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R| pl ey’ S K funCti on processes with the san&gr) function may have dif-

ferent nearest-neighbor distribution functior@(z),
and vice versak (r) is also closely related to the pair
Ripley's K(¢) function is a tool for analyzing com- correlation function,g(r) [30, p. 249]. Stoyan and
pletely mapped spatial point process dae (Point Penttinen [29] summarize the relationships between
processes, spatial), i.e. data on the locations of K(r) and other statistics for spatial point processes.
events. These are usually recorded in two dimensions, Although it is usual to assume stationarif(z)
but they may be locations along a line or in space.is interpretable for nonstationary processes because
Here | will only describeK (¢) for two-dimensional  K(r) is defined in terms of a randomly chosen event.
spatial data. Completely mapped data include thet is also customary to assume isotropy, i.e. that one
locations of all events in a predefined study area.unit of distance in the direction has the same effect
Ripley’s K () function can be used to summarize as one unit of distance in ti¢direction &ee Spatial
a point pattern, test hypotheses about the pattermanalysis in ecology). If the degree of anisotropy is
estimate parameters and fit models. Bivariate orknown, then the definition of the distancecan be
multivariate generalizations can be used to describedjusted.
relationships between two or more point patterns.
Applications include spatial patterns of trees [10, 20,
29], herbaceous plants [28], bird nests [11] and dis-M odels for K (t)
ease cases [7]. Details of various theoretical aspects
of K(t) are in books by Ripley [26], Diggle [6], For many point processes the expectation in the
Cressie [4], Stoyan and Stoyan [30]. Examples ofhumerator of thek (¢) function in (1) can be analyt-
computation and interpretation can be found in thosecally evaluated, so th& (z) function can be written

books and also in Upton and Fingleton [32]. in closed form. The simplest, and most commonly
used, isK(r) for a homogeneoufoisson process,

also known agomplete spatial randomness (CSR):

Theoretical K (t) Function )
K@) =nt 2

The K function is .
A variety of processes can be used to model small-

K@) = A‘lE[number of extra events within scale regularity. Hard-core processes are those in
distancer of a randomly which events cannot occur within some minimum dis-
chosen event] (@8] tance of each other. In what is known asviatern

hard-core process [17, pp. 47—48], locations are non-

[23, 24], wherei. is the density (number per unit area) random thinning of a homogeneous Poisson process
of events. with intensity p. Any pair of events separated by less
K (1) describes characteristics of the point pro-than a critical distancé are deleted. The remaining

cesses at many distance scales. Alternative Summari@/ents are a realization of a hard-core process. The
(e.g. mean nearest-neighbor distance or the cumug ) function for this process is [4]

lative distribution function (cdf) of distance from X .
random points to their nearest neighbosse Near - _ o7
est neighbor methods) do not have this property. k@ = exp(—pmSZ)/o uk(ae) du ®)
Many ecological point patterns show a combination
of effects, e.g. clustering at large scales and regular
ity at small scales. The combination can be seen as
characteristic pattern in a plot of th&(r) function. 0, h<s

K(r) does not uniquely define the point pro- k(u) = {exp[—pV(h, 5], h>s (€]
cesses in the sense that two different processes can
have the same& (r) function [1, 15]. Also, while with V(k, §) as the area of intersection of two circles,
K(t) is related to the nearest-neighbor distribution each of radius, with centers separated by a distance
function [26, p. 158], the two functions describe k. A sequential variant of this hard-core process has
different aspects of a point process. In particular,a differentK(r) function [4, p. 670].

where k(u) describes the probability of retaining a
Qair of events separated by a distamce



2 Ripley’s K function

Soft-core processes are those where the number df edge effects are ignored, then the numerator can
neighbors within some critical distandeis smaller  be estimated by —1 > Z#il(d,-j < 1), whered;;
than expected under CSR, but the number is not zerds the distance between thth and jth points, and
One example is &trauss process [31], in which  I(x) is the indicator function with the value 1 ifis
a fraction, 1— y, of the events within the critical true and O otherwise. However, the boundaries of the
distancey, is deleted. An approximation to the(r) study area are usually arbitrarizdge effects arise

function for this process is [13] because points outside the boundary are not counted
5 in the numerator, even if they are within distance
K@) = { Vﬂzl ; ) O0<r<s$ (5)  of a point in the study area. Ignoring edge effects
e — (1 —pymss, =9 biases the estimatdk (¢), especially at large values

