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Ripley’s K function

Ripley’s K�t� function is a tool for analyzing com-
pletely mapped spatial point process data (see Point
processes, spatial), i.e. data on the locations of
events. These are usually recorded in two dimensions,
but they may be locations along a line or in space.
Here I will only describeK�t� for two-dimensional
spatial data. Completely mapped data include the
locations of all events in a predefined study area.
Ripley’s K�t� function can be used to summarize
a point pattern, test hypotheses about the pattern,
estimate parameters and fit models. Bivariate or
multivariate generalizations can be used to describe
relationships between two or more point patterns.
Applications include spatial patterns of trees [10, 20,
29], herbaceous plants [28], bird nests [11] and dis-
ease cases [7]. Details of various theoretical aspects
of K�t� are in books by Ripley [26], Diggle [6],
Cressie [4], Stoyan and Stoyan [30]. Examples of
computation and interpretation can be found in those
books and also in Upton and Fingleton [32].

Theoretical K .t/ Function

TheK function is

K�t� D ��1E[number of extra events within
distancet of a randomly
chosen event] �1�

[23, 24], where� is the density (number per unit area)
of events.
K�t� describes characteristics of the point pro-

cesses at many distance scales. Alternative summaries
(e.g. mean nearest-neighbor distance or the cumu-
lative distribution function (cdf) of distance from
random points to their nearest neighbors;see Near-
est neighbor methods) do not have this property.
Many ecological point patterns show a combination
of effects, e.g. clustering at large scales and regular-
ity at small scales. The combination can be seen as a
characteristic pattern in a plot of theK�t� function.
K�t� does not uniquely define the point pro-

cesses in the sense that two different processes can
have the sameK�t� function [1, 15]. Also, while
K�t� is related to the nearest-neighbor distribution
function [26, p. 158], the two functions describe
different aspects of a point process. In particular,

processes with the sameK�t� function may have dif-
ferent nearest-neighbor distribution functions,G�t�,
and vice versa.K�t� is also closely related to the pair
correlation function,g�t� [30, p. 249]. Stoyan and
Penttinen [29] summarize the relationships between
K�t� and other statistics for spatial point processes.

Although it is usual to assume stationarity,K�t�
is interpretable for nonstationary processes because
K�t� is defined in terms of a randomly chosen event.
It is also customary to assume isotropy, i.e. that one
unit of distance in theY direction has the same effect
as one unit of distance in theX direction (see Spatial
analysis in ecology). If the degree of anisotropy is
known, then the definition of the distancet can be
adjusted.

Models for K .t/

For many point processes the expectation in the
numerator of theK�t� function in (1) can be analyt-
ically evaluated, so theK�t� function can be written
in closed form. The simplest, and most commonly
used, isK�t� for a homogeneousPoisson process,
also known ascomplete spatial randomness (CSR):

K�t� D 
t2 �2�

A variety of processes can be used to model small-
scale regularity. Hard-core processes are those in
which events cannot occur within some minimum dis-
tance of each other. In what is known as aMatern
hard-core process [17, pp. 47–48], locations are non-
random thinning of a homogeneous Poisson process
with intensity�. Any pair of events separated by less
than a critical distanceυ are deleted. The remaining
events are a realization of a hard-core process. The
K�t� function for this process is [4]

K�t� D 2�


exp���
υ2�
∫ t

0
uk�u�du �3�

where k�u� describes the probability of retaining a
pair of events separated by a distanceu:

k�u� D
{

0, h < υ
exp[��V�h, υ�], h ½ υ

�4�

with V�h, υ� as the area of intersection of two circles,
each of radiusυ, with centers separated by a distance
h. A sequential variant of this hard-core process has
a differentK�t� function [4, p. 670].
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Soft-core processes are those where the number of
neighbors within some critical distanceυ is smaller
than expected under CSR, but the number is not zero.
One example is aStrauss process [31], in which
a fraction, 1� �, of the events within the critical
distance,υ, is deleted. An approximation to theK�t�
function for this process is [13]

K�t� D
{
�
t2, 0< t � υ

t2 � �1 � ��
υ2, t ½ υ

�5�

Events may also be spatially clustered. One process
that generates clustered locations is aNeyman–Scott
process in two dimensions. ‘Parent’ events are a
realization of a homogeneousPoisson process with
intensity�. Each parent event,i, generates a random
number of ‘offspring’ eventsNi, whereNi has a
Poisson distribution with meanm. The locations of
the offspring, relative to the parent individual, have a
bivariate Gaussian distribution with zero means and
variance�2I. When locations of the parent events are
ignored, locations of the clustered offspring events
are a realization of a Neyman–Scott process [19].
TheK�t� function for this process is [6]

