the estimates from 

many mini randomized experiments (at different p’s). The overall quality of the 

estimation depends on the quality of each of these mini randomized experiments. A 
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substantial sample size is needed to obtain a meaningful estimate from a randomized 

experiment and this is translated into a sufficiently large sample size at each p for a 

meaningful propensity score matching estimate. 

When comparing covariate matching with propensity score matching, we note 

that the advantage of propensity score matching over covariate matching is often 

characterized by dimensionality reduction, which composes two aspects. One aspect of 

dimensionality reduction is that instead of controlling high-dimension X , controlling the 

propensity score p , a scalar, is enough. Nonetheless the data requirement we discussed is 

related to the other aspect of dimensionality reduction, namely in general the number of 

p-cells, pr  is less than the number of X-cells, Cr  (also see the discussion in Angrist and 

Hahn 1999). Let us consider two polar cases. One polar case is a randomized experiment. 

This is the strongest case for the propensity score matching. Since )( iXp  is the same for 

every individual in the randomization, pr  is 1. The dramatic reduction of the data 

requirement for the randomized experiment is the result of the drastic reduction of pr  

compared with Cr . The other polar case is that in which the correspondence between p  

and X  is one-to-one. In this case if exact matching is possible, then matching on the 

propensity score or on covariates is equivalent and both require same amount of data 

since in this case people with same X must have same p, and vice versa. If exact matching 

is impossible and instead we match on some neighborhood of the propensity score, the 

story is different. We note that it is a fact there does not exist a one-to-one and bi-

continuous (i.e. both the function and its inverse function are continuous) correspondence 

between nR  space and 1R  space, i.e. nR  space and 1R  space are not a homoeomorphism. 

It is natural to assume that ( )p X  is a continuous function of X  and this implies that 
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1( )p X−  is not a continuous function of p . The implication of this mathematical fact is 

shown in Figure 1. On the one hand, if 'X s , like 1X  and 2X , lie in the set A, then their 

( )p X ’s, i.e. 1p  and 2p , must lie in the set B (this follows from the continuity of ( )p X ). 

On the other hand, there must be always some X ’s, e.g. 3X  and 4X , that lie outside the 

set A, but whose ( )p X ’s, i.e. 3p  and 4p , are in the set B (this follows from the 

discontinuity of 1( )p X− ). Their corresponding treatment outcomes can be quite different 

from the ones in the set A. Matching by the propensity score on some neighborhood of 

the propensity score has the risk of matching 1p  with 4p , whose 1( )f X  and 4( )f X  are 

quite different even though their propensity scores are similar and the correspondence 

between X  and p is one to one.  To average this kind of mismatching out, propensity 

score matching must rely on the balancing property and needs the neighborhood of p  to 

contain a relatively large number of observations. In this case, the advantage of matching 

on covariates is obvious. 

Whether propensity score matching needs less data hinges on how large the 

difference between pr  and Cr  is. Briefly, the reduction of the data requirement of 

propensity score matching relies on the reduction of the cell number. The reduction of the 

cell number creates the risk of mismatching. To average out the risk of mismatching 

requires a large cell size )( pm . The combination of pr , Cr  and )( pm  ultimately 

determines the relative data requirements between propensity score matching and 

covariate matching. Propensity score matching and covariate matching do not dominate 

each other regarding the data requirement. 
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V. An Illustration with the National Supported Work Demonstration Data Set 

The NSW Demonstration is a randomized experiment conducted from 1975 to 

1980 to estimate the effects of a “supported” work experience on the disadvantaged 

population, such AFDC recipients and ex-offenders. This experiment has 3,214 

observations in the treated sample and 3,402 in the control sample. The NSW data set has 

played an important role in the treatment effect literature. Lalonde (1986) uses a subset of 

the NSW data set, combined with the PSID and the CPS data, to evaluate different non-

experimental estimators. He uses the estimate from the NSW data set as the benchmark, 

then drops the control group in the NSW data and constructs other comparison groups 

from the CPS and the PSID. Different estimators have been applied to the constructed 

data sets. Different estimators have produced very different estimates and often have 

failed to replicate the benchmark. Fraker and Maynard (1987) use a similar approach but 

emphasize the sensitivity of estimates to the selection of the comparison groups from the 

NSW and the CPS data, and they reach a similar conclusion as LaLonde. As a response, 