.
A variety of edge-corrected estimators have been
proposed. The most commonly used is due to

Events may also be spatially clustered. One procesgf
that generates clustered locations isleyman—Scott
process in two dimensions. ‘Parent’ events are a

realization of a homogeneou®oisson process with Ripley [23]:

intensity p. Each parent event, generates a random ~ fq _11dij < 1)
number of ‘offspring’ eventsV;, where N; has a K@) =2 Zzw(livlj) —nN  ®
Poisson distribution with meam. The locations of ioj#

the offspring, relative to the parent individual, have a pg above,; is the distance between ttin and jth
bivariate Gaussian distribution with zero means andsgints, andi(x) is the indicator function. The weight

variances?I. When locations of the parent events are function, w(l;, 1), provides the edge correction. It

ignored, locations of the clustered offspring eventspas the value of 1 when the circle centered,and

are a reahzat!on of a _Neyman—S_cott process [19]passing through the point (i.e. with a radius ofl; )

The K(z) function for this process is [6] is completely inside the study area. If part of the cir-
cle falls outside the study area (i.e.df; is larger

[1 — exp—1/402)] (6)  than the distance frony tg at Ieagt onej boundgary),

p thenw(l;, [;) is the proportion of the circumference

A general Poisson cluster process has arbitrary distri®f that circle that falls in the study area. The effects
butions for the number of offspring per paréitand ~ ©f €dge corrections are more important for lange

the distance between offspring from the same parenlpecause large circles are more likely to _be outside
F(t). K(t) for this process is the study area. Other edge-corrected estimators and

their properties are summarized in [4, pp. 616-618]
2., EINN — DIF (1) e and [30, pp. 279-284]. Althougki (r) can be deter-
o> mined for anyz, it is common practice to consider

only ¢ less than one-half the shortest dimension of

where is the mean number of offspring per parent. e study area, if the study area is approximately rect-
K (¢) functions can also be written for other clustered angular, orr < (A/2)%2, whereA is the area of the

and regular processes; see [4, pp. 650-695], [6, pPstudy region.
46-69], or [30, pp. 307-334] for details. K(r) is easy to compute, except perhaps for the
geometric aspects of the edge corrections. Edge-
. . corrected estimators are available in at least three
Estimating K (t) S-PLUS libraries (Splancs [27], Spatial [33] and
d SH+SPATIALSTATS [14]) and at least oneSAS
macro is available [18].

K(t) = nt? +

K(t) =mt

Given the locations of all events within a define
study area, how caki(r) be estimatedX (¢) is a ratio
of a numerator and the density of eventsThe den-
sity can be estimated a@s= N/A, whereN is the Evaluating Spatial Models

observed number of points andis the area of the

study region. It is customary to condition @, so  The simplest use of Ripley'X(r) function is to

the uncertainty irk. can be ignored, although uncondi- test CSR, i.e. test whether the observed events are
tionally unbiased estimators have been suggested [9Fonsistent with a homogeneo®wisson process. If
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S0, thenK([) — 771‘2 for all 7. In practice, it is easier bounds for the fitted model can be estimated by sim-

to useL(r) = [K(t)/7]*? and its estimator: ulating 39 realizations of the spatial pattern, then
R R computing the minimum and maximum values of
L) = [K(t)/n]Y? (9)  K(r) at a set ofr values. If a one-sided bound is

N desired, then it can obtained as the maximum (or min-
because var|(r)] is approximately constant under jmym) from 19 simulations. The sampling uncertainty
CSR [25]. Under CSRL(r) =t. Deviations from ijn these bounds can be reduced by increasing the
the expected value at each distance,are used number of simulations and calculating the appropriate
to construct tests of CSR. One approach is to teshuantiles ofK (¢) for each value of. This approach
L(1) — 1 = 0 at each distance, Another is to com-  tends to overstate the confidence in the fit, since the
bine information from a Set of dlStanceS into a fit is evaluated usmg the same data and loss func-

single test statistic, such s, =SUR|L(t) — 1] Of  tion that were used to estimate the parameters [30,
Ly = =>, IL(t) — 1]. Critical values can be computed p. 305].