K�t� D 
t2 C [1 � exp��t2/4�2�]

�
�6�

A general Poisson cluster process has arbitrary distri-
butions for the number of offspring per parentN, and
the distance between offspring from the same parent,
F�t�. K�t� for this process is

K�t� D 
t2 C E[N�N� 1�]F�t�

��2 �7�

where� is the mean number of offspring per parent.
K�t� functions can also be written for other clustered
and regular processes; see [4, pp. 650–695], [6, pp.
46–69], or [30, pp. 307–334] for details.

Estimating K .t/

Given the locations of all events within a defined
study area, how canK�t� be estimated?K�t� is a ratio
of a numerator and the density of events,�. The den-
sity can be estimated asO� D N/A, whereN is the
observed number of points andA is the area of the
study region. It is customary to condition onN, so
the uncertainty inO� can be ignored, although uncondi-
tionally unbiased estimators have been suggested [9].

If edge effects are ignored, then the numerator can
be estimated byN�1∑

i
∑
j 6Di I�dij < t�, wheredij

is the distance between theith andjth points, and
I�x� is the indicator function with the value 1 ifx is
true and 0 otherwise. However, the boundaries of the
study area are usually arbitrary.Edge effects arise
because points outside the boundary are not counted
in the numerator, even if they are within distancet
of a point in the study area. Ignoring edge effects
biases the estimator̂K�t�, especially at large values
of t.

A variety of edge-corrected estimators have been
proposed. The most commonly used is due to
Ripley [23]:

K̂�t� D O��1
∑
i

∑
j 6Di

w�li, lj�
�1 I�dij < t�

N
�8�

As above,dij is the distance between theith andjth
points, andI�x� is the indicator function. The weight
function, w�li, lj�, provides the edge correction. It
has the value of 1 when the circle centered atli and
passing through the pointlj (i.e. with a radius ofdij)
is completely inside the study area. If part of the cir-
cle falls outside the study area (i.e. ifdij is larger
than the distance fromli to at least one boundary),
thenw�li, lj� is the proportion of the circumference
of that circle that falls in the study area. The effects
of edge corrections are more important for larget
because large circles are more likely to be outside
the study area. Other edge-corrected estimators and
their properties are summarized in [4, pp. 616–618]
and [30, pp. 279–284]. AlthougĥK�t� can be deter-
mined for anyt, it is common practice to consider
only t less than one-half the shortest dimension of
the study area, if the study area is approximately rect-
angular, ort < �A/2�1/2, whereA is the area of the
study region.
K̂�t� is easy to compute, except perhaps for the

geometric aspects of the edge corrections. Edge-
corrected estimators are available in at least three
S-PLUS libraries (Splancs [27], Spatial [33] and
S+SPATIALSTATS [14]) and at least oneSAS
macro is available [18].

Evaluating Spatial Models

The simplest use of Ripley’sK�t� function is to
test CSR, i.e. test whether the observed events are
consistent with a homogeneousPoisson process. If
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so, thenK�t� D 
t2 for all t. In practice, it is easier
to useL�t� D [K�t�/
]1/2 and its estimator:

L̂�t� D [K̂�t�/
]1/2 �9�

because var[̂L�t�] is approximately constant under
CSR [25]. Under CSR,L�t� D t. Deviations from
the expected value at each distance,t, are used
to construct tests of CSR. One approach is to test
L�t�� t D 0 at each distance,t. Another is to com-
bine information from a set of distances into a
single test statistic, such aŝLm D supt jL̂�t�� tj or
L̂s D ∑

t jL̂�t�� tj. Critical values can be computed
by Monte Carlo simulation [3] (see Simulation
and Monte Carlo methods) or approximated. For
L̂m, approximate 5% and 1% critical values are
1.42

p
A/N and 1.68

p
A/N [25].