Heckman and Hotz (1989) devise tests to aid the choice among estimators. Using 

propensity score methods, Dehejia and Wahba (1999) successfully replicate the 

benchmark result, but Smith and Todd (2003) suggest that the success of propensity score 

matching methods in Dehejia and Wahba (1999) has something to do with the data 

selected by Dehejia and Wahba instead of the propensity score matching method, per se.6 

The data sets used in LaLonde (1986), Dehejia and Wahba (1999) and Smith and 

Todd (2003) are different. The Dehejia and Wahba data set is a subset of LaLonde data 

set and it excludes the observations with missing earnings variable in 1974. Smith and 

                                                 
6 The data set in Heckman and Hotz (1989) is different from the one in LaLonde (1986), though both are 
subsets of the NSW data set. 
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Todd data set is a subset of Dehejia and Wahba data set and it excludes the observations 

that were randomized after April of 1976 and Smith and Todd argues that including these 

observations is problematic. 

Similar to their work, we apply propensity score matching methods, Mahalanobis 

metric, and other two matching metrics proposed in Zhao (2003) and discussed in Imbens 

(2003) to both the LaLonde data set and the Dehejia and Wahba data set.  

The first metric considered in Zhao (2003) and Imbens (2003) is as follows: let 

the propensity score )'()( βXGXp = , and consider the following metric: 

1
1
| | | |

K

ki kj k
k

d X X β
=

= − ⋅∑  

This metric incorporates information on both X  and p , and weights each 

coordinate of X  by its marginal effect on the propensity score.7 

The second metric is incorporated outcome information. Assume 0 1( , )i iY Y  and X  

have linear relationships, such that 

1 ,0  ,')( =+=+= tXXfY tititiitti εαε  

Define the metric as: 

2
1
| | | |

K

ki kj kt
k

d X X α
=

= − ⋅∑   

This metric weights the coordinates of X  by their marginal effects to the 

potential outcomes. It is a natural measurement for closeness of two observations in term 

of their potential outcomes. 

                                                 
7 Strictly speaking, β  can be interpreted as the marginal effect only if it is estimated from the LPM. For 
other models, like probit and logit, though β  is not the marginal effect but it is still proportioned to the 
marginal effect. 
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We refer matching by metrics 1d  and 2d  as covariate & propensity score 

matching and covariate & outcome matching, respectively. All treatment effects are 

estimated by one to one matching. Since the CPS is more representative than the PSID 

and since we want to examine the effectiveness of different matching methods and do not 

want other sample selection procedures to contaminate the matching process, our 

estimation is focused on the whole CPS sample, i.e. CPS-SSA-1 in LaLonde (1986) and 

CPS-1 in Dehejia and Wahba (1999).  

Table 1 shows results from different matching metrics using the Dehejia and 

Wahba data set. The propensity score specification in Table 1 is the same as the 

specification in Dehejia and Wahba (1999). Measured by the closeness to the benchmark, 

results from different metrics are very similar and there is no evidence that one estimator 

dominates the other estimator. Matching without replacement performs more poorly than 

matching with replacement, which is consistent with Dehejia and Wahba (1999). 

Imposing the common support condition has little effect on the results. For some 

estimators it increases the bias, and for others it reduces the bias, but these changes are 

small. This is not surprising. Unlike sub-classification estimators, one-to-one matching 

estimators automatically solve the common support problem. 

As discussed earlier, the estimate from propensity score matching is the weighted 

average of the estimates at different propensity score values. The overall quality of the 

estimation relies on the quality of estimation at each propensity score value. Besides the 

final estimate, it is also interesting to examine more closely the intermediate estimates. 

Figure 2 shows the propensity scores of the matched pairs. They are very well matched in 

terms of the propensity score. Figure 3 is the treatment effect estimated at a pair level. It 
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highlights that people with similar propensity score can have very different treatment 

effects. Using age as example, Figure 4 shows that people with a very similar propensity 

score value can have very different covariates. As discussed in Section 4, the difference 

of covariates at pair level does not matter as long as the averages of covariates are similar 

at cell level. We stratify the matched pairs into 18 cells by the propensity score of the 

treated observation in each pair. The width of each cell is 0.05 (since there is no treated 

observation with propensity score value larger than 0.9, there are 18 cells). Figure 5 

shows the treatment effects for each cell estimated from the NSW experiment and 

propensity score matching. There is less volatility than at the pair level, but they are still 

very noisy. Contrary to the common intuition that the people have higher propensity 

score values also have larger treatment effects, it seems that the treatment effect is 

independent of the propensity score. The independence of the treatment effect and the 

propensity score partially explains why matching methods are successful in the Dehejia 

and Wahba (1999). Table 2 shows that the means of the covariates of the treated sample 

and the comparison sample in each cell. The balance of the covariates in each cell is a 

necessary condition for the propensity score matching methods to work. Table 2 shows 

some cells and some covariates in certain cells are indeed balanced, but the majority of 

them are not. Dehejia and Wahba (1999) devised a test to make the covariates balanced in 

each cell before carrying out matching, which is different from the issue we discuss here. 