by Monte Carlo simulation [3] e Simulation
and Monte Carlo methods) or approximated. For
L., approximate 5% and 1% critical values are K (t) Functions for Multivariate Spatial
1.42,/A/N and 168VA/N [25]. Patterns

More complicated spatial processes — e.g. a
Neyman—Scott process (6) or a Strauss process (5) The previous analyses considered only the location
can be tested by similar comparisons, if all the param-0f an event; they ignored any other information about
eters of that process are known. Usually, parametethat event. Many point patterns include biologically
values for more complicated spatial processes are ndbteresting information about each point, e.g. species
known a priori and must be estimated. One reasonabléentifiers (if the points include more than one type of
approach is to find the valugsthat minimize a dis-  species), whether the individual survived or died (for

crepancy measure between the obse®éd and the ~ spatial patterns of trees or other plants), and whether a
theoreticalk (, 6). Diggle [6] suggest§é°[f((r)0<25 — location is a disease case or a randomly selected con-

K(1)°25]2 dr, which can be approximated by trol. Such data are examples of multivariate spatial
point patterns, which are forms of marked point pat-
D®) =Y [K0**® K. 0*®)> (10) tems that have a small number of discrete marks. In
the previous examples the marks are the species iden-
tifier, the fate (live or dead) or the disease status (case
or control), respectively. The univariate methods in
the previous section can be used to analyze or model
the spatial pattern of all individuals (ignoring the
marks) or the separate patterns in each type of mark.

where the sum is over a subset of values bétween

0 andzg. The exponent of 0.25 is chosen empirically
to give reasonable results for a variety of random
and aggregated patterns [6, p. 74]. The upper limit,

fo, Is chosen to span the biologically important Spat'alMany biological questions concern the relationships

scales. Large values of relative to the size of the
between marks, however, for which the multivariate
study area should be avoided because of the large
methods described in this section are needed.

e e ote- NG The enralzation ok (1 fo mor tan one ype
pp P of point (a multivariate spatial point process) is

K (¢) cannot be written in closed form, so long as the

process can be simulated [8]. o Kij(t) = A‘lE [number of typej events within
Diagnostics for fitted models include estimation distancer of a randomly chosen
of residuals [4, pp. 656—-657] or comparison with typei event] (12)

simulated datasee Regression diagnostics). Given
estimates of the parameters and an algorithm to simwWhen there areg types of events, there arg?k

ulate data from a particular spatial proceﬁ%z) can functions, Ki11(t), K12(t), ..., K1g(1), K21(9), ...,
be determined for a set of simulated realizations.K,(), ..., Kge(2). It is helpful to distinguish the

If the fitted model is reasonable, then the observedcrossX functlons K;j(t), where i# j, from the
K () function should be similar to th&(¢) from the  self-K functions, K;(?). Analytical expressions for
simulated data. Two-sided 95% pointwise confidencek;;(+) are known for various multivariate point
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processes; see [4, pp. 699-707] or [6 pp. 90—103]attraction between the two processes at distance
Estimators of each bivariat&;;(r) function are values less than O indicate repulsion. As with the
similar to estimators of univariat& () functions. univariate functions, tests can be based on the dis-
If edge corrections are not needed, th@nj(t) = tribution of L12(1) (or IA(TZ(:)) at each distance or
(LirjA) LY I, j, < 1), whered,, j, is the  on summary statistics such as max;, [L12(1) — I.
distance between theth location of typei and the  Determining critical values for a test of independence
Ith location of typej and A is the area of the study is more difficult than in the univariate setting, since
region. Various edge corrections have been suggestedhferences are conditional on the marginal structure
one common example is the extension of Ripley’'sof each type of event [16]. This requires maintain-

estimator [12]: ing the univariate spatial pattern of each process, but
R o breaking any dependence between them. If both uni-

Kij(t) = (kiij)fl Z Z w(ig, jI(di,,j, <1) variate spatial patterns can be described by parametric
ko1 models, then it is easy to estimate the critical val-