More complicated spatial processes – e.g. a
Neyman–Scott process (6) or a Strauss process (5) –
can be tested by similar comparisons, if all the param-
eters of that process are known. Usually, parameter
values for more complicated spatial processes are not
known a priori and must be estimated. One reasonable
approach is to find the values% that minimize a dis-
crepancy measure between the observedK̂�t� and the
theoreticalK�t, %�. Diggle [6] suggests

∫ t0
0 [K̂�t�0.25 �

K�t�0.25]2 dt, which can be approximated by

D�%� D
∑
t

[K̂�t�0.25 �K�t, %�0.25]2 �10�

where the sum is over a subset of values oft between
0 andt0. The exponent of 0.25 is chosen empirically
to give reasonable results for a variety of random
and aggregated patterns [6, p. 74]. The upper limit,
t0, is chosen to span the biologically important spatial
scales. Large values oft0 relative to the size of the
study area should be avoided because of the large
uncertainty in K̂�t� for large t. This model-fitting
approach can be extended to fit processes for which
K�t� cannot be written in closed form, so long as the
process can be simulated [8].

Diagnostics for fitted models include estimation
of residuals [4, pp. 656–657] or comparison with
simulated data (see Regression diagnostics). Given
estimates of the parameters and an algorithm to sim-
ulate data from a particular spatial process,K̂�t� can
be determined for a set of simulated realizations.
If the fitted model is reasonable, then the observed
K̂�t� function should be similar to thêK�t� from the
simulated data. Two-sided 95% pointwise confidence

bounds for the fitted model can be estimated by sim-
ulating 39 realizations of the spatial pattern, then
computing the minimum and maximum values of
K̂�t� at a set oft values. If a one-sided bound is
desired, then it can obtained as the maximum (or min-
imum) from 19 simulations. The sampling uncertainty
in these bounds can be reduced by increasing the
number of simulations and calculating the appropriate
quantiles ofK̂�t� for each value oft. This approach
tends to overstate the confidence in the fit, since the
fit is evaluated using the same data and loss func-
tion that were used to estimate the parameters [30,
p. 305].

K .t/ Functions for Multivariate Spatial
Patterns

The previous analyses considered only the location
of an event; they ignored any other information about
that event. Many point patterns include biologically
interesting information about each point, e.g. species
identifiers (if the points include more than one type of
species), whether the individual survived or died (for
spatial patterns of trees or other plants), and whether a
location is a disease case or a randomly selected con-
trol. Such data are examples of multivariate spatial
point patterns, which are forms of marked point pat-
terns that have a small number of discrete marks. In
the previous examples the marks are the species iden-
tifier, the fate (live or dead) or the disease status (case
or control), respectively. The univariate methods in
the previous section can be used to analyze or model
the spatial pattern of all individuals (ignoring the
marks) or the separate patterns in each type of mark.
Many biological questions concern the relationships
between marks, however, for which the multivariate
methods described in this section are needed.

The generalization ofK�t� to more than one type
of point (a multivariate spatial point process) is

Kij�t� D ��1
j E [number of typej events within

distancet of a randomly chosen
type i event] �11�

When there areg types of events, there areg2K
functions, K11�t�, K12�t�, . . . , K1g�t�, K21�t�, . . . ,
K2g�t�, . . . , Kgg�t�. It is helpful to distinguish the
cross-K functions Kij�t�, where i 6D j, from the
self-K functions,Kii�t�. Analytical expressions for
Kij�t� are known for various multivariate point
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processes; see [4, pp. 699–707] or [6 pp. 90–103].
Estimators of each bivariateKij�t� function are
similar to estimators of univariateK�t� functions.
If edge corrections are not needed, thenK̂ij�t� D
��̂i�̂jA��1∑

k
∑
l I�dik,jl < t�, where dik,jl is the

distance between thekth location of typei and the
lth location of typej andA is the area of the study
region. Various edge corrections have been suggested;
one common example is the extension of Ripley’s
estimator [12]:

K̂ij�t� D � O�i O�jA��1
∑
k

∑
l

w�ik, jl�I�dik,jl < t�

�12�

wherew�ik, jl� is the fraction of the circumference
of a circle centered at thekth location of processi
with radiusdik,jl that lies inside the study area.

If the spatial process is stationary, then corre-
sponding pairs of cross-K functions are equal, i.e.
K12�t� D K21�t� and Kij�t� D Kji�t�. When edge
corrections are used, then̂Kij�t� andK̂ji�t� are posi-
tively correlated but not equal. This suggests the use
of a more efficient estimator,KŁ

ij�t� D [ O�jK̂ij�t�C
O�iK̂ji�t�]/� O�i C O�j� [16], although other linear com-
binations ofK̂ij�t� andK̂ji�t� may have even smaller
variance.