Even if the covariates are balanced before matching, they could become unbalanced after 

matching, but the unbalance will become unlikely as the sample size increases.  

The estimates from the LaLonde data set are shown in Table 3. Contrary to the 

estimates from the Dehejia and Wahba data set, all methods fail to replicate the 
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benchmark from the NSW experiment and most estimates even do not have right sign. 

The estimation from OLS is as good as the estimations from propensity score matching 

and the majority of the estimations from covariate matching, if not better.  

The only difference of the LaLonde data set from the Dehejia and Wahba data set 

is that the Dehejia and Wahba data set has information on the earnings in 1974 (two years 

prior the treatment) but the LaLonde data set does not. It is hard to imagine that this 

difference is responsible for the failure of the matching estimators in the LaLonde data 

set, though the importance of pre-program earning history in the program evaluation is 

well known since the discovery of the famous Ashenfelter dip in Ashenfelter (1978). In 

order to explore this issue further, we pretend that we do not have the 1974 earning 

information in Dehejia and Wahba data set and estimate the treatment effects without 

using the earning variable of 1974. The results are reported in Table 4. Compared Table 1 

with Table 4, it can be seen that the contribution of the 1974 earning history in improving 

the estimation of the treatment effects is marginal at most. With or without the 1974 

earning history, the estimates from Dehejia and Wahba data set are closed to the NSW 

experimental benchmark. 

VI. Conclusions 

Selection bias due only to observables is a strong assumption, but for voluntary 

programs if we have the data on the application indicator and on the variables used by the 

program administrator to make the selection decision, we can justify this assumption. 

With a proper data set and if the selection on observables assumption is 

justifiable, matching methods are useful tools to estimate treatment effects. There is no 

clear winner among matching estimators considered here. Propensity score matching 
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methods rely on the balancing property and require a large number of observations at 

each propensity score value, which is not required by covariate matching methods, while 

covariate matching methods face the curse of dimensionality and often encounter small 

cell or empty cell problem, so they do not dominate each other in term of data 

requirement in finite samples.   

A major data requirement for propensity score matching is that at each propensity 

score value the number of observations is large. If this condition fails, it could affect the 

final results. It is important to check whether the covariates are balanced after matching 

at each propensity score value. 

The failure of matching methods in the LaLonde data set highlights that, like any 

non-experimental estimator, the behavior of matching estimators largely depends on the 

data structure at hand. Matching is a useful estimator under suitable conditions, but it is 

definitely not the estimator for every evaluation. There is no easy way out in social 

program evaluation. A successful evaluation study requires detailed knowledge of the 

program, a good data set, and a careful consideration and choice of the estimation 

strategy. 
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Methods Treatment Effect Bias Boothtrap Std. Error Treatment Effect Bias Boothtrap Std. Error
NSW Experiment (Benchmark) 1794.3424 0 619.1345 1794.3424 0 577.865
Simple Mean Difference -1855.9763 -3650.3187 562.7947 -8497.5161 -10291.8585 523.7342
OLS 1418.4384 -375.904 669.5362 1213.4147 -580.9277 519.514
Propensity Score Matching (Probit) 1677.5946 -116.7478 1017.8633 1702.3805 -91.9619 1005.5016
Propensity Score Matching (Logit) 1352.5425 -441.7999 1050.6117 1223.0937 -571.2487 905.453
Propensity Score Matching (LPM) 1600.0339 -194.3085 1414.7686 1600.0339 -194.3085 864.7236
Propensity Score Matching (Weighted LPM) 1084.8266 -709.5158 1106.3448 1084.8266 -709.5158 1055.1431
Covariate Matching (Mahalanobis) 1991.0404 196.698 1044.4974 2088.6502 294.3078 800.7334
Covariate & Propensity Score (Probit) 1941.6922 147.3498 946.8705 1761.7929 -32.5495 823.4981
Covariate & Propensity Score (Logit) 2108.5395 314.1971 966.3276 1928.6402 134.2978 838.8226
Covariate & Propensity Score (LPM) 1524.5499 -269.7925 977.4047 1482.5745 -311.7679 839.7936
Covariate & Propensity Score (Weighted LPM) 1434.5363 -359.8061 894.3857 1430.3668 -363.9756 920.8582
Covariate & Outcome 1927.8255 133.4831 1102.4222 2062.5942 268.2518 718.3613