(12) ues by simulating independent realizations of each
parametric spatial process.
wherew(ig, j;) is the fraction of the circumference ~ The method of toroidal shifts provides a nonpara-
of a circle centered at théth location of process  metric way to test independence when the study area
with radiusd;, j, that lies inside the study area. is rectangular. All the locations for one type of event
If the spatial process is stationary, then corre-are displaced by a randomly chosen displacement
sponding pairs of crosk- functions are equal, i.e. (AX, AY). The study area is treated as a torus, so
K1o(t) = K21(1) and K;;(r) = K;(t). When edge the upper and lower edges are connected and the right
corrections are used, théfy;(r) andK j;(r) are posi- ~and left edges are connecteidh,(r) and the desired
tively correlated but not equal. This suggests the usdest statistics are computed from the randomly shifted
of a more efficient estimatoxK;"j(t) — [5\].1?1.].(,) + datg. Random displacement and estimation of_the test
iil?ji(t)]/(ii + ij) [16], although other linear com- statistic(s) are repeated a large number of times to

oo - = estimate critical values for the test statistic(s). In prac-
inations ofK; ; ndk j;(t) may have even smaller ) : "
\?ar?atr?ces ofK;(r) andK ji(r) may have even smalle tice, the toroidal shift method appears to be sensitive

Questions about the relationship between two spa;[o the _assumptlon that the multivariate spatial process
. . : is stationary.
tial processes can be asked in two different ways. .

. L Under random labeling, K12(t) = K21(t) =
The independence approach [16] conditions on the . o

. K11(t) = K22(t) = K(¢), i.e. all four bivariateK (¢)
marginal structure of each process and asks que unctions equal th& function for all events, ignorin
tions about the interaction between the two pro- q 19 9

cesses. The random labeling approach [5] conditionsthe'r labels (since each type of event is a random thin-

. : ing of all events). Departure from random labeling
on the observed locations and asks questions abou . . o .

. ; - can be examined using pairwise differences between
the process that assigns labels to points. The dis- . 2 . .
Lo . K functions. Each pairwise difference evaluates dif-
tinction between independence and random labels : . = =
) . . ferent biological effectsK11(r) — K22(¢) evaluates
ing of two spatial processes requires some care

and consideration. When there is no relationshipVVhe’[he'r one type of event is more (or less) clus-
between the two processes, the two approaches le tered than the other. Diggle and Chetwynd [7] use this

. 48 examinedisease clustering. K11(1) — K*.(t) and
to different expected values of the crassfunc- 9. K11(1) 12()

. . . K2o(t) — K7,(t) evaluate whether one type of event
g(r):(’:eg&rzgs)’ and to different nonparametric test .\ 1, e’ surrounded by other events of the same

i L type. Gaines et al. [11] use this to examine spatial
Under independence, the cross-typdunction is . ; . .
’ A .~ segregation of waterbird foraging sites.
K12(t) = nt?, regardless of the individual univari- greg ging

; tial patt f the t i ; ts. It Inference is based either on Monte Carlo simula-
ate spatial patierns ot tne two types ot eVenls. o, or 5 normal approximation. The appropriate sim-
is easier to work with the correspondldqj(t) =

. 12 ) : ulation approach fixes the combined set of locations
[K7;(0)/7]7/= function, because the variance Of and the number of each type of event, then randomly
Li,(t) is approximately constant. Under indepen- assigns labels to locations. In general, the variance
dence,L],(t) = t. Values onlz(t) —t> 0 indicate of any of the three differences increases withso
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summary statistics should be based on the studentizedustered. Ripley’sK(s) functions provide a way
difference, e.g. makiK11(t) — K22(1)|/SA(K11(t) — to summarize those spatial patterns, fit models to
K2o(1))]. The variance can be calculated giverthe  describe the patterns, and compare the patterns of
number of each type of point, and the spatial patterndifferent species.
of the combined set of locations. The spatial pattern of all 630 trees and the spatial
pattern of the 91 cypress trees can be described
Example: Treesin a Swamp Hardwood using univariateK(t)_ statis_tics. Becausg the plot is
Forest 50 mx 2Q0 m, K(f) is estlmAated for dlstance§ up
to 35m in 1 m incrementsK(¢) for all trees lies

| will illustrate the use of Ripley'sk(+) functions to  @bove the expected value afi® for all distances
examine spatial patterns using the data set describe@etween 1 and 10 m, but the large range ofhexis