Questions about the relationship between two spa-
tial processes can be asked in two different ways.
The independence approach [16] conditions on the
marginal structure of each process and asks ques-
tions about the interaction between the two pro-
cesses. The random labeling approach [5] conditions
on the observed locations and asks questions about
the process that assigns labels to points. The dis-
tinction between independence and random label-
ing of two spatial processes requires some care
and consideration. When there is no relationship
between the two processes, the two approaches lead
to different expected values of the cross-K func-
tion, K12�t�, and to different nonparametric test
procedures.

Under independence, the cross-typeK function is
K12�t� D 
t2, regardless of the individual univari-
ate spatial patterns of the two types of events. It
is easier to work with the correspondingLŁ

ij�t� D
[KŁ

ij�t�/
]1/2 function, because the variance of

L̂Ł
12�t� is approximately constant. Under indepen-

dence,LŁ
12�t� D t. Values of L̂12�t�� t > 0 indicate

attraction between the two processes at distancet;
values less than 0 indicate repulsion. As with the
univariate functions, tests can be based on the dis-
tribution of L̂12�t� (or K̂Ł

12�t�) at each distancet, or
on summary statistics such as max0<t�t0 jL̂12�t�� tj.
Determining critical values for a test of independence
is more difficult than in the univariate setting, since
inferences are conditional on the marginal structure
of each type of event [16]. This requires maintain-
ing the univariate spatial pattern of each process, but
breaking any dependence between them. If both uni-
variate spatial patterns can be described by parametric
models, then it is easy to estimate the critical val-
ues by simulating independent realizations of each
parametric spatial process.

The method of toroidal shifts provides a nonpara-
metric way to test independence when the study area
is rectangular. All the locations for one type of event
are displaced by a randomly chosen displacement
(X, Y). The study area is treated as a torus, so
the upper and lower edges are connected and the right
and left edges are connected.K̂Ł

12�t� and the desired
test statistics are computed from the randomly shifted
data. Random displacement and estimation of the test
statistic(s) are repeated a large number of times to
estimate critical values for the test statistic(s). In prac-
tice, the toroidal shift method appears to be sensitive
to the assumption that the multivariate spatial process
is stationary.

Under random labeling, K12�t� D K21�t� D
K11�t� D K22�t� D K�t�, i.e. all four bivariateK�t�
functions equal theK function for all events, ignoring
their labels (since each type of event is a random thin-
ning of all events). Departure from random labeling
can be examined using pairwise differences between
K functions. Each pairwise difference evaluates dif-
ferent biological effects.̂K11�t�� K̂22�t� evaluates
whether one type of event is more (or less) clus-
tered than the other. Diggle and Chetwynd [7] use this
to examinedisease clustering. K11�t�� KŁ

12�t� and
K22�t��KŁ

12�t� evaluate whether one type of event
tends to be surrounded by other events of the same
type. Gaines et al. [11] use this to examine spatial
segregation of waterbird foraging sites.

Inference is based either on Monte Carlo simula-
tion or a normal approximation. The appropriate sim-
ulation approach fixes the combined set of locations
and the number of each type of event, then randomly
assigns labels to locations. In general, the variance
of any of the three differences increases witht, so
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summary statistics should be based on the studentized
difference, e.g. maxt[jK̂11�t�� K̂22�t�j/sd�K̂11�t��
K̂22�t��]. The variance can be calculated givent, the
number of each type of point, and the spatial pattern
of the combined set of locations.

Example: Trees in a Swamp Hardwood
Forest

I will illustrate the use of Ripley’sK�t� functions to
examine spatial patterns using the data set described
in the entry onnearest neighbor methods. These
data are the locations of all 630 trees (stems larger
than 11.5 cm diameter at breast height) in a 1-ha
plot of swamp hardwood forest in South Carolina,
USA. These trees represent 13 species, but most (over
75%) are black gum,Nyssa sylvatica, water tupelo,
Nyssa aquatica, or bald cypress,Taxodium distichum.
Visually (Figure 1 in the entry onnearest neighbor
methods), most trees seem to be scattered randomly
throughout the plot, but cypress trees appear to be

clustered. Ripley’sK�t� functions provide a way
to summarize those spatial patterns, fit models to
describe the patterns, and compare the patterns of
different species.