Methods Treatment Effect Bias Boothtrap Std. Error Treatment Effect Bias Boothtrap Std. Error
Propensity Score Matching (Probit) 1341.4319 -452.9105 802.7994 1366.2177 -428.1247 717.4967
Propensity Score Matching (Logit) 1560.2072 -234.1352 814.4174 1430.7584 -363.584 711.5508
Propensity Score Matching (LPM) 1312.7879 -481.5545 918.0792 1312.7879 -481.5545 705.9952
Propensity Score Matching (Weighted LPM) 792.5403 -1001.8021 717.9579 792.5403 -1001.8021 752.4914
Covariate Matching (Mahalanobis) 986.3221 -808.0203 709.0015 854.1095 -940.2329 640.6439
Covariate & Propensity Score (Probit) 1351.1288 -443.2136 843.9903 1202.2937 -592.0487 742.9999
Covariate & Propensity Score (Logit) 1365.7223 -428.6201 836.9152 1111.705 -682.6374 740.1312
Covariate & Propensity Score (LPM) 625.4851 -1168.8573 761.8081 583.5097 -1210.8327 703.7281
Covariate & Propensity Score (Weighted LPM) 1085.7131 -708.6293 741.2391 1081.5435 -712.7989 744.7629
Covariate & Outcome 939.1385 -855.2039 718.8523 1073.9072 -720.4352 548.8117

Note: 1. The specification of the propensity score is the same as in Dehejia and Wahba (1999), including age, age squared,
             education, education squared, no degree, married, black, hispanic, re74, re75, u74, u75, education*re74 and age cubed.
         2. The specification of the OLS is the same as the specification of the propensity score.
         3. The outcome equation in the covariate & outcome matching is estimated using only the treated data by OLS
             and without any higher order and interaction term.

With Common Support Condition Without Common Support Condition

Table 1 Estimates from Various Matching Estimators Using Dehejia and Wahba Data

Panel A: Matching with Replacement

Panel B: Matching without Replacement

With Common Support Condition Without Common Support Condition



Propensity Score Cell
Cell Size Treated Control Treated Control Treated Control Treated Control Treated Control Treated Control
0.00-0.05 24 26.42 27.17 11.04 10.79 0.50 0.38 0.46 0.42 5144.77 5716.24 4969.86 3858.59
0.05-0.10 8 27.75 28.25 11.38 10.38 0.25 0.25 0.50 0.50 5173.82 6174.38 2621.67 2340.40
0.10-0.15 14 26.43 27.57 10.14 11.00 0.21 0.43 0.71 0.50 2913.09 5086.12 1773.58 5200.50
0.15-0.20 11 30.09 29.55 8.91 9.55 0.36 0.27 0.73 0.91 1394.18 1696.37 1058.00 1923.78
0.20-0.25 8 25.50 21.00 11.38 9.63 0.00 0.25 0.38 0.88 7055.38 878.98 2632.63 669.36
0.25-0.30 5 23.60 22.40 10.60 10.20 0.20 0.20 0.60 0.80 6346.94 0.00 3288.77 852.19
0.30-0.35 11 26.09 23.36 11.36 11.18 0.09 0.27 0.45 0.55 4653.54 248.29 1822.78 587.55
0.35-0.40 16 21.81 20.25 9.69 9.19 0.06 0.00 0.88 0.88 669.81 407.28 592.81 172.54
0.40-0.45 9 20.44 22.56 10.00 12.33 0.00 0.00 0.78 0.56 1489.46 3.92 612.17 0.00
0.45-0.50 9 22.00 25.44 9.67 10.56 0.11 0.22 0.89 0.78 356.45 697.06 1292.01 2184.99
0.50-0.55 9 26.00 25.11 10.44 11.33 0.22 0.33 0.78 0.44 0.00 0.00 301.62 247.26
0.55-0.60 14 27.29 28.43 11.21 9.57 0.36 0.29 0.71 0.86 0.00 1599.74 619.06 932.89
0.60-0.65 10 27.00 30.20 11.40 11.80 0.20 0.20 0.40 0.20 0.00 0.00 93.44 0.00
0.65-0.70 1 27.00 29.00 10.00 12.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.70-0.75 3 26.67 35.00 9.67 11.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00
0.75-0.80 5 27.60 22.40 8.80 10.20 0.00 0.00 1.00 1.00 0.00 0.00 879.79 0.00
0.80-0.85 19 26.32 28.53 10.05 9.95 0.00 0.00 1.00 1.00 0.00 0.00 306.27 279.76
0.85-0.90 9 27.56 26.33 8.67 9.78 0.00 0.00 1.00 1.00 0.00 0.00 0.00 21.09