in the entry onnearest neighbor methods. These makes it difficult to see the effects (Figure 1a). The
data are the locations of all 630 trees (stems largepatterns are much clearer in the plotfof) — 7 vs.
than 11.5cm diameter at breast height) in a 1-hadistance (Figure 1b). There is evidence of weak, but
plot of swamp hardwood forest in South Carolina, statistically significant, clustering of trees at distances
USA. These trees represent 13 species, but most (ovetp to 17m.L(t) —¢ lies above the upper 97.5%
75%) are black gumyssa sylvatica, water tupelo, quantile for all distances up to 17m and above the
Nyssa aquatica, or bald cypressTaxodium distichum. expected value of 0 for all distances up to 35m.
Visually (Figure 1 in the entry omearest neighbor Although the deviation from complete spatial
methods), most trees seem to be scattered randomlyrandomness is statistically significant, its magnitude
throughout the plot, but cypress trees appear to bés small. A biologically relevant summary of the
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Figure 1 K(t) and L(z) plots for swamp trees. (a) Plot & (1) vs. distance up to 10m for all 630 trees. (b) Plot of
L(t) —t for all 630 trees. Solid horizontal line provides a referencelfo) under complete spatial randomness. Dashed
lines are 0.025 and 0.975 quantilesef) — ¢ estimated from 999 simulations. (c) Plotioft) — ¢ for 91 cypress trees. Line
markings are the same as in (b). (d) PlotLef) — ¢ for 91 cypress trees fit to a Neyman—Scott process (6). Solid horizontal
line provides a reference under complete spatial randomness. Dotted lit¢ is¢ using the estimated parameters. Dashed
lines are the 0.025 and 0.975 quantiles.¢f) — ¢ estimated from 999 simulations of a Neyman—Scott process
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clustering is to compute the proportion of excess treedor the clustering. Other mechanisms can lead to
in a specified circle around a randomly chosen treeexactly the same pattern [2]. The plot, like most
This is estimated by (1)/E[K(1)] — 1 at a specific of the swamp, is not a homogeneous environment.
distancer. For all trees, this proportion is small In particular, some areas are above the mean water
(5.6%) for 6-m radius circles. level, others are in shallow water, and still others
For cypress trees, the plot of theixr) — ¢ (Fig-  are in deep channels. Cypress are known to be most
ure 1c) indicates two different departures from ran-successful in parts of the swamp with shallow to
domness. At very short distances (less than or equahoderately deep water. Other trees, e.g. black gum,
to 2m), L(t) — ¢ is less than 0, indicating spatial prefer drier areas. The clustering of cypress could
regularity. At longer distances (greater than or equalsimply be a response to a heterogeneous environment;
to 3m), L(r) —t is larger than O, indicating spa- this hypothesis could be tested if environmental data
tial clustering. The observel(r) — ¢ curve is much  such as water depth or elevation were available [21].
larger than the pointwise 0.975 quantiles for distances Patterns with small-scale regularity and large-scale
from 4m to 27 m and both the maximum and meanclustering are quite common for ecological data,
summary statistics are highly significamt £ 0.001).  especially when individuals are large, as cypress trees
This clustering represents a biologically large effect.can be. Diameter at breast height for the 91 cypress
In a 6-m radius circle, each cypress tree is sur-trees in the plot ranges from 15cm to 180 cm, with
rounded by an estimated 88% more cypress trees thaa median of 105cm. It is physically impossible for
expected if cypress trees were randomly distributed.two median-sized cypress trees to be closer than
The larger-scale clustering pattern can be descrii m. However, this small-scale separation of stems
bed by fitting a Neyman—Scott process from (6) to occurs in conjunction with a larger-scale clustering of
the locations. The Neyman—Scott process describemdividuals into patches. Th& () and L(¢) statistics
a clustered set of locations in terms of an unknownprovide evidence of both ecological processes.
number of randomly distributed ‘mothers’, each with  Visually, cypress and black gum trees appear to be
a random number of ‘daughters’ distributed aroundspatially segregated, i.e. cypress tend to be found in
the ‘mother’. Parameters are estimated by minimizingpatches of mostly cypress and black gum tend to be
the loss function given in (10) for distances from found in patches of mostly black gum. This pattern
5m to 35m. (I excluded shorter distances because tan be described and evaluated using the bivariate
was uninterested in the small-scale spatial regularity.)X statistics. | will use the subscript C to represent
The choices of 5m and 35m are arbitrary, butcypress patterns and the subscript G to represent
other reasonable values gave similar results. Thélack gum patterns. As described above, two dif-
estimated parameters are the variance of daughtderent hypotheses (random labeling and independent
locations,52 = 24.1m?, and the density of mothers, processes) could be used to describe the absence of
p = 0.0034. The fittedK (¢) function is very close dependence between cypress and black gum.
to K(¢) for distances larger than 5m (Figure 1d). Under random labeling, Kcc(t) = Kcg(t) =
Pointwise 95% confidence bounds for the fitied) Kgg(). If cypress trees tend to occur in patches
function are computed by repeatedly simulating theof other cypress trees, thekicc > Kcg, while if
Neyman—Scott process using the estimatéend 5, black gums tend to occur in patches of other black
then estimating the 0.025 and 0.975 quantile of gums.Kgg > Kgc. Each species can be evaluated by
at each distance. The observEd) curve falls well estimating differences df functions and their uncer-
inside the bounds except at 2m. This deviation istainty under random labeling. The plot &fcc(r) —
due to the small-scale regularity. It is possible to fit aIA(”éG(t) is above zero and well outside the 95% quan-
more complicated process that combines small-scaléles for all distances larger than 3m (Figure 2a).
regularity and larger-scale clustering, similar to the The plot of Kgg(r) — IA("éG(t) is above zero for all
more biologically detailed processes fit by Rathbundistances larger than 2m and well outside the 95%
and Cressie [22], but the theoretickl(r) function  quantiles for all distances larger than 3 m (Figure 2b).
would have to be estimated by simulation [8]. Summary statistics combining tests at all distances
Even though a Neyman-—Scott process describeare highly significant® < 0.001). These two species
the spatial pattern quite well, it is inappropriate hereare not randomly labeled; instead, both are spatially
to conclude that it is the mechanism responsiblesegregated.
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Figure 2 Bivariate K(¢) plots to evaluate the spatial relationship between cypress and black gum trees. (a) Plot of
Kcc(t) — Kca(t) for cypress trees. Solid horizontal line at O provides a reference for random labeling. Dotted lines are
0.025 and 0.975 quantiles &fr) — r estimated from 999 random relabelings. (b) Plo&e{s(r) — Kcg(t) for black gum