The spatial pattern of all 630 trees and the spatial
pattern of the 91 cypress trees can be described
using univariateK�t� statistics. Because the plot is
50 mð 200 m, K�t� is estimated for distances up
to 35 m in 1 m increments.̂K�t� for all trees lies
above the expected value of
t2 for all distances
between 1 and 10 m, but the large range of theY axis
makes it difficult to see the effects (Figure 1a). The
patterns are much clearer in the plot ofL�t�� t vs.
distance (Figure 1b). There is evidence of weak, but
statistically significant, clustering of trees at distances
up to 17 m. L̂�t�� t lies above the upper 97.5%
quantile for all distances up to 17 m and above the
expected value of 0 for all distances up to 35 m.

Although the deviation from complete spatial
randomness is statistically significant, its magnitude
is small. A biologically relevant summary of the
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Figure 1 K�t� and L�t� plots for swamp trees. (a) Plot of̂K�t� vs. distance up to 10 m for all 630 trees. (b) Plot of
L̂�t�� t for all 630 trees. Solid horizontal line provides a reference forL�t� under complete spatial randomness. Dashed
lines are 0.025 and 0.975 quantiles ofL�t�� t estimated from 999 simulations. (c) Plot ofL̂�t�� t for 91 cypress trees. Line
markings are the same as in (b). (d) Plot ofL̂�t�� t for 91 cypress trees fit to a Neyman–Scott process (6). Solid horizontal
line provides a reference under complete spatial randomness. Dotted line isL�t�� t using the estimated parameters. Dashed
lines are the 0.025 and 0.975 quantiles ofL�t�� t estimated from 999 simulations of a Neyman–Scott process
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clustering is to compute the proportion of excess trees
in a specified circle around a randomly chosen tree.
This is estimated bŷK�t�/E[K̂�t�] � 1 at a specific
distance t. For all trees, this proportion is small
(5.6%) for 6-m radius circles.

For cypress trees, the plot of theirL̂�t�� t (Fig-
ure 1c) indicates two different departures from ran-
domness. At very short distances (less than or equal
to 2 m), L̂�t�� t is less than 0, indicating spatial
regularity. At longer distances (greater than or equal
to 3 m), L̂�t�� t is larger than 0, indicating spa-
tial clustering. The observed̂L�t�� t curve is much
larger than the pointwise 0.975 quantiles for distances
from 4 m to 27 m and both the maximum and mean
summary statistics are highly significant (P D 0.001).
This clustering represents a biologically large effect.
In a 6-m radius circle, each cypress tree is sur-
rounded by an estimated 88% more cypress trees than
expected if cypress trees were randomly distributed.

The larger-scale clustering pattern can be descri-
bed by fitting a Neyman–Scott process from (6) to
the locations. The Neyman–Scott process describes
a clustered set of locations in terms of an unknown
number of randomly distributed ‘mothers’, each with
a random number of ‘daughters’ distributed around
the ‘mother’. Parameters are estimated by minimizing
the loss function given in (10) for distances from
5 m to 35 m. (I excluded shorter distances because I
was uninterested in the small-scale spatial regularity.)
The choices of 5 m and 35 m are arbitrary, but
other reasonable values gave similar results. The
estimated parameters are the variance of daughter
locations, O�2 D 24.1 m2, and the density of mothers,
O� D 0.0034. The fittedK�t� function is very close
to K̂�t� for distances larger than 5 m (Figure 1d).
Pointwise 95% confidence bounds for the fittedK�t�
function are computed by repeatedly simulating the
Neyman–Scott process using the estimatedO�2 and O�,
then estimating the 0.025 and 0.975 quantiles ofK̂�t�
at each distance. The observedK̂�t� curve falls well
inside the bounds except at 2 m. This deviation is
due to the small-scale regularity. It is possible to fit a
more complicated process that combines small-scale
regularity and larger-scale clustering, similar to the
more biologically detailed processes fit by Rathbun
and Cressie [22], but the theoreticalK�t� function
would have to be estimated by simulation [8].

Even though a Neyman–Scott process describes
the spatial pattern quite well, it is inappropriate here
to conclude that it is the mechanism responsible

for the clustering. Other mechanisms can lead to
exactly the same pattern [2]. The plot, like most
of the swamp, is not a homogeneous environment.
In particular, some areas are above the mean water
level, others are in shallow water, and still others
are in deep channels. Cypress are known to be most
successful in parts of the swamp with shallow to
moderately deep water. Other trees, e.g. black gum,
prefer drier areas. The clustering of cypress could
simply be a response to a heterogeneous environment;
this hypothesis could be tested if environmental data
such as water depth or elevation were available [21].