Earning74 Earning75

Table 2 The Covariate Means in Each Cell after Propensity Score Matching Using Dehejia and Wahba Data

Age Education Married Nodgree



Methods Treatment Effect Bias Boothtrap Std. Error Treatment Effect Bias Boothtrap Std. Error
NSW Expriment (Benchmark) 886.3037 0 552.1865 886.3037 0 520.9488
Simple Mean Difference -5091.4435 -5977.7472 864.9801 -8870.3076 -9756.6113 428.1363
OLS -653.4911 -1539.7948 546.1872 -900.2483 -1786.552 474.0258
Propensity Score Matching (Probit) -830.6882 -1716.9919 884.9409 -894.8972 -1781.2009 794.2928
Propensity Score Matching (Logit) -834.1216 -1720.4253 835.5473 -834.1216 -1720.4253 784.0141
Propensity Score Matching (LPM) -988.9594 -1875.2631 927.6027 -988.9594 -1875.2631 942.5992
Propensity Score Matching (Weighted LPM) -1172.6353 -2058.939 835.4494 -1193.1245 -2079.4282 850.1418
Covariate Matching (Mahalanobis) 38.0357 -848.268 729.5191 60.6543 -825.6494 674.9392
Covariate & Propensity Score (Probit) -906.7191 -1793.0228 745.0735 -867.5519 -1753.8556 819.766
Covariate & Propensity Score (Logit) -781.2119 -1667.5156 723.089 -742.0447 -1628.3484 834.9877
Covariate & Propensity Score (LPM) -1663.6733 -2549.977 786.3256 -1663.6733 -2549.977 785.6147
Covariate & Propensity Score (Weighted LPM) -1371.5015 -2257.8052 744.3925 -1371.5015 -2257.8052 792.4616
Covariate & Outcome 211.2083 -675.0954 829.2703 250.3755 -635.9282 777.0201

Methods Treatment Effect Bias Boothtrap Std. Error Treatment Effect Bias Boothtrap Std. Error
Propensity Score Matching (Probit) -1119.5763 -2005.88 748.332 -1176.9589 -2063.2626 607.0538
Propensity Score Matching (Logit) -763.8225 -1650.1262 651.467 -763.8225 -1650.1262 669.4701
Propensity Score Matching (LPM) -1537.579 -2423.8827 657.2353 -1537.579 -2423.8827 709.2184
Propensity Score Matching (Weighted LPM) -1145.6929 -2031.9966 633.6048 -1166.1821 -2052.4858 617.681
Covariate Matching (Mahalanobis) -761.2005 -1647.5042 621.2306 -626.2149 -1512.5186 602.2818
Covariate & Propensity Score (Probit) -1824.3924 -2710.6961 672.6644 -1785.2252 -2671.5289 656.9399
Covariate & Propensity Score (Logit) -1800.1467 -2686.4504 676.5479 -1760.9795 -2647.2832 675.2881
Covariate & Propensity Score (LPM) -2429.0461 -3315.3498 704.0201 -2429.0461 -3315.3498 700.9407
Covariate & Propensity Score (Weighted LPM) -2224.2692 -3110.5729 668.49 -2224.2692 -3110.5729 649.8167
Covariate & Outcome -1073.6276 -1959.9313 817.4817 -1034.4604 -1920.7641 712.3288

Note: 1. The specification of the propensity score is the same as in Dehejia and Wahba (1999), including age, age squared,
             education, education squared, no degree, married, black, hispanic, re75, u75 and age cubed.
         2. The specification of the OLS is the same as the specification of the propensity score.
         3. The outcome equation in the covariate & outcome matching is estimated using only the treated data by OLS
             and without any higher order and interaction term.

