Corrction on k-regular trees. A k-regular infinite tree is a tree where all vertices have degree k. An infinite k-regular tree is similar to a $(k - 1)$-branching tree where all but 1 vertex have degree k.

Figure 1: 3-regular tree vs 2-branching tree

1 Executive Summary

We have continued with a review on the bond percolation and the introduced the coupling of the bond percolation process, then defined the critical phenomenon and the percolation probability. There is a theorem about the percolation probability is a non decreasing function and we bounded it between 1/3 and 2/3 for the two dimensional case.

2 Bond Percolation

2.1 Preliminaries

We have defined $\mathbb{L} = (\mathbb{Z}^2, E)$ where edges exist between all vertex pairs with distance 1. Let $0 \leq p \leq 1$ and $q = 1 - p$. Denote each edge in E to be open with probability p and closed with probability q. We consider the following probability space: As sample space we take

$$\Omega = \prod_{e \in E} \{0, 1\},$$

points of which are represented as $\omega = (\omega(e) : e \in E)$ and called configurations; the value $\omega(e) = 0$ corresponds e being closed, and $\omega(e) = 1$ corresponds to e being open. We take \mathcal{F} to be the σ-field of subsets of Ω generated by the finite-dimensional cylinders (since Ω is a discrete product topology). Finally we take the product measure with density p on (Ω, \mathcal{F}); this is the measure

$$\mathbb{P}_p = \prod_{e \in E} \mu_e,$$
where μ_e is the Bernoulli measure on $\{0, 1\}$ given by

$$
\mu_e(\omega(e) = 0) = q, \quad \mu_e(\omega(e) = 1) = p.
$$

We drop the subscript p from P_p. Similarly, E is the shortcut for the corresponding expectation operator E_p.

There is a natural partial order on the set Ω of configurations, given by $\omega_1 \leq \omega_2$ iff $\omega_1(e) \leq \omega_2(e)$ for all $e \in E$.

There is a one-to-one correspondence between Ω and the set of subsets of E. For $\omega \in \Omega$, we define

$$
K(\omega) \triangleq \{ e \in E : \omega(e) = 1 \};
$$

thus $K(\omega)$ is the set of open edges of the lattice when the configuration is ω. Clearly, $\omega_1 \leq \omega_2$ iff $K(\omega_1) \subseteq K(\omega_2)$.

Coupling of bond percolation processes. Suppose that $(X(e) : e \in E)$ is a family of independent RVs indexed by the edge set E, where each $X(e)$ is uniform on $[0, 1]$. We may couple all bond percolation processes on L as p ranges over the interval $[0, 1]$ as follows: Define $\eta_p \in \Omega$ by

$$
\eta_p(e) = \begin{cases}
1 & \text{if } X(e) < p \\
0 & \text{if } X(e) \geq p.
\end{cases}
$$

We say that the edge e is p-open if $\eta_p(e) = 1$. The random vector η_p has independent components and marginal distributions given by

$$
P(\eta_p(e) = 0) = 1 - p, \quad P(\eta_p(e) = 1) = p.
$$

Clearly $\eta_{p_1} \leq \eta_{p_2}$ whenever $p_1 \leq p_2$. Generally, as p increases, the configuration η_p runs through typical configurations of percolation processes with all edge probabilities.

Considering the random subgraph of L containing all vertices but only the open edges, we denote the connected components as *open clusters*. We write G_p for the random graph and $C(x)$ for the set of vertices in the cluster containing x.

2.2 The Critical Phenomenon

We have defined the *percolation probability*:

Let $C \triangleq C(o)$. The percolation probability $\theta(p)$ is

$$
\theta(p) \triangleq P(|C| = \infty) = 1 - \sum_{k=1}^{\infty} P(|C| = k).
$$

Clearly θ is a non-decreasing function of p with $\theta(0) = 0$ and $\theta(1) = 1$. It is fundamental to percolation theory that there exists a critical value p_c of p such that

$$
\theta(p) \begin{cases}
= 0 & \text{if } p < p_c \\
> 0 & \text{if } p > p_c.
\end{cases}
$$

2
p_c is called the *critical probability* defined by

$$p_c = \sup \{ p : \theta(p) = 0 \}.$$

We use $p_c(d)$ to denote the critical probability in d-dimensional lattices.

What is $p_c(1)$? Clearly $p_c(1) = 1$.