trees. Solid horizontal line at 0 provides a reference for random labeling. Dotted lines are 0.025 and 0.975 quantiles of
L(t) — ¢ estimated from 999 random relabelings. (c) PlotLet(¢) — ¢ for cypress and black gum trees. Solid horizontal

line at O provides a reference for independence of the two spatial processes. Dotted lines are 0.025 and 0.975 quantiles
of L(t) — ¢ estimated from 999 random toroidal shifts. (d) Comparison of 0.025 and 0.975 quantiles computed by random
labeling (dotted lines) and random toroidal shifts (dashed lines)

The two sets of locations are also not spatially The hypotheses of independent processes and
independent. If they were, theficg(r) = 772 at all  random labeling are not equivalent. However, when
distancest. As with univariate tests of randomness, both hypotheses are appropriate, which test is the
it is easier to visualize patterns in the equivalentmore powerful? A detailed comparison has not been
LCG(t) —t plot (Figure 2c). For cypress and black made, but it is possible to compare distributions of
gum, Lea(t) — 1 is less than O for all distances and K&g(r) using specific data set& (1) for random
below the lower 0.025 quantile for most dlstanceslabellng is less variable thai’s G(t) for toroidal
larger than 3 m (Figure 2c). The number of black gumrotation. This is illustrated using the 0.025 and 0.975
trees in the neighborhood of cypress (or equivalentlyquantiles oK &) (Figure 2d). The random labeling
the number of cypress trees in the neighborhood ofiuantiles are considerably less extreme than the
black gums) is less than expected. The observedoroidal rotation quantiles.
value of Lcg(t) — ¢ under toroidal rotation is not
as extreme a value as those seen under randorReferences
labeling. The pointwise two-side#t values for the
test of independence range from 0.002 to 0.082 for
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