1 Executive Summary

We started with an introduction to the notion of percolation over random graphs with a 2-D lattice as an example. We then studied branching processes over random trees and proved conditions under which such a process continues forever with positive probability. Finally, we defined the probability space of a random graph over a 2-D lattice.

2 Introduction to Percolation

Consider the graph formed by a 2-D lattice $\mathbb{L} \triangleq G(V, E)$ with vertex set $V = \mathbb{Z}^2$ and edge set $E = \{(x, y) \in V^2 : ||x - y|| = 1\}$.

We derive a random graph as follows: each edge in \mathbb{L} exists with probability p. Such edges are said to be open. This gives rise to the bond percolation model. Alternatively, if we randomly retain vertices instead of edges, we have the site percolation model.

![Figure 1: Bond percolation on \mathbb{L}](image)

![Figure 2: Site percolation on \mathbb{L}](image)

Definition 1 A connected component of a random graph is a maximal set of vertices and edges such that for any two vertices x, y in the set, there exists an alternating set of distinct vertices and edges that starts with x and ends with y.

We often refer to a connected component as simply a component – then, x and y are in the same component if we can “walk” from x to y. We denote the set of vertices in the component that contains a vertex x by $C(x)$.

Definition 2 Let $C = C(0)$. Then, the percolation probability $\theta(p)$ is defined as the probability that the origin is part of an infinite component, i.e.,

$$\theta(p) \triangleq \mathbb{P}(|C| = \infty) = 1 - \sum_{k=1}^{\infty} \mathbb{P}(|C| = k)$$ \hspace{1cm} (1)
It may be shown that $\theta(p)$ is a non-decreasing function of p with $\theta(0) = 0$ and $\theta(1) = 1$. Further, it turns out that

$$\theta(p) = \begin{cases} 0, & \text{for } p < p_c, \\ > 0, & \text{for } p > p_c, \end{cases}$$

for some critical probability p_c. For the 2-D lattice L, $p_c = 1/2$.

3 Random Trees

3.1 Branching Processes

A branching process results in a rooted tree wherein each node at a particular level or generation is connected to a random number of “child” nodes of the next generation. Specifically, a branching process is described as follows:

- The total number of nodes in the n^{th} generation is a random variable (RV) Z_n.
- Each member x_i of the n^{th} generation gives birth to a random number of children X_i, governed by an offspring distribution, which are members of the $(n+1)^{th}$ generation. Thus, we have

$$Z_{n+1} = X_1 + X_2 + \cdots + X_{Z_n} \quad (3)$$

- We assume $Z_0 = 1$ which gives us the root node x_0.
- The X_i are generated i.i.d., with mean μ.

Let the generating function of the “offspring” RV X be given by $G(s) \equiv \mathbb{E}(s^X)$. Let $G_n(s)$ denote the generating function of Z_n. Then, from (3), it follows that

$$G_{n+1}(s) = G_n(G(s)) \quad (4)$$

$$= G(G(\cdots G(s) \cdots)) \quad (5)$$

where the composition takes place n times. Further, it can be shown that $\mathbb{E}(Z_n) = \mu^n$, where $\mu \equiv \mathbb{E}(X)$. We then have the following result.

Theorem 1 The probability η that $Z_n = 0$ for some n is equal to the smallest non-negative root of the equation $G(s) = s$.

![Figure 3: Illustration of a branching process](image-url)
Note that η is the probability that the branching process ultimately terminates. This then leads to the following important theorem.

Theorem 2 If $\mu \leq 1$, the branching process does not grow forever with probability 1, except when $\mathbb{P}(X_1 = 1) = 1$. Conversely, if $\mu > 1$, then the branching process grows forever with positive probability.

3.2 Percolation on k-regular rooted trees

Consider a rooted tree where each node in a generation has exactly k offsprings (k-regular). In this graph, by randomly keeping edges to each offspring with probability p, we induce a branching process whose offspring distribution is binomial with parameters k and p. Specifically, whenever a node in a particular generation spawns $m < k$ offsprings, we start $k - m$ new branching processes in the succeeding generation.

From Theorem 2, it follows that if the average number of children $kp > 1$, then each time a new branching process is started, there is a positive probability of it going on forever. Consequently, if $kp > 1$, then w.p. 1, an infinite tree is generated starting from some node on the original tree.

4 Bond percolation on 2-D lattices: Preliminaries

As mentioned earlier, we consider the graph formed by the 2-D integer lattice $L = (\mathbb{Z}^2, E)$, where the edge set E consists of all vertex pairs with distance 1. Let $0 \leq p \leq 1$ and let $q = 1 - p$. We derive a random graph from the base graph L by declaring each edge in L to be open w.p. p and closed w.p. q.

4.1 Probability space

- **Sample Space:** Let $\omega : E \to \{0, 1\}$ such that $\omega(e) = 1$ if e is open and 0 if e is closed. Then, the sample space Ω is the space of all 0-1 valued functions ω, i.e., $\Omega = \prod_{e \in E} \{0, 1\}$ (where \prod denotes the product space). Each sample point $\omega \in \Omega$ is also called a configuration.

- **Measurable events:** The measurable events belong to the σ-field \mathcal{F} of subsets of Ω generated by the finite-dimensional cylinders, i.e., each event in \mathcal{F} corresponds to specifying ω on a finite set of edges of E.

- **Probability Measure:** We take the product measure \mathbb{P}_p on (Ω, \mathcal{F}):

\[\mathbb{P}_p = \prod_{e \in E} \mu_e \] \hspace{1cm} (6)

where μ_e is the Bernoulli measure on $\{0, 1\}$:

\[\mu_e(\omega(e) = 0) = q; \quad \mu_e(\omega(e) = 1) = p \] \hspace{1cm} (7)

We denote the expectation with respect to \mathbb{P}_p as \mathbb{E}_p.

There is a natural **partial order** on the set Ω of configurations: for $\omega_1, \omega_2 \in \Omega$, we say $\omega_1 \leq \omega_2$ iff $\omega_1(e) \leq \omega_2(e), \forall e \in E$.

5 Main Take-Aways

- For bond percolation over the 2-D lattice, the percolation probability $\theta(p)$ exhibits a **threshold** behavior as a function of p.

- Similarly, a branching process continues forever with positive probability iff the average number of children per node is **strictly larger** than 1.