1 Executive Summary

This lecture gave an overview on two Campbell’s theorems - the mean and variance versions. Using Campbell’s (mean) theorem as a tool, we discussed several examples of its applications such as - mean interference calculation, Monte-Carlo integration and calculation of intensity of a Poisson cluster process.

2 Campbell’s Theorem and its Applications

Let Φ be a point process (PP) on S and let $f : S \rightarrow \mathbb{R}$ be a measurable function. Then Campbell’s theorem states that the mean of the random sum $T = \sum_{x \in \Phi} f(x)$ is given by $\int_S f(x) \Lambda(dx)$.

1. Interference: Let Φ be a homogeneous Poisson point process (PPP) with intensity λ in the \mathbb{R}^d space. In a path-loss environment where the received power scales as $r^{-\alpha}$, the average interference seen at the origin $E[I] = E[\sum_{x \in \Phi} ||x||^{-\alpha}]$ can be calculated, using the Campbell’s theorem, as

$$E[I] = \lambda c_d d^{-\alpha} \left. \frac{d}{d-\alpha} r^{d-\alpha} \right|_{r=0}^{r=\infty},$$

where c_d is the volume of a unit ball in \mathbb{R}^d. Note that $E[I] \rightarrow \infty$, immaterial of the values of d and α. Imposing an additional constraint on the minimum distance to the nearest interferer to be r_0, the expected interference can be expressed as $E[I] = \lambda c_d \frac{d}{d-\alpha} r_0^{d-\alpha}$ for $\alpha > d$.

2. Monte-Carlo Integration: Suppose we want to compute the integral $I = \int_W f(x)dx$ where $W \subset \mathbb{R}^d$ and f is a nonnegative, integrable, real-valued function. Take any point process X with intensity $\lambda(x) = \begin{cases} c & \text{if } x \in W \\ 0 & \text{else.} \end{cases}$

Then, the integral I can be approximated by evaluating the discrete sum of function f at the random points of X as $\hat{I} = \frac{1}{n} \sum_{x \in X} f(x)$.

3. Suppose X consists of a fixed, finite number of random points in \mathbb{R}^d, say $X = \{X_1, \ldots, X_n\}$. Assume X_i has a marginal probability density $f_i(u)$, $u \in \mathbb{R}^d$. Then X has intensity function $\lambda_X(u) = \sum_{i=1}^n f_i(u)$.

4. Poisson Cluster Process: Let X be a homogenous PPP with intensity α. Replace each parent point $x \in X$ by a random cluster Z_x which is a finite PP. Suppose Z_x has intensity function $f(u|x)$. Then conditional on X, the process $Y = \{Z_x | x \in X\}$ has the intensity function $\lambda_Y|X = \sum_{x \in X} f(u|x)$. Further, the intensity function λ_Y of Y is the expectation with respect to X,

$$\lambda_Y = \alpha \int_{\mathbb{R}^d} f(u|x)dx.$$

Example: Matérn’s Cluster Process - Here, the cluster Z_x consists of a Poisson(μ) random number of points, uniformly distributed in the disc $b(x, r)$ of radius r centered on x. This has intensity $f(u|x) = \mu/(\pi r^2)$ if $u \in b(x, r)$ and 0 otherwise. Such a cluster process has an intensity $\lambda_Y = \alpha \mu$.

3 Variance Version of Campbell’s Theorem

Let \(\Phi \) be a homogeneous PPP on \(\mathbb{R}^d \) with intensity \(\lambda \) and let \(f: \mathbb{R}^d \to \mathbb{R} \) be a measurable function. Then the variance of the random sum \(T = \sum_{x \in \Phi} f(x) \) is given by \(\lambda \int_{\mathbb{R}^d} f^2(x) \, dx \).

Example: Referring back to the Interference Example 1, the variance of the interference (with a minimum distance constraint of \(r_0 \)) can be calculated, using the variance version of Campbell’s theorem, as

\[
\text{Var}[I] = \lambda c d \frac{d - 2 \alpha}{d - 2 \alpha} r_0^{-d - 2 \alpha} \quad \text{for} \quad 2 \alpha > d.
\]

4 Distribution of the Interference from the Nearest Interferer

The probability that the nearest neighbor is closer than \(r \) is given by \(P[\text{dist}(u, X) \leq r] = 1 - e^{-\lambda c d r^d} \). Hence \(P(I_1 \leq x) = P(\text{dist}(u, X) \geq x^{-1/\alpha}) = e^{-\lambda c d r^{-\alpha}} \), where \(\delta = \frac{d}{\alpha} \). The expected value of the interference from the nearest neighbor can be expressed in terms of the gamma function as

\[
\mathbb{E}[I_1] = c_d^\frac{1}{\alpha} \Gamma \left(1 - \frac{1}{\delta} \right).
\]

Comments:

1. If \(\delta \leq 1 \), then \(\mathbb{E}[I_1] \to \infty \).
2. \(\mathbb{P}(I_1 > x) \sim \lambda c d x^{-\delta} \). For \(\delta \leq 1 \), the tail does not decay fast enough. Thus \(I_1 \) (and consequently \(I \)) has a “heavy-tailed” distribution.

5 Interference at a Given Node

Let \(X \) be a Poisson process in the plane with average number of points per unit area equal to \(\lambda \). A node is assumed to transmit with a probability of \(p \). Hence, the set of transmitting nodes also forms a Poisson process \(X_t \) with intensity \(\lambda t = \lambda p \). Define \(Y = \sum_{i:x_i \in X_t} g(r_i) \) as the total interference power at the origin where \(r_i \) is the distance of \(x_i \) from the origin. Assuming a path loss model \(g(r) = \frac{1}{r^\alpha} \), the density function of \(Y \) for \(\alpha = 4 \) is derived as [1]

\[
f_Y(y) = \frac{\pi}{2} \lambda t y^{-3/2} e^{-\pi y^3/4}.
\]

6 Main Take-Aways

- The mean and variance of the interference in a wireless network with Poisson distributed nodes is infinity for all values of \(d \) (the number of dimensions), and \(\alpha \) (the path loss exponent). Furthermore, its pdf has a heavy-tail and follows a stable distribution. Also note that the interference is not Gaussian-distributed as one would intuitively expect based on the central limit theorem.

- An integral of a nonnegative, integrable, real-valued function can be calculated by taking a discrete sum of the function at random points of a PP (Monte-Carlo Integration).

7 Sources

References