Boundary Hölder and L^p Estimates for local solutions of the tangential Cauchy-Riemann equation

Christine LAURENT-THIÉBAUT and Mei-Chi SHAW*

http://www-fourier.ujf-grenoble.fr/prepublications.html

1 Introduction

In this paper we study the local solvability of the tangential Cauchy-Riemann equation ∂_b on an open neighborhood ω of a point $z_0 \in M$ when M is a generic CR manifold of real codimension k in \mathbb{C}^n, where $1 \leq k \leq n - 1$. We assume that M is q-concave near z_0 (see Definition 2.2.1). Our method is to first derive an homotopy formula for ∂_b in ω when ω is the intersection of M with a strongly pseudoconvex domain. The homotopy formula gives a local solution operator for any ∂_b-closed form on ω without shrinking. We obtain Hölder and L^p estimates up to the boundary for the solution operator.

Let $C^\alpha(\omega)$, $0 < \alpha < 1$, be the space of Hölder continuous functions of order α in ω. We use $C_{n,s}^\alpha(\omega)$ to denote the space of (n, s)-forms with $C^\alpha(\omega)$ coefficients. The norm in $C_{n,s}^\alpha(\omega)$ is defined to be the sum of $C^\alpha(\omega)$ norm of each coefficient. We also denote by $L^p_{(n,s)}(\omega)$ the space of (n, s)-forms with $L^p(\omega)$ coefficients, $1 \leq p \leq \infty$. The norm in $L^p_{(n,s)}(\omega)$ is denoted by $\| \|$ for (n, s)-forms. Our main results are the following:

Theorem 1.0.1. (Homotopy formula for ∂_b.) Let M be a strictly q-concave generic CR manifold in \mathbb{C}^n and $z_0 \in M$. Let Ω be a strictly pseudoconvex domain containing z_0 in \mathbb{C}^n with C^3 boundary and $\omega = M \cap \Omega$. For any s, $n - k - q + 1 \leq s \leq n - k$, there exists a continuous operator T_{s-1} from $C_{n,s}(\omega)$ into $C_{n,s-1}^3(\omega)$ such that for any $f \in C_{n,s}(\omega)$ with $\partial_b f \in C_{n,s+1}(\omega)$,

$$f = \partial_b T_{s-1} f + T_s \partial_b f.$$

Theorem 1.0.2. (Hölder and L^p estimates for ∂_b.) Let M be a strictly q-concave generic CR manifold in \mathbb{C}^n and $z_0 \in M$. Let Ω be a strictly pseudoconvex domain containing z_0 in \mathbb{C}^n with C^3 boundary and $\omega = M \cap \Omega$. For any $f \in L^p_{(n,s)}(\omega)$ with $\partial_b f = 0$ in ω, $1 \leq p \leq \infty$ and $n - k - q + 1 \leq s \leq n - k$, there exists an operator \tilde{T}_{s-1} satisfying $\partial_b \tilde{T}_{s-1} f = f$ in ω and the following estimates hold:

*NSF grant DMS01-00492.
A.M.S. Classification : 32F20, 32F10, 32F4.
Key words : CR manifolds, Hölder estimates, L^p-estimates, Tangential Cauchy Riemann equation.