Table 3 Estimates from Various Matching Estimators Using Lalonde Data

Without Common Support Condition

Without Common Support ConditionWith Common Support Condition

Panel A: Matching with Replacement

Panel B: Matching without Replacement

With Common Support Condition



Methods Treatment Effect Bias Boothtrap Std. Error Treatment Effect Bias Boothtrap Std. Error
NSW Experiment (Benchmark) 1794.3424 0 627.0964 1794.3424 0 697.8393
Simple Mean Difference -1542.2862 -3336.6286 673.7822 -8497.5161 -10291.8585 623.0656
OLS 947.8409 -846.5015 647.9457 703.5223 -1090.8201 673.6418
Propensity Score Matching (Probit) 1742.4868 -51.8556 929.9885 1742.4868 -51.8556 984.5567
Propensity Score Matching (Logit) 1062.9881 -731.3543 926.9224 1062.9881 -731.3543 1036.6405
Propensity Score Matching (LPM) -18.6278 -1812.9702 936.6556 -18.6278 -1812.9702 1126.1358
Propensity Score Matching (Weighted LPM) 889.7427 -904.5997 867.7195 1029.7993 -764.5431 952.8389
Covariate Matching (Mahalanobis) 1379.3894 -414.953 969.6251 1803.7764 9.434 944.4436
Covariate & Propensity Score (Probit) 1228.9009 -565.4415 944.9318 1228.9009 -565.4415 1039.7549
Covariate & Propensity Score (Logit) 1837.8201 43.4777 955.4343 1837.8201 43.4777 988.6396
Covariate & Propensity Score (LPM) 1353.0539 -441.2885 955.5663 1408.241 -386.1014 934.5179
Covariate & Propensity Score (Weighted LPM) 1473.6523 -320.6901 977.3127 1548.6969 -245.6455 950.8789
Covariate & Outcome 1848.228 53.8856 1042.6264 1870.2421 75.8997 1044.1177

Methods Treatment Effect Bias Boothtrap Std. Error Treatment Effect Bias Boothtrap Std. Error
Propensity Score Matching (Probit) 1875.3385 80.9961 810.1426 1875.3385 80.9961 819.9448
Propensity Score Matching (Logit) 1296.0695 -498.2729 755.6609 1261.2032 -533.1392 788.5103
Propensity Score Matching (LPM) -785.504 -2579.8464 726.63 -785.504 -2579.8464 880.0777
Propensity Score Matching (Weighted LPM) 848.9815 -945.3609 753.7384 928.9465 -865.3959 818.2015
Covariate Matching (Mahalanobis) 892.9058 -901.4366 773.56 1060.1125 -734.2299 796.1598
Covariate & Propensity Score (Probit) 1523.9989 -270.3435 789.1705 1517.4889 -276.8535 793.7948
Covariate & Propensity Score (Logit) 1576.4222 -217.9202 781.3752 1534.942 -259.4004 798.2094
Covariate & Propensity Score (LPM) 1251.4742 -542.8682 723.2978 1283.3531 -510.9893 805.018
Covariate & Propensity Score (Weighted LPM) 1397.4815 -396.8609 719.3703 1400.8284 -393.514 809.137
Covariate & Outcome 883.0169 -911.3255 964.801 922.8197 -871.5227 1007.0669

Note: 1. The specification of the propensity score is linear without any higher order and interaction term.
         2. The specification of the OLS is the same as the specification of the propensity score.
         3. The outcome equation in the covariate & outcome matching is estimated using only the treated data by OLS
             and without any higher order and interaction term.

With Common Support Condition Without Common Support Condition

Table 4 Estimates from Various Matching Estimators Using Dehejia and Wahba Data without 1974 Earning History

Panel A: Matching with Replacement
With Common Support Condition Without Common Support Condition

Panel B: Matching without Replacement



 

Figure 1 Neighborhood Matching  
With One to One Correspondence between X and p 
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Note: 1. There are total 185 matched pairs;
         2. The matched pairs are sorted by the propensity score of the treated;

Figure 2 Propensity Scores of Matched Pairs
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Note: 1. There are total 185 matched pairs;
         2. The matched pairs are sorted by the propensity score of the treated;

Figure 3 Treatment Effects of Matched Pairs
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Note: 1. There are total 185 matched pairs;
         2. The matched pairs are sorted by the propensity score of the treated;

Figure 4 Ages of Matched Pairs
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Note: 1. There are total 185 matched pairs;
         2. The matched pairs are sorted by the propensity score of the treated;
         3. The width of the cell in Figure 5 is 0.05. Since there is no observation
             with propensity score larger than 0.9, there are only 18 cells. The numbers
             in the plot are the numbers of matched pairs in each cell.

Figure 5 Treatment Effects of Matched Pairs by Cell
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