Generally it is apparent that $\theta_d(p)$ is non-decreasing in d since if the origin belongs to an infinite open cluster in \mathbb{L}^d it also belongs to an infinite open cluster in the “augmented” lattice \mathbb{L}^{d+1}. So

$$p_c(d + 1) \leq p_c(d), \quad d \geq 1.$$

It is known that $\theta_d(p)$ is continuous except possibly at $p = p_c$. For $3 \leq d \leq 19$, the possibility of a discontinuity at $p_c(d)$ has not been ruled out.

Theorem 1 If $d \geq 2$, then $0 < p_c(d) < 1$.

Theorem 2 The probability $\psi(p)$ that there exists an infinite open cluster in the graph is

$$\psi(p) = \begin{cases}
0 & \text{if } \theta(p) = 0 \\
1 & \text{if } \theta(p) > 0.
\end{cases}$$

This will be proved by an application of the zero-one law. Note that is does not tell how many infinite open clusters there are (but whenever it exists it will almost surely be unique).

Theorem 3 When $0 < p_1 < p_2 < 1$, we have that $\theta(p_1) \leq \theta(p_2)$.

Proof: Let

$$p_1 = p_2 \frac{p_1}{p_2},$$

where $p_1/p_2 < 1$. Take a realization of G_{p_2} and delete each edge independently with probability $1 - p_1/p_2$. The resulting graph is a realization of G_{p_1} that contains less edges than G_{p_2}. So if there is an infinite cluster in G_{p_1}, then there must also be one in G_{p_2}. \hfill \Box

Back to the two-dimensional case:

Theorem 4 There exists a $1/3 \leq p_c \leq 2/3$ such that $\theta(p) = 0$ for $p < p_c$ and $\theta(p) > 0$ for $p > p_c$.

Beginning of proof:

First, we show that for $p < 1/3$, $\theta(p) = 0$. Let $\sigma(n)$ denote the number of self-avoiding (consisting of distinct vertices and edges) paths of length n in \mathbb{L} starting at the origin. $\sigma(n)$ is unknown but a simple bound is

$$\sigma(n) \leq 4 \cdot 3^{n-1}$$

since at each step there are 3 choices of directions, except for the first step where there are 4. Note that this is a loose upper bound because we only avoid returning to itself at the first step.
Now let the RV $N(n)$ be the number of open path of length n in the random grid. Any such path is open with probability p^n, so
$$\mathbb{E}N(n) = p^n \sigma(n).$$

Now, if the origin belongs to an infinite open cluster, then for each n there must exist at least one open path of length n starting at o, so that
$$\theta(p) \leq \mathbb{P}(N(n) \geq 1) \leq \mathbb{E}N(n) = p^n \sigma(n) \quad \forall n.$$
Hence
$$\theta(p) \leq p^n 4 \cdot 3^{n-1} \quad \forall n$$

So by choosing $p < 1/3$ and letting $n \to \infty$ we have proven the first part.

The second part is to show that for $p > 2/3$, $\theta(p) > 0$. This part is based on a counting argument known as Peierls' argument [Sir Rudolf Ernst Peierls; 1936 paper on ferromagnetism in Ising models]. We need the concept of a dual lattice. The dual lattice to L is the lattice where a vertex is put in the center of each cell in the original lattice, i.e., the translated lattice by $(1/2,1/2)$.

We can also construct a dual to the random lattice by declaring edges to be closed if they cross a closed edge of the original lattice, and open if they cross an open edge of the original lattice:

![Dual Lattice and Realization](image)

Figure 2: dual lattice and realization of a dual lattice

A circuit is a closed path (start and end vertex are the same; all vertices have degree 2). Note that any finite connected component in the random grid is surrounded by a closed circuit in the dual random grid. So the event $|C| < \infty$ is the equivalent to the event that o lies inside a closed circuit in the dual random grid.

Now consider first some deterministic quantities. Let C denote the set of all circuits in the dual lattice that contain the origin o, and let $C_k \subset C$ be the subset of circuits that surround a box of size k centered at o. Let $\rho(n)$ be the number of circuits of length n of the dual lattice that surround the origin. This deterministic quantity satisfies
$$\rho(n) \leq n \sigma(n-1),$$

since any circuit of length n surrounding the origin contains a path of length $n - 1$ starting at some point $x = (k + 1/2,1/2)$ for some $0 \leq k < n$.

4