Patterns with small-scale regularity and large-scale
clustering are quite common for ecological data,
especially when individuals are large, as cypress trees
can be. Diameter at breast height for the 91 cypress
trees in the plot ranges from 15 cm to 180 cm, with
a median of 105 cm. It is physically impossible for
two median-sized cypress trees to be closer than
1 m. However, this small-scale separation of stems
occurs in conjunction with a larger-scale clustering of
individuals into patches. TheK�t� andL�t� statistics
provide evidence of both ecological processes.

Visually, cypress and black gum trees appear to be
spatially segregated, i.e. cypress tend to be found in
patches of mostly cypress and black gum tend to be
found in patches of mostly black gum. This pattern
can be described and evaluated using the bivariate
K statistics. I will use the subscript C to represent
cypress patterns and the subscript G to represent
black gum patterns. As described above, two dif-
ferent hypotheses (random labeling and independent
processes) could be used to describe the absence of
dependence between cypress and black gum.

Under random labeling,KCC�t� D KCG�t� D
KGG�t�. If cypress trees tend to occur in patches
of other cypress trees, thenKCC > KCG, while if
black gums tend to occur in patches of other black
gums,KGG > KGC. Each species can be evaluated by
estimating differences ofK functions and their uncer-
tainty under random labeling. The plot of̂KCC�t��
K̂Ł

CG�t� is above zero and well outside the 95% quan-
tiles for all distances larger than 3 m (Figure 2a).
The plot of K̂GG�t�� K̂Ł

CG�t� is above zero for all
distances larger than 2 m and well outside the 95%
quantiles for all distances larger than 3 m (Figure 2b).
Summary statistics combining tests at all distances
are highly significant (P < 0.001). These two species
are not randomly labeled; instead, both are spatially
segregated.
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Figure 2 Bivariate K�t� plots to evaluate the spatial relationship between cypress and black gum trees. (a) Plot of
K̂CC�t�� K̂CG�t� for cypress trees. Solid horizontal line at 0 provides a reference for random labeling. Dotted lines are
0.025 and 0.975 quantiles ofL�t�� t estimated from 999 random relabelings. (b) Plot ofK̂GG�t�� K̂CG�t� for black gum
trees. Solid horizontal line at 0 provides a reference for random labeling. Dotted lines are 0.025 and 0.975 quantiles of
L�t�� t estimated from 999 random relabelings. (c) Plot ofL̂CG�t�� t for cypress and black gum trees. Solid horizontal
line at 0 provides a reference for independence of the two spatial processes. Dotted lines are 0.025 and 0.975 quantiles
of L�t�� t estimated from 999 random toroidal shifts. (d) Comparison of 0.025 and 0.975 quantiles computed by random
labeling (dotted lines) and random toroidal shifts (dashed lines)

The two sets of locations are also not spatially
independent. If they were, thenKCG�t� D 
t2 at all
distances,t. As with univariate tests of randomness,
it is easier to visualize patterns in the equivalent
L̂CG�t�� t plot (Figure 2c). For cypress and black
gum, L̂CG�t�� t is less than 0 for all distances and
below the lower 0.025 quantile for most distances
larger than 3 m (Figure 2c). The number of black gum
trees in the neighborhood of cypress (or equivalently
the number of cypress trees in the neighborhood of
black gums) is less than expected. The observed
value of L̂CG�t�� t under toroidal rotation is not
as extreme a value as those seen under random
labeling. The pointwise two-sidedP values for the
test of independence range from 0.002 to 0.082 for
distances from 3 m to 35 m. The conclusion available
here is that the spatial pattern of cypress trees is not
independent of the black gum spatial pattern.

The hypotheses of independent processes and
random labeling are not equivalent. However, when
both hypotheses are appropriate, which test is the
more powerful? A detailed comparison has not been
made, but it is possible to compare distributions of
K̂Ł

CG�t� using specific data sets.̂KŁ
CG�t� for random

labeling is less variable than̂KŁ
CG�t� for toroidal

rotation. This is illustrated using the 0.025 and 0.975
quantiles ofK̂Ł

CG�t� (Figure 2d). The random labeling
quantiles are considerably less extreme than the
toroidal rotation quantiles.
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